【発明の詳細な説明】〔産業上の利用分野〕本発明は、有機高分子多孔質体にキトサンを存在させた
改良された限外濾過膜に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improved ultrafiltration membrane in which chitosan is present in a porous organic polymer.
限外濾過膜は、膜分離技術において広く工業的に利用さ
れており、特に最近では食品加工、医薬品工業、水処理
など名種の分野に適用されている。このような限外濾過
膜は、分離対象物を分子の大きさによって濾別する技術
であり、従って如仇に精密に分子量の違うものを分画す
るか、及び処理透過液量を如何に(1)大きくシ、維持するかが重要である。Ultrafiltration membranes are widely used industrially in membrane separation technology, and have recently been applied in a variety of fields such as food processing, pharmaceutical industry, and water treatment. This type of ultrafiltration membrane is a technology that filters substances to be separated according to their molecular size. Therefore, it is difficult to precisely separate substances with different molecular weights, and how to control the amount of processed permeate ( 1) It is important to maintain a large scale.
限外濾過膜としては、例えば膜素材として酢酸セルロー
ス、ポリアクリロニトリル、ポリスルホン、ポリエーテ
ルスルホン、ポリふつ化ビニリデンなどの有機線状高分
子を一般に適当な溶媒に溶解し相転換法(キャスト法)
によって、高分子膜の表層部に孔径の制御されたスキン
層を有し、その下に多孔質のスポンジ層を有する構造で
ある。このような有機高分子多孔質膜の限外濾過膜とし
ては、種々の分画分子量のものが提供されているが、般
に低い分画分子量の領域では透水液量が著しく低減する
問題を有する。そのため、有機高分子多孔質膜の表層部
に薄膜を積層して複合化した限外濾過膜が提案されてい
るが、充分に満足されるに至っていない。For ultrafiltration membranes, for example, organic linear polymers such as cellulose acetate, polyacrylonitrile, polysulfone, polyethersulfone, and polyvinylidene fluoride are generally dissolved in an appropriate solvent as a membrane material, and a phase inversion method (casting method) is used.
This structure has a skin layer with a controlled pore size on the surface layer of the polymer membrane, and a porous sponge layer underneath. Such ultrafiltration membranes made of porous organic polymer membranes are available with various molecular weight cutoffs, but in general, in the low molecular weight cutoff range, the amount of permeable liquid decreases significantly. . Therefore, a composite ultrafiltration membrane has been proposed in which a thin film is laminated on the surface layer of a porous organic polymer membrane, but this has not yet been fully satisfied.
したがって、本発明の目的は、分画分子量が小さい領域
まで広範囲に制御され且つ透過液量の著しい低下が抑制
された有機高分子多(2)孔質体の限外濾過膜を提供することにある。Therefore, an object of the present invention is to provide an ultrafiltration membrane made of a porous organic polymer, in which the molecular weight cut-off can be controlled over a wide range down to a small range, and a significant decrease in the amount of permeated liquid can be suppressed. be.
また、本発明の他の目的は、耐熱性が改良された有機高
分子多孔質膜の限外濾過膜を提供することにある。さら
に、本発明の他の目的は、イオン性の物質を良好に分離
し得る有機高分子多孔質膜の限外濾過膜を提供すること
にある。Another object of the present invention is to provide an ultrafiltration membrane made of a porous organic polymer membrane with improved heat resistance. Furthermore, another object of the present invention is to provide an ultrafiltration membrane made of a porous organic polymer membrane that can satisfactorily separate ionic substances.
本発明者らは、上記した問題に鑑み鋭意研究の結果、有
機高分子多孔質膜に特定した分子量を有するキトサンを
存在させることにより、所望の目的を達成し改良された
限外濾過膜が得られる知見に基づき、本発明を完成する
に至ったものである。即ち、本発明によれば、有機高分
子多孔質膜に分子量が1,000〜200,000のキ
トサンを存在させる限外濾過膜が提供される。In view of the above-mentioned problems, the present inventors have conducted extensive research and found that an improved ultrafiltration membrane that achieves the desired purpose can be obtained by adding chitosan having a specific molecular weight to a porous organic polymer membrane. Based on the findings obtained, the present invention was completed. That is, according to the present invention, an ultrafiltration membrane is provided in which chitosan having a molecular weight of 1,000 to 200,000 is present in a porous organic polymer membrane.
本発明において、限外濾過膜の基体とする有機高分子多
孔質膜としては、例えばポリスルホン、ポリエーテルス
ルホン、酢醗セルロ(3)一ス、ポリアクリロニトリル、ポリフッ化ビニデンなど
を材質とする市販の限外濾過膜がそのtま用いられる。In the present invention, the organic polymer porous membrane used as the substrate of the ultrafiltration membrane may be a commercially available porous membrane made of polysulfone, polyethersulfone, vinegar cellulose (3), polyacrylonitrile, polyvinidene fluoride, etc. Ultrafiltration membranes are used until then.
また、上記のようなポリスルホン、ポリエーテルスルホ
ン、ポリスルホン ド、ポリイミド類、ポリアミド類な
どの縮合高分子あるいは酢酸セルロース。Also, condensation polymers such as polysulfone, polyethersulfone, polysulfone, polyimides, polyamides, etc. or cellulose acetate as mentioned above.
ポリアクリロニトリル、ポリビニルアルコール、ポリ7
ツ化どニリデン、ポリ塩化ビニルなどの重合型高分子を
膜素材として、一般に適当な溶媒に溶解した溶液を平板
上に流延したり、中空系ノズル力・ら押出して、貧溶媒
中における相転換法にまり平膜状、中空系膜状。Polyacrylonitrile, polyvinyl alcohol, poly7
Polymerizable polymers such as nylidene tsulfide and polyvinyl chloride are used as membrane materials, and a solution dissolved in an appropriate solvent is generally cast onto a flat plate or extruded through a hollow nozzle to separate the phases in poor solvents. Flat membrane type, hollow membrane type depending on the conversion method.
管状など所望の影線で限外濾過膜を得ることができる。Ultrafiltration membranes can be obtained in any desired shaded shape, such as in a tubular shape.
このような有機高分子膜の限外濾過膜は、一般に多孔質
層の表層部に孔径が制御されたスキン層を有する構造で
あり、分画分子量が数100〜数100,000である
。Such an ultrafiltration membrane of an organic polymer membrane generally has a structure having a skin layer with a controlled pore size on the surface layer of a porous layer, and has a molecular weight cut-off of several 100 to several 100,000.
本発明によれば、上記したような有機高分子膜の限外濾
過膜において、分子量が1.000200.000のキ
トサンを存在させることに(4)より、分画分子量を低い領域まで広く任意に制御と得る
ものである。According to the present invention, by including chitosan having a molecular weight of 1.000200.000 in the ultrafiltration membrane of an organic polymer membrane as described above (4), the molecular weight cut-off can be arbitrarily adjusted widely to a low range. Control and gain.
本発明においては、分子量が1,000〜200.00
0のキトサンを用いることが極めて重要である。即ち、
分子量が1,000より小さいキトサンを用いた場合に
は、該キトサンが水溶液となるために、多孔質膜上に水
不溶性の薄膜を形成することが困難となる。したがって
、分画分子量を任意に所望の領域に制御することが出来
ない。また、分子量が200.000より大きいキトサ
ンを用いる場合には、分画分子量の制御は可能であるが
、多孔質膜上に形成する薄膜を所望の厚みにすることに
限界がある。したがって、多孔質膜の細孔を完全に塞い
でしまう確率が高くなり、香水量が極端に減少してしま
うため、実用的な限外濾過膜を得ることができない。In the present invention, the molecular weight is 1,000 to 200.00.
It is extremely important to use zero chitosan. That is,
When chitosan with a molecular weight smaller than 1,000 is used, the chitosan becomes an aqueous solution, making it difficult to form a water-insoluble thin film on the porous membrane. Therefore, it is not possible to arbitrarily control the molecular weight cut-off to a desired range. Furthermore, when chitosan having a molecular weight greater than 200,000 is used, it is possible to control the molecular weight cut-off, but there is a limit in making the thin film formed on the porous membrane a desired thickness. Therefore, there is a high probability that the pores of the porous membrane will be completely blocked, and the amount of perfume will be extremely reduced, making it impossible to obtain a practical ultrafiltration membrane.
本発明に用いるキトサンは、分子量が1.000〜20
0.000.好ましくは10,000〜150,000
であれば特に制限されず、(5)殻にエビ、カニなどの甲殻類の外皮から押出されたキチ
ンな醸なとで処理してキトサンにしたときの所定の分子
量に調整した後、さらにアルカリ処理して脱アセチル仕
度が70%以上、好ましくは80〜99%のキトサンを
調製する。なお、本発明に用いるキトサンは、上記した
キトサンそのもののみならず、該キトサンのアミノ基と
反応し得る例えば酸ハライド、活性へロゲン基、インシ
アナート基。The chitosan used in the present invention has a molecular weight of 1.000 to 20
0.000. Preferably 10,000 to 150,000
(5) After adjusting the molecular weight to the specified molecular weight when making chitosan by treating the shell with chitin extruded from the outer skin of crustaceans such as shrimp and crabs, it is further treated with alkali. The process prepares chitosan with a degree of deacetylation of 70% or more, preferably 80 to 99%. The chitosan used in the present invention is not limited to the above-mentioned chitosan itself, but also includes, for example, acid halides, active halide groups, and incyanate groups that can react with the amino groups of the chitosan.
アルデヒド基、スルホン酸ハライド−基、リン酸ハライ
ド基、エポキシ基などを有する試薬を反応させた変性キ
トサン、あるいは、ビニル単量体をグラフト重合させた
キトサン誘導体も有効であり、それらを合せてもキトサ
ンと総称する。Modified chitosan produced by reacting with a reagent containing an aldehyde group, a sulfonic acid halide group, a phosphoric acid halide group, an epoxy group, etc., or a chitosan derivative obtained by graft polymerization of a vinyl monomer are also effective, and even a combination of these is effective. Collectively called chitosan.
本発明の改良された限外濾過膜は、一般に所定のキトサ
ンを酢酸、蟻酸などに溶解して調製した酸性水溶液によ
り有機高分子多孔質膜を処理した後、水酸化ナトリウム
などのアルカリ水溶液により処理して凝固析出させる(
6)方法により得ることができる。具体的に(1、有機高分
子多孔質膜にキトサンの酸性水溶液を塗布、噴霧する手
段、あるいはキトサンの酸性水溶液に有機高分子多孔質
膜を浸漬する手段により処理した後、それぞれアルカリ
水溶液で同様に処理した後、さらに水洗する方法が採用
される。したがって、本発明において、有機高分子多孔
質膜にキトサンか存在する態様には、該膜の一方または
両方の表層部に存在、膜内まで均一に存在、膜内にのみ
存在、あるいは表層部から膜内に勾配をもって存在する
などの場合があり、種々の複合化された限外濾過膜か提
供される。特に好ましい態様としては、有機高分子多孔
質膜のスキン層を有する側にキトサンを薄膜状に存在さ
せた限外濾過膜が推奨される。The improved ultrafiltration membrane of the present invention is generally produced by treating the organic polymer porous membrane with an acidic aqueous solution prepared by dissolving a given chitosan in acetic acid, formic acid, etc., and then treating it with an alkaline aqueous solution such as sodium hydroxide. to solidify and precipitate (
6) It can be obtained by a method. Specifically (1. After treating the organic polymer porous membrane by applying or spraying an acidic aqueous solution of chitosan, or by immersing the organic polymer porous membrane in an acidic aqueous chitosan solution, the membrane was treated in the same manner with an alkaline aqueous solution. Therefore, in the present invention, in an embodiment in which chitosan is present in the porous organic polymer membrane, chitosan is present on one or both surface layers of the membrane, and chitosan is present inside the membrane. There are cases where the ultrafiltration membrane exists uniformly, exists only within the membrane, or exists in a gradient from the surface layer into the membrane, and various composite ultrafiltration membranes are provided.A particularly preferred embodiment is an ultrafiltration membrane with an organic high An ultrafiltration membrane in which a thin film of chitosan is present on the skin layer side of a molecular porous membrane is recommended.
このような本発明の有機高分子多孔質膜に存在させるキ
トサンの鰍は、目的とする限外濾過膜の分画分子数およ
び透過液量を予め勘案して適宜決定され、上記した如き
キトサン(7)を存在させる態様によって多少異なるが、−般に膜のス
キン層を有する側に厚さ0.01〜5μmの割合で薄膜
状に存在させることが好ましい8キトサンの酸性水溶液
は、一般に01〜20重量%に調製されるが、特に低濃
度の溶液を用いることにより、多孔質膜に形成するキト
サンの活性層の厚みを薄くできるため、6過流束の高い
良好な限外濾過膜を得ることができる。The amount of chitosan to be present in the porous organic polymer membrane of the present invention is appropriately determined by taking into consideration the number of fractionated molecules of the intended ultrafiltration membrane and the amount of permeate, and the amount of chitosan ( 7) The acidic aqueous solution of chitosan is generally preferably present in the form of a thin film with a thickness of 0.01 to 5 μm on the side of the membrane having the skin layer, although it varies somewhat depending on the mode in which the chitosan is present. By using a particularly low concentration solution, the thickness of the chitosan active layer formed on the porous membrane can be made thinner, resulting in a good ultrafiltration membrane with a high flux. be able to.
なお、本発明の有機高分子多孔質膜におけるキトサンの
存在は、特に化学結合を必要とせず、有機高分子多孔質
膜と吸着によるもので十分である。しかしながら、さら
に安定したキトサンの存在を望む場合には、有機高分子
多孔質膜にクロルメチル基などの反応性の置換基を導入
して、存在させるキトサンのアミノ基との間に共有結合
を形成させる態様も有効である。また、有機高分子多孔
質膜にスルホン基などの陽イオン交換基を導入して、陰
イオン交換基であるキトサンのアミノ基と(8)の間にイオン結合を形成させる態様も有効である。特に
有機高分子多孔質膜にキトサンを存在させた後、ジェポ
キシ化合物、グリタルアルデヒドなどのジアルデヒド化
合物、ジイソソシアナートあるいは硫酸、リン酸、クエ
ン酸、マリン酸などの多塩基酸の架橋剤を用いることに
より、キトサンのアミノ基を介して共有架橋構造あるい
はイオン架橋構造を付与して、耐薬品性、耐熱性などが
改良された限外濾過膜を得ることができる。Note that the presence of chitosan in the porous organic polymer membrane of the present invention does not require any particular chemical bond, and the existence of chitosan by adsorption with the porous organic polymer membrane is sufficient. However, if a more stable presence of chitosan is desired, a reactive substituent such as a chloromethyl group is introduced into the porous organic polymer membrane to form a covalent bond with the amino group of the chitosan to be present. Aspects are also effective. It is also effective to introduce a cation exchange group such as a sulfone group into the porous organic polymer membrane to form an ionic bond between the amino group of chitosan (8), which is an anion exchange group. In particular, after chitosan is present in the porous organic polymer membrane, crosslinking agents such as jepoxy compounds, dialdehyde compounds such as glitaraldehyde, diisoocyanates, or polybasic acids such as sulfuric acid, phosphoric acid, citric acid, and malic acid are used. By using chitosan, a covalently crosslinked structure or an ionic crosslinked structure is imparted through the amino groups of chitosan, thereby making it possible to obtain an ultrafiltration membrane with improved chemical resistance, heat resistance, etc.
さらに、本発明は、有機高分子多孔質膜にキトサンを存
在させた後、例えば、塩酸、リン散、硫酸、硝醸、蟻酸
、酢酸などで処理することにより、該キトサンのアミン
基を解離して正電荷を付与した限外濾過膜も有用である
。即ち、このような電荷を付与した本発明の限外濾過膜
を用いて、分子量が同程度の荷電分子と非荷電分子とを
含有する溶液を濾過することにより、該非荷電分子だけ
が透過し、荷電分子が残留して、それぞれ完全な分離が
(9)可能であるため、例えば生体高分子の限外濾過分離にお
いて極めて有効である。Furthermore, in the present invention, after chitosan is present in the porous organic polymer membrane, the amine groups of the chitosan are dissociated by treatment with, for example, hydrochloric acid, phosphorus powder, sulfuric acid, nitric acid, formic acid, acetic acid, etc. Ultrafiltration membranes that are positively charged are also useful. That is, by filtering a solution containing charged molecules and uncharged molecules with similar molecular weights using the charged ultrafiltration membrane of the present invention, only the uncharged molecules permeate, Since charged molecules remain and complete separation of each is possible (9), it is extremely effective, for example, in ultrafiltration separation of biopolymers.
以下、本発明の実施例および比較例を示すが、本発明は
これら実施例に限定されるものでない。Examples and comparative examples of the present invention are shown below, but the present invention is not limited to these examples.
なお、実施例および比較例に示す透水性は純水を用いて
操作圧4カで測定した流束であり、また、透過性は所定
のポリエチレングリコール(PEG)の単分散水溶液(
濃度1,000P)を用いて測定し、阻止率(%)を下
記式で算出し、その阻止率が90%以上となる標準PE
Gの分子量を分画分子置とした。The water permeability shown in Examples and Comparative Examples is the flux measured at 4 operating pressures using pure water, and the permeability is the flux measured using pure water at 4 operating pressures.
Standard PE with a rejection rate of 90% or more, calculated using the formula below.
The molecular weight of G was used as the fractional molecular weight.
実施例1N−メチルピロリ トン240F。Example 1N-methylpyrroliton 240F.
(lO)の単位を有する重量平均分子量35,000のポリスル
ホン60Iiおよび重量平均分子量40.000のポリ
ビニルピロリドンよりなる混合物を室温において10時
間攪拌した後、濾過して粘度35ボイズの溶液を得た。A mixture of polysulfone 60Ii with a weight average molecular weight of 35,000 and polyvinylpyrrolidone with a weight average molecular weight of 40,000 having units of (lO) was stirred at room temperature for 10 hours and then filtered to obtain a solution with a viscosity of 35 voids.
次いで、この溶液をガラス板上に約30011mの厚さ
で流延した後、10℃の純水に浸漬して凝固させること
により、淳さ約100μmのポリスルホンを得た。Next, this solution was cast onto a glass plate to a thickness of about 30011 m, and then immersed in pure water at 10° C. to solidify, thereby obtaining polysulfone with a thickness of about 100 μm.
このポリスルホン膜について、純水の透過流束を測定し
た結果、520J/ゴ・hnであった。また、重量平均
分子量が21,000であるPEGの単分散水溶液(濃
度x、ooo=)の透過性を測定した結果、阻止率は9
8%であった。The permeation flux of pure water was measured for this polysulfone membrane, and the result was 520 J/g·hn. In addition, as a result of measuring the permeability of a monodispersed aqueous solution of PEG (concentration x, ooo =) with a weight average molecular weight of 21,000, the rejection rate was 9.
It was 8%.
次に、重量平均分子量が100.000で脱アセチル化
度が98%であるキトサン5gをINの酢酸水溶液99
5.!9に溶屏して調製したドープ液に、上記のポリス
ルホン膜を室温で2時間浸漬処理した。この処理膜をガ
ラス板に貼り付けて50℃で2時間乾燥させた後、その
まt5mm%の水酸化ナトリウム水溶液に浸漬して、該
膜に付着のキトサンを固定化した。ガラス板から膜を剥
ぎ取って、多量の水で洗い水酸化ナトリウムを除去した
。得られた膜をP H2に調整した2重量%のクロム酸
カリウム溶液に浸漬して、キトサンの−NH2基を解離
させ−N)I3”として、クロム酸イオンとイオン交換
させる処理を行った後。Next, 5 g of chitosan having a weight average molecular weight of 100.000 and a degree of deacetylation of 98% was added to an aqueous solution of IN acetic acid at 99%
5. ! The above polysulfone membrane was immersed in the dope solution prepared by dissolving No. 9 at room temperature for 2 hours. This treated membrane was attached to a glass plate and dried at 50° C. for 2 hours, and then immersed in a 5 mm % aqueous sodium hydroxide solution to fix the chitosan attached to the membrane. The film was peeled off from the glass plate and washed with plenty of water to remove the sodium hydroxide. The obtained membrane was immersed in a 2% by weight potassium chromate solution adjusted to pH2 to dissociate the -NH2 groups of chitosan and exchange them with chromate ions to form -N)I3''. .
X線マイクロアナライザーにより膜断面を観察の結果、
膜の表層部に厚みが約0.1μmであるクロムの分布を
蓚詔した。また、走査型電子顕微鏡により膜断面を観察
の結果、ポリスルホンのスキン層上に緻密な構造を有す
る淳さが約0.1pmの層が観察された。As a result of observing the cross section of the membrane with an X-ray microanalyzer,
A chromium distribution with a thickness of about 0.1 μm was distributed on the surface layer of the film. Further, as a result of observing the cross section of the membrane using a scanning electron microscope, a layer having a dense structure and a thickness of about 0.1 pm was observed on the polysulfone skin layer.
上記のキトサンを存在させたポリスルホン膜について、
純水の透過流束を測定した結果は4o−s l / 7
7−hrであり、tだ各mのxt平均分子量を有するP
EG水溶液(濃度1.0001MIm)の透過性は、そ
れぞれ表−1に示す阻止率(支)ンであった。Regarding the above polysulfone membrane in which chitosan was present,
The result of measuring the permeation flux of pure water is 4o-s l/7
7-hr and has an average molecular weight of xt for each m
The permeability of the EG aqueous solution (concentration 1.0001 MIm) was as shown in Table 1.
表実施例2実施例1で得たキトサン−ポリスルホン複合膜に共有結
合の架橋構造を付与するために、0.5重量%のグルタ
ルアルデヒド水溶液に室温で10時間浸漬し、次いで水
洗を行った。Table Example 2 In order to impart a covalent crosslinked structure to the chitosan-polysulfone composite membrane obtained in Example 1, it was immersed in a 0.5% by weight aqueous glutaraldehyde solution at room temperature for 10 hours, and then washed with water.
この得られた複合膜について、透水量および透過性を測
定した結果、純水透過流束は14.01/1ri−hr
を示し、また下記する各種分子量のPEG水溶液(
濃度1..0001)Ilm)の明止(13)率は表−2に示す通りであった。As a result of measuring the water permeability and permeability of the obtained composite membrane, the pure water permeation flux was 14.01/1ri-hr.
and the following PEG aqueous solutions of various molecular weights (
Concentration 1. .. The brightening rate (13) of 0001) Ilm) was as shown in Table 2.
表次に、上記の架橋構造を有するキトサン−ポリスルホン
の複合膜について、耐熱性を調べるために、該膜を約9
8℃の温水中に5時間浸漬処理した。この処理した複合
膜な用いて、上記と同様に透水量と透過性を測定した結
果、純水透過流束は14.811/rrl・hrであり
、また各種分子量のPEG水溶液(濃度1、ooopp
)の阻止率は表−3に示す通りで(14)あった。Table Next, in order to examine the heat resistance of the chitosan-polysulfone composite membrane having the above-mentioned crosslinked structure, the membrane was
It was immersed in warm water at 8°C for 5 hours. Using this treated composite membrane, the water permeation amount and permeability were measured in the same manner as above. As a result, the pure water permeation flux was 14.811/rrl・hr, and PEG aqueous solutions of various molecular weights (concentration 1, ooopp
) was as shown in Table 3 (14).
表また、上記の架橋構造を有するキトサン−ポリスルホン
の複合膜について、耐醗性を調べるために、鉄膜をIN
の酢酸水溶液に室温で24時浸漬処理した。次いで、こ
の処理膜を多量の水で洗浄した後、上記と同様に透水量
と透過性を測定した結果、純水の透過流束は1451/
m’・hrであり、また各種分子量のPEG水溶液(濃
度1,0OOP)に対する阻止率は表−4に示すとおり
であった。The table also shows that in order to investigate the resistance of the chitosan-polysulfone composite membrane having the above-mentioned crosslinked structure, an iron membrane was
The sample was immersed in an acetic acid aqueous solution at room temperature for 24 hours. Next, after washing this treated membrane with a large amount of water, the water permeability and permeability were measured in the same manner as above. As a result, the permeation flux of pure water was 1451/
m'·hr, and the inhibition rates against PEG aqueous solutions of various molecular weights (concentration 1.0 OOP) were as shown in Table 4.
表実施例3および比較例1実施例1で得たポリスルホン膜を用いて、表−5に示す
各種の重量平均分子量および脱アセチル化度を有するキ
トサンにより実施例1と同様に調製したドープに同一条
件で浸漬処理して、キトサン−ポリスルホンの複合膜を
得た。次いで、それら複合膜を実施例2に準じてグルタ
ルアルデヒド水溶液に浸漬して架橋処理した。Table Example 3 and Comparative Example 1 Using the polysulfone membrane obtained in Example 1, the same dope was prepared in the same manner as in Example 1 with chitosan having various weight average molecular weights and degrees of deacetylation shown in Table 5. A chitosan-polysulfone composite membrane was obtained by immersion treatment under the following conditions. Next, these composite membranes were immersed in an aqueous glutaraldehyde solution to undergo crosslinking treatment according to Example 2.
それぞれ得られた複合膜について、透水量と透過性を測定した結果を表5に示した。Regarding the composite membranes obtained,There,Displays the results of measuring water permeability and permeability.5.
表(17)実施例4および比較例2ポリスルホンをN−メチルピロリドンに溶解して35襲
の粘稠なドープ液を調製した。Table (17) Example 4 and Comparative Example 2 A 35-layer viscous dope solution was prepared by dissolving polysulfone in N-methylpyrrolidone.
これを実施例1と同様にしてガラス板上に流延し、次い
で水中に浸漬して相分離させて多孔質膜とした。なお、
ドープ液が極めて粘稠であるため、流延は55℃におい
て行った。This was cast onto a glass plate in the same manner as in Example 1, and then immersed in water for phase separation to form a porous membrane. In addition,
Casting was carried out at 55°C since the dope was very viscous.
この得られたポリスルホン膜について、透水量を測定し
た結果は321/rl・hrであり、単分散のポリエチ
レングリコールを用いて分−分子量を測定した結果は、
約2.000であった。Regarding the obtained polysulfone membrane, the water permeation rate was measured to be 321/rl·hr, and the minute-molecular weight was measured using monodisperse polyethylene glycol.
It was about 2,000.
他方、ポリスルホンをN−メチルピロリドンに溶解して
20%溶液のドープ液を調製し、同様にしてガラス板上
に流延した後、水中において相分離させて得られたポリ
スルホンの多孔質膜は、分画分子量が15,000であ
り、透水量が6211/vl−hr であった。次に
、この多孔質膜を実施例1と同様にして、分子量が約a
、oooのキトサンのIN酢酸水溶液(18)中に浸漬して、乾燥後、5重jl1%の水酸化ナトリウ
ム水溶液に浸漬し、さらに0.5重量%のグルタルアル
デヒド水溶液中に浸漬して70℃で、1時間架橋反応さ
せた。このキトサンを存在させた複合膜は、分画分子量
が釣1800、透水量が8 Z 51 / m・hr
であった。この複合膜はキトサンを存在させ、グルタル
アルデヒドで架橋させたことによって、膜X量として3
%の増加が詔められた。On the other hand, a porous membrane of polysulfone obtained by dissolving polysulfone in N-methylpyrrolidone to prepare a 20% dope solution, casting it on a glass plate in the same manner, and allowing phase separation in water, The molecular weight cut off was 15,000, and the water permeability was 6211/vl-hr. Next, this porous membrane was prepared in the same manner as in Example 1, and the molecular weight was about a.
, ooo of chitosan in an aqueous IN acetic acid solution (18), dried, immersed in a 1% aqueous sodium hydroxide solution, and further immersed in a 0.5% by weight glutaraldehyde aqueous solution at 70°C. Then, a crosslinking reaction was carried out for 1 hour. The composite membrane containing this chitosan has a molecular weight cut-off of 1800 and a water permeability of 8 Z 51 / m・hr.
Met. This composite membrane was created by making chitosan exist and crosslinking with glutaraldehyde, so that the amount
% increase was recommended.
上記から、分画分子量が約2.0001透水量が321
/m−hr であるポリスルホンの多孔質膜に比べて
、ポリスルホンの多孔質膜にキトサンを存在させた本発
明の複合膜は、分画分子量が約1,800と小さいにも
かかわらず、透水量は8L51/lri・hrと大であ
る。From the above, the molecular weight fraction is approximately 2.0001 and the water permeability is 321.
/m-hr, the composite membrane of the present invention in which chitosan is present in a polysulfone porous membrane has a small water permeation rate of about 1,800. is as large as 8L51/lri·hr.
実施例5実施例2で得た架橋構造を有するキトサン−ポリスルホ
ン複合膜を0.01N(7)塩酸に室温で1時間浸漬、
次いで水洗処理によりキトサンの−NH2基を解離して
正電荷の−NH3”CA とした。この正荷電を付与
した複合膜について、正荷電効果を調べるために、カチ
オン性物質である表−5に示す各種の4級アンモニウム
塩水溶液(濃度x、ooo−)の透過試験を行った結果
を表−6に示す。また、この膜を0.0INの水酸化す
) IJウム水溶液に室温度で1時[1」浸漬し、解離
したアミノ基を中和して非電荷とした膜についても、同
様の測定を行った結果を表−6に併せて示す。Example 5 The chitosan-polysulfone composite membrane having a crosslinked structure obtained in Example 2 was immersed in 0.01N (7) hydrochloric acid at room temperature for 1 hour.
Then, by washing with water, the -NH2 groups of chitosan were dissociated to form positively charged -NH3"CA. In order to investigate the positive charging effect of this positively charged composite membrane, Table 5, which is a cationic substance, was used. Table 6 shows the results of a permeation test for various quaternary ammonium salt aqueous solutions (concentration Table 6 also shows the results of similar measurements performed on the membrane that was immersed for 1 hour and rendered uncharged by neutralizing the dissociated amino groups.
表−6実施例6実施例5で得た正荷電膜について、中性物質の透過性を
調べるために、各種分子量のPEG水溶液(濃度1,0
OOP)の透過試験を操作圧4″jJ、!で行った結果
を表−7に示す。Table 6 Example 6 In order to investigate the permeability of the positively charged membrane obtained in Example 5 to neutral substances, PEG aqueous solutions of various molecular weights (concentrations 1, 0
Table 7 shows the results of a permeation test of OOP) conducted at an operating pressure of 4''jJ,!.
表−7実施例7実施例5で得た正荷電を有するキトサン−ポリスルボン
複合膜について、各種のアミノ酸水溶液1度1,000
泗)の透過試験を行った結果を表−8に示す。その際、
操作圧は(21)は4シであり、溶液のPHは11.0と640の2種類につい工行った。Table 7 Example 7 Regarding the positively charged chitosan-polysulfone composite membrane obtained in Example 5, various amino acid aqueous solutions were tested at 1,000 g
Table 8 shows the results of the permeation test for C. that time,
The operating pressure was (21) 4, and the pH of the solution was 11.0 and 640.
表実施例8実施例1で得たポリスルホン膜の表面に、分刊10.00Oおよび脱アセチル化度98%の(22)キトサン10yをINの酢酸水溶液990yに溶解して
得たドープ液を釣50μmの厚さで薄層塗布した。次い
で、50°Cで2時間乾燥させた後、5重量%の水酸化
ナトリウム水溶液に10分間浸漬した後、多量の水で膜
を洗浄した。得られた膜の断面を走査型電子顕微鏡で観
察したところ、ポリスルホン膜のスキン層の上に厚さ約
1μmのキトサンの層が形成された構造であった。Table Example 8 A dope solution obtained by dissolving 10y of (22) chitosan with 0.00 O and a degree of deacetylation of 98% in an acetic acid aqueous solution of IN 990y was applied to the surface of the polysulfone membrane obtained in Example 1. A thin layer of 50 μm thick was applied. Next, after drying at 50°C for 2 hours, the membrane was immersed in a 5% by weight aqueous sodium hydroxide solution for 10 minutes, and then washed with a large amount of water. When the cross section of the obtained membrane was observed with a scanning electron microscope, it was found that it had a structure in which a layer of chitosan with a thickness of about 1 μm was formed on a skin layer of a polysulfone membrane.
さらに、この膜をo、sxt%のグルタルアルデヒド水
溶液に室温で10時間浸漬し、次いで水洗を行い、共有
架橋構造を有する牛トヤンーボリスルホン複合膜を得た
。この膜は、操作圧4りで純水透過流束が2s、xl/
rrj・hrであり、各種分子量のPEG水溶液(濃度
1,000111m)の透過試験を行った明止率の結果
を表−9に示す。Further, this membrane was immersed in an aqueous solution of o, sxt% glutaraldehyde at room temperature for 10 hours, and then washed with water to obtain a bovine yam-borisulfone composite membrane having a covalently crosslinked structure. This membrane has a pure water permeation flux of 2 s, xl/
Table 9 shows the results of a permeability test of PEG aqueous solutions of various molecular weights (concentration 1,000111 m).
表実施例9市販されている各種材質の限外濾過膜について、実施例
1と同一方法により重量平均分子t150.000およ
び脱アセチル化度98%のキトサンを均一に存在させ、
さらに実施例2と同一方法により共有結合架橋構造を付
与したキトサンを有する複合膜を得た。それらの複合膜
について、実施例2に準じて約98℃の温水中に約5時
間浸漬処理した後、操作圧4シにおける純水の透過流束
とFEG標準の分画分子量を測定した結果を表9にかす。Table Example 9 Using commercially available ultrafiltration membranes made of various materials, chitosan with a weight average molecular weight t of 150.000 and a degree of deacetylation of 98% was uniformly present using the same method as in Example 1.
Furthermore, a composite membrane having chitosan provided with a covalent crosslinked structure was obtained by the same method as in Example 2. These composite membranes were immersed in hot water at about 98°C for about 5 hours according to Example 2, and then the permeation flux of pure water and the molecular weight fraction of the FEG standard were measured at an operating pressure of 4 cm. Add to Table 9.
表table
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24491689AJPH03109930A (en) | 1989-09-22 | 1989-09-22 | Filter membrane for ultrafiltration |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24491689AJPH03109930A (en) | 1989-09-22 | 1989-09-22 | Filter membrane for ultrafiltration |
| Publication Number | Publication Date |
|---|---|
| JPH03109930Atrue JPH03109930A (en) | 1991-05-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP24491689APendingJPH03109930A (en) | 1989-09-22 | 1989-09-22 | Filter membrane for ultrafiltration |
| Country | Link |
|---|---|
| JP (1) | JPH03109930A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5578073A (en)* | 1994-09-16 | 1996-11-26 | Ramot Of Tel Aviv University | Thromboresistant surface treatment for biomaterials |
| JP2007030805A (en)* | 2005-07-29 | 2007-02-08 | Fuji Kiko Co Ltd | Vehicle seat slide device |
| KR101462512B1 (en)* | 2013-03-04 | 2014-11-19 | 주식회사 퓨어멤 | Biocompatible Multi-layer Filter for Removing Leukocytes and Preparation Method thereof |
| WO2016194711A1 (en)* | 2015-05-29 | 2016-12-08 | 旭化成株式会社 | Gas separation membrane |
| KR20180016592A (en)* | 2015-08-13 | 2018-02-14 | 아사히 가세이 가부시키가이샤 | Gas separator |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5578073A (en)* | 1994-09-16 | 1996-11-26 | Ramot Of Tel Aviv University | Thromboresistant surface treatment for biomaterials |
| JP2007030805A (en)* | 2005-07-29 | 2007-02-08 | Fuji Kiko Co Ltd | Vehicle seat slide device |
| KR101462512B1 (en)* | 2013-03-04 | 2014-11-19 | 주식회사 퓨어멤 | Biocompatible Multi-layer Filter for Removing Leukocytes and Preparation Method thereof |
| WO2016194711A1 (en)* | 2015-05-29 | 2016-12-08 | 旭化成株式会社 | Gas separation membrane |
| JPWO2016194711A1 (en)* | 2015-05-29 | 2017-11-16 | 旭化成株式会社 | Gas separation membrane |
| KR20170137195A (en)* | 2015-05-29 | 2017-12-12 | 아사히 가세이 가부시키가이샤 | Gas separator |
| CN107614094A (en)* | 2015-05-29 | 2018-01-19 | 旭化成株式会社 | gas separation membrane |
| US10618014B2 (en) | 2015-05-29 | 2020-04-14 | Asahi Kasei Kabushiki Kaisha | Gas separation memebrane |
| KR20180016592A (en)* | 2015-08-13 | 2018-02-14 | 아사히 가세이 가부시키가이샤 | Gas separator |
| Publication | Publication Date | Title |
|---|---|---|
| US5342521A (en) | Reverse osmosis or nanofiltration membrane and its production process | |
| DE3784410T2 (en) | PERMEABLE, POROESE POLYMER MEMBRANE WITH HYDROPHILIC PROPERTIES, METHOD FOR THEIR PRODUCTION AND THEIR USE. | |
| CN110314556B (en) | A high-flux nanofiltration membrane for selectively removing hydrophobic endocrine disruptors and preparation method thereof | |
| CN105327623A (en) | Cellulose acetate nanofiltration membrane and preparing method thereof | |
| CN105617882A (en) | Chitosan modified graphene oxide nano composite positive osmotic membrane and preparation method thereof | |
| US6325218B1 (en) | Polyion complex separation membrane with a double structure | |
| JPH03109930A (en) | Filter membrane for ultrafiltration | |
| CN115155341B (en) | An antibacterial composite nanofiltration membrane and its preparation method | |
| JPS62160109A (en) | Manufacture of microporous filter membrane | |
| JP6464194B2 (en) | Preparation of a filtration membrane having an average molecular weight cut-off value of less than 1000 g / mol | |
| JPH0547251B2 (en) | ||
| JPS637806A (en) | Production of composite membrane having anisotropic structure | |
| JPS63283707A (en) | Semipermeable membrane of polymer ampholyte | |
| JPS62262712A (en) | Production of semipermeable membrane | |
| JPH0512972B2 (en) | ||
| JPH01224003A (en) | Polyion complex membrane consisting essentially of polyacrylic acid | |
| FI77681C (en) | Chitosan products, in particular films, and processes for their preparation. | |
| JPS61209054A (en) | Treatment of aqueous solution | |
| CN114028957A (en) | Preparation method of anti-pollution reverse osmosis membrane | |
| JPH01299606A (en) | Separation film for pervaporation | |
| JPH0516286B2 (en) | ||
| JPH0549329B2 (en) | ||
| JPS6289745A (en) | Production of microporous membrane | |
| JPS62213806A (en) | Semi-permeable composite membrane | |
| JPH0232009B2 (en) |