Movatterモバイル変換


[0]ホーム

URL:


JPH0290129A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH0290129A
JPH0290129AJP24077788AJP24077788AJPH0290129AJP H0290129 AJPH0290129 AJP H0290129AJP 24077788 AJP24077788 AJP 24077788AJP 24077788 AJP24077788 AJP 24077788AJP H0290129 AJPH0290129 AJP H0290129A
Authority
JP
Japan
Prior art keywords
layer
light
irradiated
optical modulator
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24077788A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hoshino
星野 坦之
Shinichi Shiwa
志和 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone CorpfiledCriticalNippon Telegraph and Telephone Corp
Priority to JP24077788ApriorityCriticalpatent/JPH0290129A/en
Publication of JPH0290129ApublicationCriticalpatent/JPH0290129A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To reduce the thickness of an optical modulator and, at the same time, to make the modulator to have high resolution without having any restriction on integration, etc., by successively piling up a transparent conductive layer, photoconductive layer which drops in impedance when the layer is irradiated with light, insulating elastic body layer, and conductive light reflecting layer on a transparent base plate. CONSTITUTION:This optical modulator is formed by successively piling up a transparent conductive layer 11, photoconductive layer 12 which drops in impedance when the layer is irradiated with light, insulating elastic body layer 13, and conductive light reflecting layer 14 on a transparent base plate 10. When a prescribed area is irradiated with light from the base plate 10 side while a writing voltage is impressed across the layers 11 and 14, the impedance of the layer 12 in the area irradiated with the light drops and a strong electric field is impressed. As a result, the layer 14 is attracted to the layer 11 side and deforms together with the layer 13. The reflected light by the deformed area of the layer 14 is scattered and, as a result, optical modulation takes place. Therefore, an optical modulator which is thin in thickness can be constituted. At the same time, high resolution can be realized with this modulator without any restriction on integration, etc., and size.

Description

Translated fromJapanese

【発明の詳細な説明】(産業上の利用分野)本発明は、所定領域に光を照射することによって変調を
行なう光変調器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical modulator that performs modulation by irradiating light onto a predetermined area.

(従来の技術)第2図は、従来の光変調器を示す構成図である。(Conventional technology)FIG. 2 is a block diagram showing a conventional optical modulator.

第2図において、la、lbはガラス等からなる透明基
板、2a、2bは透明導電層、3は光導電層、4は遮光
層、5は誘電体ミラー 6a、6bは液晶配向フィルム
、7は液晶で、透明基板1a上に、透明導電層2a、光
導電層3、遮光層4、誘電体ミラー5、液晶配向フィル
ム6a、液晶7、液晶配向フィールムロb、透明導電層
2b、透明基板1bの順に積層、配設されて、光変調器
が構成されている。
In FIG. 2, la and lb are transparent substrates made of glass or the like, 2a and 2b are transparent conductive layers, 3 is a photoconductive layer, 4 is a light shielding layer, 5 is a dielectric mirror, 6a and 6b are liquid crystal alignment films, and 7 is a With a liquid crystal, on a transparent substrate 1a, a transparent conductive layer 2a, a photoconductive layer 3, a light shielding layer 4, a dielectric mirror 5, a liquid crystal alignment film 6a, a liquid crystal 7, a liquid crystal alignment film b, a transparent conductive layer 2b, and a transparent substrate 1b. The optical modulator is constructed by sequentially stacking and disposing the optical modulator.

この光変調器を動作させるには、透明導電層2a、2b
間に交流電圧を印加しておき、光信号を透明基板1a側
から光導電層3の所定領域に照射する。これにより、光
の照射された光導電層3の領域は、インピーダンスが低
下しその領域の液晶7に強い電界が印加されていると、
液晶7の状態が変化し、このとき、透明基板1b側から
照射された光の偏向状態が変化する。この偏向状態の変
化を利用し、光のオン・オフ等の変調を行なう(応用物
理、57巻、8号、P、1136.SrD  86  
DIGEST  P379)。
In order to operate this optical modulator, transparent conductive layers 2a, 2b are required.
An alternating current voltage is applied in between, and an optical signal is irradiated onto a predetermined region of the photoconductive layer 3 from the transparent substrate 1a side. As a result, the impedance of the area of the photoconductive layer 3 irradiated with light decreases, and a strong electric field is applied to the liquid crystal 7 in that area.
The state of the liquid crystal 7 changes, and at this time, the polarization state of the light irradiated from the transparent substrate 1b side changes. Utilizing this change in the polarization state, modulation such as turning the light on and off is performed (Applied Physics, Vol. 57, No. 8, P, 1136. SrD 86
DIGEST P379).

なお、このように、光を所定領域に照射して変調を行な
う光変調器としては、液晶を用いたものの他にも、BS
O,LiNb0  、PLZT、す−モプラスチックを
採用したもの等が多数知られている(応用物理、57巻
、8号、P1136)。
In addition to the optical modulator that modulates light by irradiating it onto a predetermined area, in addition to those using liquid crystals, there are
A large number of materials are known that employ O, LiNb0, PLZT, and Sumoplastic (Oyoi Physics, Vol. 57, No. 8, P1136).

また、上記したように、光を照射して変調を行なう光変
調器の他にも、電気的に領域を指定するものも知られて
いる。
In addition to optical modulators that perform modulation by irradiating light as described above, there are also known optical modulators that electrically specify areas.

即ち、例えば、間隔をおいて複数の電荷蓄積電極が配列
された回路層上に、弾性体層、光反射層が積層された構
成を有し、電圧が印加され電荷が蓄積された電荷蓄積電
極の領域では、光反射層と回路層との間の電気引力が強
くなり、これにより弾性体層が変形し、光反射層が窪む
。この変化を(り用して、光のオン・オフ等の制御を行
なう光変調器である(特開昭60−253383号公報
、あるいは特開昭61−148431号公報参照)。
That is, for example, a charge storage electrode has a structure in which an elastic layer and a light reflection layer are laminated on a circuit layer in which a plurality of charge storage electrodes are arranged at intervals, and a voltage is applied to accumulate charge. In the region, the electrical attraction between the light-reflecting layer and the circuit layer becomes strong, thereby deforming the elastic layer and causing the light-reflecting layer to become depressed. This is an optical modulator that utilizes this change to control the on/off of light, etc. (see Japanese Patent Laid-Open No. 60-253383 or Japanese Patent Laid-Open No. 61-148431).

(発明が解決しようとする課題)しかしながら、前者の光変調器(第2図)では、光を制
御するために透明導電層2a、2b間に、光導電層3、
遮光層4、Ts電体ミラー5、液晶配向フィルム6a、
6b及び液晶7と多数の層を必要とするため、これらの
層の厚さの和が20〜30μmと厚くなってしまい、光
変調器としての解像度は30本/ ms程度が限界であ
るという問題点があった。
(Problem to be Solved by the Invention) However, in the former optical modulator (FIG. 2), in order to control light, a photoconductive layer 3,
Light shielding layer 4, Ts electric mirror 5, liquid crystal alignment film 6a,
6b and liquid crystal 7, the total thickness of these layers is as thick as 20 to 30 μm, and the resolution of the optical modulator is limited to about 30 lines/ms. There was a point.

また、後者の光変調器も、回路の集積化に制限があり、
光変調器としての解像度は20〜50本/+u程度が限
界であるという問題点があった。
In addition, the latter optical modulator also has limitations on circuit integration.
There was a problem in that the resolution as an optical modulator was limited to about 20 to 50 lines/+u.

本発明の目的は、上記問題点に鑑み、厚さを薄くでき、
しかも集積化の制限等を受けず、高い解像度を得ること
のできる光変調器を提供することにある。
In view of the above problems, an object of the present invention is to reduce the thickness,
Moreover, it is an object of the present invention to provide an optical modulator that can obtain high resolution without being subject to limitations such as integration.

(課題を解決するための手段)本発明は上記目的を達成するため、透明導電層と、光の
照射によって光照射領域のインピーダンスが低下する光
導電層と、絶縁性弾性体層と、導電性光反射層とを備え
、透明基板上に前記各層を表記した順に積層した。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a transparent conductive layer, a photoconductive layer whose impedance decreases in a light irradiated area when irradiated with light, an insulating elastic layer, and a conductive layer. Each layer was laminated on a transparent substrate in the order shown.

(作 用)本発明によれば、透明導電層と導電性光反射層間に、例
えば書込み電圧を印加し、透明基板側から所定領域に光
を照射すると、この光照射領域の光導電層のインピーダ
ンスが低下する。これにより、光照射領域には強い電界
が印加されることになり、導電性光反射層は透明導電層
側に吸引されて絶縁性弾性体層と共に変形(窪む)する
。この導電性光反射層の変形領域による反射光は、散乱
し、光変調が行なわれる。一方、前記書込み電圧と逆方
向にリセット電圧を印加すると、透明導電層から光導電
層に電子が注入されて、変形領域の窪みが平に修正され
る。
(Function) According to the present invention, when, for example, a writing voltage is applied between the transparent conductive layer and the conductive light reflection layer and light is irradiated from the transparent substrate side to a predetermined area, the impedance of the photoconductive layer in the light irradiation area changes. decreases. As a result, a strong electric field is applied to the light irradiation region, and the conductive light reflection layer is attracted toward the transparent conductive layer and deforms (deforms) together with the insulating elastic layer. The light reflected by the deformed region of the conductive light-reflecting layer is scattered and optically modulated. On the other hand, when a reset voltage is applied in the opposite direction to the write voltage, electrons are injected from the transparent conductive layer into the photoconductive layer, and the depression in the deformed region is corrected to be flat.

(実施例)第1図は、本発明による光変調器の実施例を示す構成図
である。図中、10は透明基板で、石英ガラス、パイレ
ックスガラス等の無機材料、あるいはポリプロピレン、
アクリル等の有機材料を用いて構成される。11は透明
基板10上に積層された透明導電層で、ITO,In 
 O、Sn03等を用いて構成される。12は透明導電
層11上に積層された光導電層で、例えばa−Stla
−5e、a−AsSe等の無機材料、あるいはPVK−
TNF、フタロシアニン分散系等の有機材料を用いて構
成され、透明導電層11から電子を注入可能で、ホール
に関してはブロッキング的な界面特性を有している。ま
た、その厚さは高解像度を実現するために、0.2μm
〜5μm程度の範囲内で選定され、光が照射された領域
ではそのインピーダンスが低下する。13は光導電層1
2上に積層された絶縁性弾性体層で、シリコン−ゲル等
の材料を用いて構成され、高解像度を得られ、かつ光の
変調効率が低下しないように、0.2μm〜20μm程
度の範囲内で、適度な厚さが選定される。14は絶縁性
弾性体層13上に積層されI:導電性光反射層で、Ai
’ s A g s A u等の蒸着膜を用いて構成さ
れ、厚さは0.01μm〜1μm程度の範囲で選定され
る。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of an optical modulator according to the present invention. In the figure, 10 is a transparent substrate made of inorganic material such as quartz glass or Pyrex glass, or polypropylene.
Constructed using organic materials such as acrylic. 11 is a transparent conductive layer laminated on the transparent substrate 10, which is made of ITO, In
It is constructed using O, Sn03, etc. 12 is a photoconductive layer laminated on the transparent conductive layer 11, for example, a-Stla.
-5e, inorganic materials such as a-AsSe, or PVK-
It is constructed using an organic material such as TNF or a phthalocyanine dispersion system, and can inject electrons from the transparent conductive layer 11, and has interfacial characteristics that block holes. In addition, the thickness is 0.2 μm to achieve high resolution.
The impedance is selected within a range of approximately 5 μm, and the impedance decreases in the region irradiated with light. 13 is photoconductive layer 1
This is an insulating elastic layer laminated on 2, made of a material such as silicone gel, and has a thickness in the range of about 0.2 μm to 20 μm in order to obtain high resolution and not reduce light modulation efficiency. An appropriate thickness is selected within the range. 14 is laminated on the insulating elastic layer 13; I: conductive light reflecting layer;
It is constructed using a vapor deposited film such as 'sAgsAu, and the thickness is selected within the range of approximately 0.01 μm to 1 μm.

15は電圧印加部で、透明導電層11と導電性光反射層
14間に、第3図に示した、絶縁性弾性体層13及び導
電性光反射層14をリセットするためのリセット電圧R
Vと、光導電層12に光により制御情報を書き込むため
の書込み電圧WVを印加する。
Reference numeral 15 denotes a voltage application section, which applies a reset voltage R for resetting the insulating elastic layer 13 and the conductive light reflection layer 14, as shown in FIG. 3, between the transparent conductive layer 11 and the conductive light reflection layer 14.
V and a write voltage WV for writing control information into the photoconductive layer 12 by light.

また、第4図はリセット電圧RV印加時の電子の流れの
説明図、第5図は光照射領域と非光照射領域の電位分布
の説明図及び第6図は光照射領域の導電性光反射層14
の変形の説明図であり、次に、これら第3図乃至第6図
に基づいて第1図の光変調器の動作を説明する。
In addition, Fig. 4 is an explanatory diagram of the flow of electrons when the reset voltage RV is applied, Fig. 5 is an explanatory diagram of the potential distribution in the light irradiation area and non-light irradiation area, and Fig. 6 is an illustration of the conductive light reflection in the light irradiation area. layer 14
1. Next, the operation of the optical modulator shown in FIG. 1 will be explained based on FIGS. 3 to 6. FIG.

例えば、第4図に示すように、透明導電層11と導電性
光反射層14間に電圧印加部15によりリセット電圧R
Vが印加されると、透明導電層11からマイナスの電荷
、即ち電子ELが注入され、これら電子ELが第4図中
、矢印で示すように、光導電層12と絶縁性弾性体層1
3との界面まで流れ、その界面でトラップされる。
For example, as shown in FIG.
When V is applied, negative charges, that is, electrons EL are injected from the transparent conductive layer 11, and these electrons EL, as shown by arrows in FIG.
It flows to the interface with 3 and is trapped at that interface.

次に、電圧印加部15により、書込み電圧WVを印加し
、かつ光を透明基板10側から照射して、光制御情報を
書込む。これによって、光照射領域は、光により励起さ
れたホールが光導電層12と絶縁性弾性体層13との界
面まで流れ、その界面にリセット時にトラップされた電
荷(電子)を中和し、さらにプラスの電荷が蓄積される
Next, the voltage application unit 15 applies a write voltage WV and irradiates light from the transparent substrate 10 side to write light control information. As a result, in the light irradiation area, the holes excited by the light flow to the interface between the photoconductive layer 12 and the insulating elastic layer 13, neutralize the charges (electrons) trapped at the interface at the time of resetting, and further A positive charge is accumulated.

この時の、光照射領域と非光照射領域の電位分布を第5
図により説明する。第5図において、縦軸は電位、横軸
は各層領域を示しており、11は透明導電層、−12は
光導電層、13は絶縁性弾性体層、14は導電性光反射
層、aは光導電層12と絶縁性弾性体層13との界面、
実線Aは非光照射領域の電位分布、破線Bは界面aに電
荷が存在しない場合の電位分布、−点鎖線Cは光照射領
域の電位分布である。
At this time, the potential distribution of the light irradiation area and the non-light irradiation area is
This will be explained using figures. In FIG. 5, the vertical axis represents the potential, and the horizontal axis represents each layer area, 11 is a transparent conductive layer, -12 is a photoconductive layer, 13 is an insulating elastic layer, 14 is a conductive light reflecting layer, a is the interface between the photoconductive layer 12 and the insulating elastic layer 13,
The solid line A is the potential distribution in the non-light irradiated area, the broken line B is the potential distribution when no charge is present at the interface a, and the -dotted chain line C is the potential distribution in the light irradiated area.

ここで絶縁性弾性体層14中の電界について着目してみ
ると、非光照射領域では非常に小さく、光照射領域では
極めて大きくなっていることがわかる。従って、電界の
強い箇所では、透明導電層11側に吸引されて変形し、
これにより絶縁性弾性体層13に強い圧力が加わること
になり、第6図に示すように、光照射領域だけ凹状に窪
む。
If we pay attention to the electric field in the insulating elastic layer 14, we can see that it is very small in the non-light irradiated area and extremely large in the light irradiated area. Therefore, in places where the electric field is strong, it is attracted to the transparent conductive layer 11 side and deformed.
As a result, a strong pressure is applied to the insulating elastic layer 13, and as shown in FIG. 6, only the light irradiated area becomes depressed.

この変形を利用して、シュリーレン光学系と組合わせる
ことにより、光を変調することができる。
By utilizing this deformation and combining it with a Schlieren optical system, light can be modulated.

第7図は、本発明による光変調器を投影型デイスプレィ
に応用した場合の構成図である。第7図において、20
は当該光変調器、20aは光が照射されて導電性光反射
層が凹凸に変形した領域、20bは光が照射されず、導
電性光反射層が変形していない領域、21は光源、22
は光変調器20で反射された光をスクリーン23上に投
影するだめの投影レンズ、23aはスクリーン23上の
明部、23bはスクリーン23上の暗部である。
FIG. 7 is a configuration diagram when the optical modulator according to the present invention is applied to a projection display. In Figure 7, 20
20a is a region where the conductive light reflection layer is not irradiated with light and the conductive light reflection layer is not deformed; 21 is the light source; 22
23a is a bright area on the screen 23, and 23b is a dark area on the screen 23.

このような構成においては、光源21からの光は、光変
調器20の導電性光反射層上に集光される。このとき、
導電性光反射層の光が照射されて変形した領域20aで
は、光が散乱され投影レンズ22に達する光量が激減す
る。
In such a configuration, light from light source 21 is focused onto the conductive light reflective layer of light modulator 20. At this time,
In the region 20a of the conductive light reflecting layer that is irradiated with light and deformed, light is scattered and the amount of light reaching the projection lens 22 is drastically reduced.

一方、導電性光反射層の変形していない領域20bでは
、反射光は散乱することなくそのまま投影レンズ22に
達する。その結果、スクリーン23上で導電性光反射層
の変形した領域20aに対応した箇所は暗くなり(暗部
23b)、変形していない領域20bに対応した箇所は
明るくなる(明部)。
On the other hand, in the undeformed region 20b of the conductive light reflection layer, the reflected light reaches the projection lens 22 as it is without being scattered. As a result, the area on the screen 23 corresponding to the deformed area 20a of the conductive light-reflecting layer becomes dark (dark area 23b), and the area corresponding to the undeformed area 20b becomes bright (bright area).

以上のように本実施例によれば、光変調器を、透明基板
10上に、透明導電層11、光導電層12、絶縁性弾性
体層13、導電性光反射層14の順に積層して構成し、
電圧印加部15により、透明導電層11と導電性光反射
層14間にリセット電圧RVS#込み電圧WVを印加し
、さらに所定領域に光を透明基板10側から照射するよ
うにしたので、薄型でしかも集積化等の制約を受けず大
きさが限定されることはなく、高い解像度、例えば10
00本/ mm以上の解像度を有する光変調器を実現で
きる。
As described above, according to this embodiment, the optical modulator is formed by laminating the transparent conductive layer 11, the photoconductive layer 12, the insulating elastic layer 13, and the conductive light reflecting layer 14 in this order on the transparent substrate 10. configure,
The voltage application unit 15 applies the voltage WV including the reset voltage RVS# between the transparent conductive layer 11 and the conductive light reflection layer 14, and furthermore, the predetermined area is irradiated with light from the transparent substrate 10 side. Moreover, it is not subject to restrictions such as integration and is not limited in size, and has high resolution, e.g.
An optical modulator with a resolution of 00 lines/mm or more can be realized.

なお、本実施例において、光導電層12としてa−5i
等の無機材料、PVK−TNF等の有機材料により構成
したが、これに限定されるものではなく、他にも、透明
導電層11上に0,1μm〜0.3μm程度の厚さにフ
タロシアニン微粒子を分散させて塗付層を形成し、さら
にその上に0.2μm〜4μm程度の厚さにピラゾリン
を分散させた塗付層からなる機能分離型の光導電層を構
成してもよく、良好な動作特性を得ることができる。
In this example, a-5i was used as the photoconductive layer 12.
The transparent conductive layer 11 is made of inorganic materials such as inorganic materials such as PVK-TNF, organic materials such as PVK-TNF, etc., but is not limited to these materials. A functionally separated photoconductive layer may be formed by dispersing pyrazoline to form a coating layer, and further comprising a coating layer with pyrazoline dispersed thereon to a thickness of approximately 0.2 μm to 4 μm. It is possible to obtain excellent operating characteristics.

また、光導電層が電荷注入型でない場合(Se等で構成
)には、リセット電圧RV印加時に透明基板10側から
全面光照射を行なうと光導電層中にキャリアが発生し、
透明導電層11からキャリアが電界注入された場合と同
様の効果が得られる。
Furthermore, if the photoconductive layer is not of a charge injection type (composed of Se or the like), carriers are generated in the photoconductive layer when the entire surface is irradiated with light from the transparent substrate 10 side when the reset voltage RV is applied.
The same effect as when carriers are injected from the transparent conductive layer 11 by electric field can be obtained.

(発明の効果)以上説明したように、本発明によれば、透明導電層と、
光の照射によって光照射領域のインピーダンスが低下す
る光導電層と、絶縁性弾性体層と、導電性光反射層とを
備え、透明基板上に前記各層を表記した順に積層したの
で、薄型の光変調器を構成できると共に、集積化等の制
約を受けず、大きさが限定されることはなく、しかも透
明導電層と導電性光反射層に電圧を印加しつつ、導電性
光反射層を変形させる領域を光の照射によって指定でき
るため、従来の光変調器に比較して、数十倍量上の高い
解像度を実現できる利点がある。
(Effects of the Invention) As explained above, according to the present invention, a transparent conductive layer,
It is equipped with a photoconductive layer whose impedance decreases in the light irradiated area when irradiated with light, an insulating elastic layer, and a conductive light-reflecting layer, and these layers are laminated in the order shown on a transparent substrate. It is possible to construct a modulator, is not subject to restrictions such as integration, and is not limited in size.Moreover, the conductive light-reflecting layer can be deformed while applying voltage to the transparent conductive layer and the conductive light-reflecting layer. Since the area to be affected can be specified by irradiation with light, it has the advantage of achieving a resolution several tens of times higher than that of conventional optical modulators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光変調器の実施例を示す構成図、
第2図は従来の光変調器の構成図、第3図は第1図の光
変調器に印加する電圧波形図、第4図はリセッha圧印
加時の電子の流れの説明図、第5図は光照射領域と非光
照射領域の電位分布の説明図、第6図は光照射領域の導
電性光反射層の変形の説明図、第7図は本発明による光
変調器を投影型デイスプレィに応用した場合の構成図で
ある。図中、10・・・透明基板、11・・・透明導電層、1
2・・・光導電層、13・・・絶縁性弾性体層、14・
・・導電性光反射層、15・・・電圧印加部。特許出願人 日本電信電話株式会社
FIG. 1 is a configuration diagram showing an embodiment of an optical modulator according to the present invention;
Fig. 2 is a configuration diagram of a conventional optical modulator, Fig. 3 is a voltage waveform diagram applied to the optical modulator of Fig. 1, Fig. 4 is an explanatory diagram of the flow of electrons when reset ha pressure is applied, and Fig. 5 The figure is an explanatory diagram of the potential distribution in the light irradiated area and the non-light irradiated area, FIG. 6 is an explanatory diagram of the deformation of the conductive light reflection layer in the light irradiated area, and FIG. 7 is an illustration of the optical modulator according to the present invention as a projection display. It is a block diagram when applied to. In the figure, 10...Transparent substrate, 11...Transparent conductive layer, 1
2... Photoconductive layer, 13... Insulating elastic layer, 14.
. . . Conductive light reflection layer, 15 . . . Voltage application section. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

Translated fromJapanese
【特許請求の範囲】透明導電層と、光の照射によって光照射領域のインピーダンスが低下す
る光導電層と、絶縁性弾性体層と、導電性光反射層とを備え、透明基板上に前記各層を表記した順に積層したことを特
徴とする光変調器。
[Scope of Claims] A transparent conductive layer, a photoconductive layer whose impedance in a light irradiated area is reduced by light irradiation, an insulating elastic layer, and a conductive light reflective layer, each of the layers being disposed on a transparent substrate. An optical modulator characterized in that layers are stacked in the order indicated.
JP24077788A1988-09-281988-09-28Optical modulatorPendingJPH0290129A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP24077788AJPH0290129A (en)1988-09-281988-09-28Optical modulator

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP24077788AJPH0290129A (en)1988-09-281988-09-28Optical modulator

Publications (1)

Publication NumberPublication Date
JPH0290129Atrue JPH0290129A (en)1990-03-29

Family

ID=17064552

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP24077788APendingJPH0290129A (en)1988-09-281988-09-28Optical modulator

Country Status (1)

CountryLink
JP (1)JPH0290129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9632223B2 (en)2013-10-242017-04-25Moxtek, Inc.Wire grid polarizer with side region

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9632223B2 (en)2013-10-242017-04-25Moxtek, Inc.Wire grid polarizer with side region

Similar Documents

PublicationPublication DateTitle
US3840695A (en)Liquid crystal image display panel with integrated addressing circuitry
US5867301A (en)Phase modulating device
US6195196B1 (en)Array-type exposing device and flat type display incorporating light modulator and driving method thereof
US5093874A (en)Integrated electro-optical scanner with photoconductive substrate
RU2004116273A (en) OPTOELECTRONIC DEVICE WITH MATRIX ADDRESSING AND ELECTRODE GRILLE FOR THIS DEVICE
JPS61230186A (en)Assembly for non-linear type control element for flat electrooptic display screen flat screen therefor
US4158201A (en)Flat electro optic display panel and method of using same
LandOptical information storage and spatial light modulation in PLZT ceramics
US4864538A (en)Method and apparatus for addressing optical data storage locations
US4023969A (en)Deformable elastomer imaging member employing an internal opaque deformable metallic layer
US5052771A (en)Integrated electro-optical scanner
Fisher et al.Photoemitter membrane light modulator
JPH11254752A (en)Exposing element
GB2265024A (en)A spatial light modulator assembly.
JP2960783B2 (en) Tunable optical waveguide device
JPH0290129A (en)Optical modulator
US5798806A (en)Spatial light modulator and projector
US5220445A (en)Optical image processor
US5521747A (en)Electronically addressed deformable media light modulator
JP2007057722A (en) Particle movement type display device and manufacturing method thereof
JP3048705B2 (en) Liquid crystal display
EP0403307B1 (en)Method for operating photo-to-photo transducer
US6381061B2 (en)Pixel structure having deformable material and method for forming a light valve
US3818222A (en)Radiation modulation apparatus
JPH07134310A (en)Optical writing type electro-optic device

[8]ページ先頭

©2009-2025 Movatter.jp