【発明の詳細な説明】[Detailed description of the invention][産業上の利用分野]本発明は、床反力計の制御方法に係り、具体的には、機
能障害者等に対する動的平衡機能訓練装置に使用する床
反力計の制御方法に関する。[Industrial Application Field] The present invention relates to a method of controlling a floor reaction force meter, and specifically relates to a method of controlling a floor reaction force meter used in a dynamic balance function training device for people with functional disabilities.
【従来の技術】[Conventional technology]社会の高齢化が進み、脳卒中等の病気による身体機能の
麻痺あるいは機能低下を来した人口の増大、あるいは高
ストレス化社会を反映して壮年層における脳卒中等によ
る運動機能障害者の増加、交通事故に起因する運動機能
障害者の増加など、さまざまな要因で身体機能のうちの
特に運動機能、平衡機能に障害を持つ人が増大している
。重度の障害においては他機能の障害と併存している場合
が多く、機能回復の可能性は多くは期待できない面もあ
る。しかし、軽度の障害においては、訓練によって健常
者に近いレベルまで機能を回復させることが可能である
ことは過去の治療や実験に基づいて確認され、各種療法
によって機能回反訓練が行われている。As society continues to age, the number of people with paralysis or decline in physical function due to illnesses such as stroke is increasing, or reflecting a high-stress society, there is an increase in the number of people in their prime age with motor impairment due to stroke, etc., and traffic accidents. The number of people with disabilities in physical functions, especially motor and balance functions, is increasing due to a variety of factors, including an increase in the number of people with motor dysfunction caused by. Severe impairments often coexist with impairments in other functions, and the possibility of functional recovery is often not expected. However, in cases of mild disability, it has been confirmed based on past treatments and experiments that it is possible to restore function to a level close to that of a healthy person through training, and functional recovery training is performed through various therapies. .
【発明が解決しようとする課題】[Problem to be solved by the invention]従来、前記のような機能回復訓練の用に供するさまざま
な装置が提供され、目的に応じて利用されている。これらの従来の装置は、特定機能に的をしぼった単能的
な装置が多かった。すなわち、被訓練者の左右方向に交
互に床面を傾斜させるもの、同じく前後方向に交互に傾
斜させるもの、無端軌道によって床面を連続的に移動さ
せるものなどが使用されていた。この種の装置は同一の
運動を反復的に行う単一機能に限定しているため、安価
な装置として提供される反面、日常生活に即した複合運
動が単一の装置で行えないという問題があった。一方、被訓練者の機能回復度を定量的に把握し訓練に役
立てる試みが研究室レベルではあるが行われている。す
なわち、被訓練者のデータを健常者のそれと比較して、
被訓練者の機能障害度あるいは機能回復度を定量的に把
握し、その後の訓練を計画的に行おうとするものである
。この場合、主として立位の被訓練者の足を通して重心
の移動軌跡を得る方法が用いられ、その検出手段として
床反力計が使用されている。従来の床反力計については
、水平面に安定に設置された場合は良好に作用するが傾
斜面や移動面においては荷重検出が不正確になり適用し
難いものであった。さて、このような機能訓練用のシステムにおいて、例え
ば第3図に示すような床反力計を使用した場合、床反力
計に加わる荷重、すなわち被訓練者の体重が軽いほど重
心位置の検出誤差が大きくなる。なぜならば、床反力計
100の検出器l03で検出された荷重をそれぞれf,
〜t4、床反力計100の一辺の長さを11!,lly
とすると、重心位置の床反力計100上における座標は
、f ,+ f Q+ f ,+ f
, 2で表わすことができる。理想的
には、床反力計100の中心(0. 0)に荷重を加
えた場合にそれぞれの検出!1103には均等に荷重配
分され、txt,=t,−t,需f4となるが、現実には各種機械誤差等によって荷重配分が
不均一になる。それぞれの検出器103の出力をA/D変換した値がf
1= f +a,f 2= f +b.f ,W f
+e,f 4=f+dであるとき、重心位置誤差をΔ
X,Δyとすると、f,+f2+f 3+f. 2f ,+
f ,+ f ,+ f ,
2で求められる。また、( f 1+f 2+ f
3+ f a)はすなわち全荷重であるから、上式の
誤差は全荷重が小さいほど大きくなると言える。荷重が
極めて小さい場合はこの誤差が無視できないほど大きく
なり、実用上の測定誤差となって正確に機能訓練の目的
を達成できなくなる恐れがある。Conventionally, various devices have been provided for the above-mentioned functional recovery training, and are used depending on the purpose. Many of these conventional devices were single-purpose devices that focused on specific functions. Namely, there have been used systems in which the floor surface is tilted alternately in the left and right directions of the trainee, systems in which the floor surface is tilted alternately in the front and rear directions, and systems in which the floor surface is continuously moved using an endless track. This type of device is limited to a single function of performing the same exercise repeatedly, so while it is provided as an inexpensive device, it has the problem that compound exercises that are suitable for daily life cannot be performed with a single device. there were. On the other hand, attempts are being made, albeit at the laboratory level, to quantitatively understand the degree of functional recovery of trainees and use it for training. That is, by comparing the trainee's data with that of a healthy person,
The aim is to quantitatively understand the degree of functional impairment or functional recovery of the trainee, and to conduct subsequent training in a planned manner. In this case, a method is mainly used to obtain the movement trajectory of the center of gravity through the feet of the trainee in a standing position, and a floor reaction force meter is used as the detection means. Conventional floor reaction force meters work well when stably installed on a horizontal surface, but load detection becomes inaccurate on inclined or moving surfaces, making them difficult to apply. Now, in such a system for functional training, when a floor reaction force meter as shown in Fig. 3 is used, the lower the load applied to the floor reaction force meter, that is, the lighter the trainee's weight, the easier it is to detect the center of gravity position. The error becomes larger. This is because the loads detected by the detector l03 of the floor reaction force meter 100 are f,
~t4, the length of one side of the floor reaction force meter 100 is 11! ,lly
Then, the coordinates of the center of gravity position on the floor reaction force meter 100 are f , + f Q+ f , + f
, 2. Ideally, when a load is applied to the center (0.0) of the floor reaction force meter 100, each detection! 1103, the load is evenly distributed, txt, = t, -t, demand f4, but in reality, the load distribution becomes uneven due to various mechanical errors. The value obtained by A/D converting the output of each detector 103 is f
1=f+a, f2=f+b. f, W f
+e, f When 4=f+d, the center of gravity position error is Δ
If X, Δy, then f, +f2+f 3+f. 2f, +
f , + f , + f ,
It is found by 2. Also, ( f 1 + f 2 + f
Since 3+ f a) is the total load, it can be said that the error in the above equation becomes larger as the total load is smaller. When the load is extremely small, this error becomes so large that it cannot be ignored, resulting in a practical measurement error that may prevent the objective of functional training from being accurately achieved.
【目的1そこで本願発明において、傾斜や移動等の複合運動を自
由に組み合わせて行うことができ、かつ、あらゆる状態
において良好に荷重を検出できるとともに検出の誤差を
極力小さくできる制御方法を得んとするものである。【課題を解決するための手段】前記のような課題を解決するために本発明では次のよう
にしている。すなわち、支持板と、該支持板に対向して
配設した上板と、前記支持板もしくは上板のいずれかに
係止された一組の軸部材と、該軸部材に係合し前記上板
もしくは支持板のいずれかで前記軸部材が係止されない
側の部材に配設した軸受け部材と、前記上板と支持板と
のいずれかの対向面に配設された複数の検出手段と、該
検出手段で検出された検出値を演算処理する演算装置と
で構成された床反力計において、検出手段で検出された
被訓練者の体重の5%乃至l5%を閾値とし、検出手段
に加わる荷重が前記閾値以下の場合はこの検出値を演算
対象から除外し、閾値を超えた場合のみ演算対象とする
ようにしたものである。[Objective 1] Therefore, in the present invention, it is an object of the present invention to provide a control method that can perform complex movements such as tilting and movement in any combination, can detect loads well in all conditions, and can minimize detection errors. It is something to do. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention is as follows. That is, a support plate, an upper plate disposed opposite to the support plate, a pair of shaft members engaged with either the support plate or the upper plate, and a pair of shaft members engaged with the shaft member and arranged on the upper plate. a bearing member disposed on either a plate or a support plate on which the shaft member is not locked; a plurality of detection means disposed on either opposing surfaces of the upper plate and the support plate; In a floor reaction force meter configured with an arithmetic unit that processes the detection value detected by the detection means, 5% to 15% of the trainee's body weight detected by the detection means is set as a threshold, and the detection means When the applied load is less than the threshold value, this detected value is excluded from the calculation target, and only when the applied load exceeds the threshold value, it is included in the calculation target.
【実施例】以下、図示に基づいて本発明を更に詳細に説明する。実用的な床反力計として、第3図に示すものが有効に利
用されている。このような装置では、上板101及び支
持板102は共にその剛性を充分に考慮してあるとはい
え、完全な剛体ではありえない。従って上板101に荷
重が作用すれば必ず撓みを生じ、同時に支持板192並
びに該支持板102を載置する部材も同様に撓みを生じ
ることニナる。一方、検出1ioaについても、一定精
度で製作されてはいるものの、ある範囲のFA差を有し
ている。このような撓みや検出器103の誤差やは、上
板toiに加えられた荷重を検出1103で検出した際
に累積されて検出値に含まれる.これらの誤差は、一般
的に、大きな荷重に対しては大きな撓みを生じて累積誤
差が大きくなり、逆に小さな荷重では撓みが小さく従っ
て累積誤差も小さくなるものである。さて、本発明の対象である機能訓練用装置において、仮
に体重100−と体重40−の被訓練者について比較し
てみる。いま、閾値を10kl+に設定し、各種誤差が
累積された装置全体の誤差が検出値の5%であったると
する。閾値以下の検出値を演算対象から除外するとき、
前記体重に対して閾値はそれぞれlO%と25%となり
、体重100k1iの人に比べて体重401dの人の方
が演算から除外される割合が当然多くなる。更に別の見
方をすれば、閾値に対する誤差は101dに対して5%
では0.5kl1となり、この誤差を加えると閾値はl
O±0.5−でそれぞれの体重に対しては10土0.5
%及び25±1,25%となる。つまり、体重100k
&Iの人は10.5%以下の分が演算対象から除外され
るのに対し、体重40キロの人出は26.25%以下の
分が除外対象となるものである。すなわち、同一の閾値
で演算を行った場合一方は約171 0、他方はl/4
のデータが除外されるということになる。では、体重に対してどの程度の値を閾値として設定する
のが適切であるかという問題になる。本願の目的とする
範囲において種々試験を行った結果、被訓練者の体重の
5%以下では、床反力計の上板+01の重量や検出器1
03の感度等の影響で体重の変化が必要以上に過敏に検
出され、検出データの解析を困難にする。逆に被訓練者
の体重の15%以上では、大きな体重の移動しか検出さ
れず、必要とするデータが除外されてしまう。検出値を
どのように定量化し、どのような目的で利用するかによ
って異なるが、実用的には概ね10%前後が適当である
。第2図に示したように床反力計は2台が隣接して配置さ
れ、それぞれに被訓練者の左右の足を載せて、重心バラ
ンスと移動を同時に検出するようにしてある。従って、
被訓練者が床反力計に乗って測定を開始すると、左右の
床反力計にかかる体重によって重心位置が算出され、同
時に左右それぞれの床反力計の4点の検出器103にか
かる体重の配分によって左右それぞれの足にかかる体重
のバランスが算出されるものである。【発明の効果1前述の通り本発明では、支持板と、該支持板に対向して
配設した上板と、前記支持板もしくは上板のいずれかに
係止された一組の軸部材と、該軸部材に係合し前記上板
もしくは支持板のいずれかで前記軸部材が係止されない
側の部材に配設した軸受け部材と、前記上板と支持板と
のいずれかの21向面に配設された複数の検出手段と、
該検出手段で検出された検出値を演算処理する演算装置
とで構成された床反力計において、検出手段で検出され
た被訓練者の体重の5%乃至15%を閾値とし、検出手
段に加わる荷重が前記閾値以下の場合はこの検出値を演
算対象から除外し、閾値を超えた場合のみ濱算対象とす
るようにしたことにより、傾斜や移動等の複合運動を自
由に組み合わせて行う際に、被訓練者の体重に応じた適
切な範囲で荷重を検出することができるため、誤差を効
果的に低減することができたものである。[Example] The present invention will be explained in more detail below based on the drawings. As a practical floor reaction force meter, the one shown in Fig. 3 is effectively used. In such a device, both the upper plate 101 and the support plate 102 cannot be completely rigid bodies, although their rigidity has been sufficiently considered. Therefore, if a load is applied to the upper plate 101, it will inevitably bend, and at the same time, the support plate 192 and the member on which the support plate 102 is placed will also bend. On the other hand, although the detection 1ioa is manufactured with a certain precision, it has a certain range of FA differences. Such deflection and errors of the detector 103 are accumulated and included in the detected value when the load applied to the upper plate TOI is detected by the detection 1103. These errors generally result in a large deflection and a large cumulative error when a large load is applied, and conversely, a small load causes a small deflection and therefore a small cumulative error. Now, in the functional training device that is the object of the present invention, a comparison will be made between trainees whose weights are 100 and 40. Assume now that the threshold value is set to 10kl+, and that the error of the entire device, which is the accumulation of various errors, is 5% of the detected value. When excluding detected values below a threshold from calculation targets,
The threshold values for the weight are 10% and 25%, respectively, and naturally a person with a weight of 401d is excluded from the calculation at a higher rate than a person with a weight of 100k1i. From another perspective, the error for the threshold is 5% for 101d.
Then, it becomes 0.5kl1, and when this error is added, the threshold becomes l
O±0.5- for each body weight 10 soil 0.5
% and 25±1.25%. In other words, the weight is 100kg
For people with &I, 10.5% or less will be excluded from calculations, whereas for people weighing 40 kg, 26.25% or less will be excluded. In other words, when calculations are performed with the same threshold value, one is approximately 171 0 and the other is l/4
This means that data will be excluded. The question then becomes what value is appropriate to set as a threshold value for body weight. As a result of conducting various tests within the scope of the purpose of this application, we found that if the weight is less than 5% of the trainee's body weight, the weight of the upper plate + 01 of the floor reaction force meter and the
Due to the sensitivity of 03, changes in body weight are detected more sensitively than necessary, making it difficult to analyze the detected data. Conversely, if the weight is 15% or more of the trainee's weight, only a large weight shift will be detected, and necessary data will be excluded. Although it varies depending on how the detected value is quantified and for what purpose it is used, approximately 10% is practically appropriate. As shown in FIG. 2, two floor reaction force meters are placed adjacent to each other, and the trainee's left and right feet are placed on each to simultaneously detect the balance and movement of the center of gravity. Therefore,
When the trainee gets on the floor reaction force meter and starts measurement, the center of gravity position is calculated based on the weight applied to the left and right floor reaction force meter, and at the same time, the weight applied to the four detectors 103 of each left and right floor reaction force meter is calculated. The balance of weight on each foot is calculated by the distribution of . Effects of the Invention 1 As described above, the present invention includes a support plate, an upper plate disposed opposite to the support plate, and a set of shaft members locked to either the support plate or the upper plate. , a bearing member that engages with the shaft member and is disposed on a member on the side of the upper plate or the support plate on which the shaft member is not locked; and a 21 facing surface of either the upper plate or the support plate. a plurality of detection means arranged in the
In a floor reaction force meter configured with an arithmetic device that processes the detection value detected by the detection means, 5% to 15% of the trainee's body weight detected by the detection means is set as a threshold, and the detection means If the applied load is less than the threshold value, this detected value is excluded from calculation, and only if it exceeds the threshold value, it is calculated.This makes it easier to perform complex movements such as tilting and moving in any combination. Furthermore, since the load can be detected within an appropriate range according to the trainee's weight, errors can be effectively reduced.
【図面の簡単な説明】[Brief explanation of drawings]第1図は平衡機能訓練装置の一例を示す外鶴図、第2図
は第l図の装置の所要断面Cこおζナる縦断側面図、第
3図は床反力計の分解斜視図である。9:演算装置 l00:床反力計101=上板
l02:支持板103:検出手段 10
5:軸部材106二輪受け部材Fig. 1 is an external view showing an example of a balance function training device, Fig. 2 is a vertical cross-sectional side view of the required cross section of the device shown in Fig. 1, and Fig. 3 is an exploded perspective view of a floor reaction force meter. It is. 9: Arithmetic device l00: Floor reaction force meter 101 = upper plate l02: Support plate 103: Detection means 10
5: Shaft member 106 two-wheel support member