【発明の詳細な説明】〔産業上の利用分野〕本発明は、ディジタル無線通信に用いられる増幅装置に
関し、特に、包路線変動を有する信号を増幅する増幅装
置である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an amplifying device used in digital wireless communication, and particularly to an amplifying device for amplifying a signal having envelope fluctuation.
一般に、通信に用いられる変調波を増幅する方法として
は、増幅器の線形性を重視して変調波を増幅する方法と
、電力効率を重視して変調波を増幅する方法とがある。Generally, as methods for amplifying modulated waves used in communication, there are two methods: a method of amplifying modulated waves with emphasis on linearity of an amplifier, and a method of amplifying modulated waves with emphasis on power efficiency.
信号の振幅特性の線形性を重視する場合は、増幅器の出
力をある程度下げて、増幅器の振幅特性が線形性を保つ
ような令頁域において変調波を増幅する。この場合は、
信号の帯域外スペクトル特性を良好に保って増幅するこ
とができる。このように、出力を下げた状態で増幅器を
動作させることを出力バックオフをとるという。If the linearity of the amplitude characteristic of the signal is important, the output of the amplifier is lowered to some extent and the modulated wave is amplified in a narrow range where the amplitude characteristic of the amplifier maintains linearity. in this case,
It is possible to amplify the signal while maintaining good out-of-band spectral characteristics. Operating the amplifier with the output reduced in this way is called output back-off.
一方、増幅器の飽和領域(非線形領域)を用いて変調波
を増幅することにより、信号を高い電力効率で増幅する
ことができる。On the other hand, by amplifying the modulated wave using the saturation region (nonlinear region) of the amplifier, the signal can be amplified with high power efficiency.
ところで、帯域制限された線形変調波を、帯域外スペク
トルを劣化させることなく、且つ電力効率良く増幅する
ものとして、本出願人は、特願昭63−114098
F増幅装置」を既に提案している。これは、線形変調波
を2系統の定包絡線変調波に分解し、この2系統の定包
絡線変調波をそれぞれ増幅した後に合成する技法である
。By the way, the present applicant has proposed a method for amplifying band-limited linear modulated waves without deteriorating the out-of-band spectrum and with good power efficiency, in Japanese Patent Application No. 114098/1983.
We have already proposed the F amplifier. This is a technique in which a linearly modulated wave is decomposed into two systems of constant envelope modulated waves, and these two systems of constant envelope modulated waves are amplified and then combined.
第7図は、この技法を用いた増幅装置の一具体例を示す
。FIG. 7 shows a specific example of an amplification device using this technique.
図において、入力信号波5(t)は、直交検波器71に
より2つの直交変調信号成分I (t) 、 Q(t)
に分解される。In the figure, an input signal wave 5(t) is divided into two orthogonally modulated signal components I (t) and Q(t) by a quadrature detector 71.
It is decomposed into
波形生成用演算回路72は、この2つの直交変調信号成
分1 (t) 、 Q(t)に基づいて、2系統の直
交変調信号x、(t)、 Qt(t)およびIz(t)
、 Q2(t)を生成する。ここで、2系統の直交変調
信号I+(t)、 Qt(t)およびL(t)、
Qz(t)は、これらを合成することにより入力信号波
5(t)が再生されるように生成される。The waveform generation arithmetic circuit 72 generates two systems of orthogonal modulation signals x, (t), Qt(t) and Iz(t) based on these two orthogonal modulation signal components 1 (t) and Q(t).
, generates Q2(t). Here, two systems of orthogonal modulation signals I+(t), Qt(t) and L(t),
Qz(t) is generated such that the input signal wave 5(t) is reproduced by combining these.
直交変調器7.3.74は、それぞれ直交変調信号It
(t)、 Qt(t)およびIz(t)、 Qz(t)
によって搬送波を変調して、2系統の定包絡線変調波S
、(t)および5z(t)を出力する。The quadrature modulators 7, 3, and 74 each receive a quadrature modulation signal It.
(t), Qt(t) and Iz(t), Qz(t)
The carrier wave is modulated by the constant envelope modulated wave S of two systems.
, (t) and 5z(t).
それぞれ増幅器75.76を高い電力効率が得られる飽
和領域(非線形領域)において動作させ、この2系統の
定包絡線変調波S + (t)および5z(t)を増幅
する。その後、合成器77によって、増幅器75.76
の出力を合成し、出力信号波S、 (t)を得る。The amplifiers 75 and 76 are respectively operated in a saturation region (nonlinear region) where high power efficiency can be obtained, and these two systems of constant envelope modulated waves S + (t) and 5z (t) are amplified. Then, by the combiner 77, the amplifiers 75, 76
The outputs of are combined to obtain an output signal wave S, (t).
しかしながら、上述した技法においては、2系統の直交
変調信号から求められる位相差の計算値α。と、合成器
77に入力される2系統の定包絡線変調波の間の位相差
αとが一致することを前提としている。そのため、この
2つの位相差α。。However, in the technique described above, the calculated value α of the phase difference obtained from the two systems of orthogonal modulation signals. It is assumed that the phase difference α between the two systems of constant envelope modulated waves input to the synthesizer 77 is the same. Therefore, the phase difference α between these two. .
αが一致しない場合は、入力信号を復元することができ
ないため、帯域外スペクトルが劣化するという欠点を有
している。If α does not match, the input signal cannot be restored, resulting in a disadvantage that the out-of-band spectrum deteriorates.
ところで、実際の回路においては、2系統の定包絡線変
調波が伝送される伝送路の電気的な長さ、(以後、電気
長と称する)は異なっていることが多い。この場合、2
系統の定包絡線変調波が伝送される間、位相差の計算値
α。が正確に保たれないので、合成器77の2つの入力
の間の位相差αと位相差の計算値α。とは一致しない。By the way, in actual circuits, the electrical lengths (hereinafter referred to as electrical lengths) of transmission paths through which two systems of constant envelope modulated waves are transmitted are often different. In this case, 2
Calculated value α of the phase difference while the constant envelope modulated wave of the system is transmitted. The phase difference α between the two inputs of the synthesizer 77 and the calculated value of the phase difference α. does not match.
また、初期において2系統の伝送路の電気長が一致する
ように調整した場合においても、使用中の外部の温度変
化や経年変化によって電気長に差が生じることが予想さ
れる。Further, even if the electrical lengths of the two transmission lines are initially adjusted to match, it is expected that the electrical lengths will differ due to external temperature changes during use or changes over time.
本発明は、このような点にかんがみて創作されたもので
あり、包路線変動を有する信号を帯域外スペクトルを劣
化させることな(、電力効率よく増幅するようにした増
幅装置を提供することを目的としている。The present invention was created in view of these points, and aims to provide an amplification device that amplifies signals having envelope fluctuations without degrading the out-of-band spectrum (and with high power efficiency). The purpose is
第1図は、本発明による増幅装置の構成図である。FIG. 1 is a block diagram of an amplifying device according to the present invention.
図において、波形生成用演算手段は、変調信号が導入さ
れ、2系統の定包絡線変調波のそれぞれに対応する第1
変調信号および第2変調信号を出力する。In the figure, the waveform generation calculation means has a first waveform into which a modulation signal is introduced and which corresponds to each of two systems of constant envelope modulated waves.
A modulated signal and a second modulated signal are output.
第1変調手段は、第1変調信号を入力として、これに対
応する第1変調波を出力する。The first modulation means receives the first modulation signal as input and outputs a first modulation wave corresponding to the first modulation signal.
位相補正手段は、第2変調信号の位相を補正する。The phase correction means corrects the phase of the second modulation signal.
第2変調手段は、位相補正手段の出力を入力として、こ
れに対応する第2変調波を出力する。The second modulation means receives the output of the phase correction means as input and outputs a second modulated wave corresponding thereto.
2つの増幅手段は、第1変調波、第2変調波のそれぞれ
を飽和領域において増幅する。The two amplification means amplify each of the first modulated wave and the second modulated wave in the saturation region.
合成手段は、両増幅手段によって増幅された2つの変調
波を加算する。The combining means adds the two modulated waves amplified by both amplifying means.
第1位相差検出手段は、第1変調信号および第2変調信
号に基づいて、2系統の定包絡線変調波の位相差を検出
する。The first phase difference detection means detects the phase difference between the two systems of constant envelope modulated waves based on the first modulation signal and the second modulation signal.
第2位相差検出手段は、2つの増幅手段の出力の位相差
を検出する。The second phase difference detection means detects the phase difference between the outputs of the two amplification means.
比較手段は、第1位相差検出手段、第2位相差検出手段
のそれぞれにおいて検出された2つの位相差を比較して
2系統の定包絡線変調波の位相差と2つの増幅手段の出
力の位相差との間に生じた位相誤差を検出する。The comparison means compares the two phase differences detected by each of the first phase difference detection means and the second phase difference detection means, and determines the phase difference between the two constant envelope modulated waves and the output of the two amplification means. Detects the phase error that occurs between the phase difference and the phase difference.
従って、全体として、比較手段により検出された位相誤
差に基づいて、位相補正手段により第2変調信号の位相
を補正するように構成する。Therefore, as a whole, the phase correction means corrects the phase of the second modulation signal based on the phase error detected by the comparison means.
変調信号が入力される波形生成用演算手段は、第1変調
信号および第2変調信号を出力する。ここで、第1変調
信号および第2変調信号は、これらを合成することによ
り入力された変調信号が再生されるように生成する。The waveform generation calculation means to which the modulation signal is input outputs a first modulation signal and a second modulation signal. Here, the first modulation signal and the second modulation signal are generated so that the input modulation signal is reproduced by combining them.
2つの変調手段は、それぞれが対応する変調信号によっ
て搬送波を変調して2系統の定包絡線変調波を出力する
。これら2系統の定包絡線変調波は、それぞれ電力効率
の高い飽和領域において動作する増幅手段によって増幅
された後、合成手段によって加算され、出力信号となる
。The two modulation means each modulate the carrier wave with a corresponding modulation signal and output two systems of constant envelope modulated waves. These two systems of constant envelope modulated waves are each amplified by an amplifying means operating in a saturation region with high power efficiency, and then added by a combining means to form an output signal.
第1位相差検出手段により、第1変調信号と第2変調信
号に基づいて、2系統の定包絡線変調波の位相差が検出
される。また、第2位相差検出手段により、2つの増幅
手段の出力の間の位相差が検出される。The first phase difference detection means detects the phase difference between the two systems of constant envelope modulated waves based on the first modulation signal and the second modulation signal. Further, the second phase difference detection means detects the phase difference between the outputs of the two amplification means.
この第1位相差検出手段と第2位相差検出手段によって
検出された2つの位相差は、比較手段により比較され、
2つの位相差の間に生じた位相誤差が検出される。この
位相誤差に基づいて、位相差補正制御手段により、2系
統の定包絡線変調波の位相差と2つの増幅手段の出力の
位相差とが所定の関係となるように、第2変調信号の位
相が補正される。The two phase differences detected by the first phase difference detection means and the second phase difference detection means are compared by a comparison means,
A phase error occurring between the two phase differences is detected. Based on this phase error, the phase difference correction control means adjusts the second modulation signal so that the phase difference between the two systems of constant envelope modulated waves and the phase difference between the outputs of the two amplification means have a predetermined relationship. The phase is corrected.
本発明にあっては、入力された変調信号に基づいて2系
統の定包絡線変調波を生成し、この2系統の定包絡線変
調波をそれぞれ増幅した後に合成することにより、搬送
波を入力された変調信号で変調した信号を線形増幅した
場合と同様の波形を得る。In the present invention, two systems of constant envelope modulated waves are generated based on the input modulated signal, and these two systems of constant envelope modulated waves are respectively amplified and then combined, thereby generating a carrier wave. A waveform similar to that obtained when a signal modulated with a modulated signal is linearly amplified is obtained.
また、比較手段により検出された位相誤差に基づいて、
位相補正手段により第2変調信号の位相が補正される。Also, based on the phase error detected by the comparison means,
The phase of the second modulation signal is corrected by the phase correction means.
これにより、2系統の定包絡線変調波の位相差と2つの
増幅手段の出力の位相差との間に生じた位相誤差を補正
することができるので、合成手段によって信号が正確に
復元される。As a result, it is possible to correct the phase error that occurs between the phase difference between the two systems of constant envelope modulated waves and the phase difference between the outputs of the two amplifying means, so that the signal can be accurately restored by the combining means. .
以下、図面に基づいて本発明の実施例について詳細に説
明する。Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第2図は、本発明の第1実施例における増幅装置の構成
を示す。FIG. 2 shows the configuration of an amplifier device in a first embodiment of the present invention.
第3図は、本発明の第2実施例における増幅装置の構成
を示す。FIG. 3 shows the configuration of an amplifier device in a second embodiment of the present invention.
I、第1実施例の構成および動作第2図において、直列並列変換回路11は、入力された
直列の変調信号を2つの並列の直交変調信号!(t)、
Q(t)に変換する。ここで、直交変調信号1(t
)、 Q(t)によって搬送波を変調した信号を入力信
号波S i (t)と称する。I. Configuration and operation of the first embodiment In FIG. 2, the serial/parallel conversion circuit 11 converts the input serial modulation signal into two parallel orthogonal modulation signals! (t),
Convert to Q(t). Here, orthogonal modulation signal 1 (t
), Q(t) to modulate the carrier wave is called an input signal wave S i (t).
波形生成用演算回路12は、この直交変調信号I (t
) 、 Q(t)を用いて、2系統の直交変調信号1
+(t)、 Q+D)およびTz(t)、 Qz(
t)を生成する。The waveform generation arithmetic circuit 12 generates this quadrature modulation signal I (t
), Q(t), two systems of orthogonal modulation signals 1
+(t), Q+D) and Tz(t), Qz(
t).
ここで、第4図に、直交変調信号I (t)、 QD
)と2系統の直交変調信号1+(t)、Q+(L)およ
び1z(t)、 Qz(t)の関係を示す。図において
、反時計回りの方向が位相の正の方向であるものとする
。Here, FIG. 4 shows orthogonal modulation signals I (t), QD
) and two systems of orthogonal modulation signals 1+(t), Q+(L) and 1z(t), Qz(t). In the figure, it is assumed that the counterclockwise direction is the positive phase direction.
図のように、2系統の直交変調信号11(t)、 Q
l(L)およびI z(t) 、 Qz(t)に対応す
る定包絡線変調波S 、 (t)および52(t)を合
成することにより入力信号波S i (L)が再生され
る。As shown in the figure, two systems of orthogonal modulation signals 11(t), Q
The input signal wave S i (L) is reproduced by combining constant envelope modulated waves S , (t) and 52 (t) corresponding to l (L), I z (t), and Qz (t). .
波形生成演算回路12においては、入力信号波S i
(t)の位相φ。と2系統の定包絡線変調波S+(t)
、 5z(t)のそれぞれの位相φ1.φ2とが所定
の関係を満たすように、直交変調信号1+(t)。In the waveform generation calculation circuit 12, the input signal wave S i
(t) phase φ. and two systems of constant envelope modulated waves S+(t)
, 5z(t), each phase φ1. orthogonal modulation signal 1+(t) such that φ2 satisfies a predetermined relationship.
Ql(t)およびIt(t)、 Qz(t)が生成され
る。Ql(t), It(t), and Qz(t) are generated.
以後、直交変調信号1+(t)、 Ql(t)およびI
z(t)、 Qz(t)から求められる2系統の定包
絡線変調波の位相差(φ、−φ8)を位相差の計算値を
位相差α。と称する。Hereafter, orthogonal modulation signals 1+(t), Ql(t) and I
The phase difference (φ, -φ8) between the two systems of constant envelope modulated waves obtained from zz(t) and Qz(t) is the calculated value of the phase difference α. It is called.
直交変調器13は、このようにして得られた直交変調信
号r+(t)、 Ql(t)によって搬送波を変調して
定包絡線変調波S + (t)を生成する。The orthogonal modulator 13 modulates the carrier wave with the thus obtained orthogonal modulation signals r+(t) and Ql(t) to generate a constant envelope modulated wave S + (t).
直交変調器14は、位相補正回路22を介して導入され
た直交変調信号Tz(t)、 QZ(t)に基づいて定
包絡線変調波5Z(t)を生成する。The quadrature modulator 14 generates a constant envelope modulated wave 5Z(t) based on the quadrature modulated signals Tz(t) and QZ(t) introduced via the phase correction circuit 22.
増幅器15.16は、それぞれ定包絡線変調波5t(t
)および5z(t)を高い電力効率が得られる飽和領域
において増幅する。以後、増幅器15,16の出力をそ
れぞれ定包絡線変調波5at(t) 、 s1□(1
) と称する。Amplifiers 15 and 16 each generate a constant envelope modulated wave 5t (t
) and 5z(t) are amplified in the saturation region where high power efficiency is obtained. Thereafter, the outputs of the amplifiers 15 and 16 are converted into constant envelope modulated waves 5at(t) and s1□(1
).
定包絡線変調波S at (t) 、 S ax(t
)は、合成器17により合成されて、出力信号波S。(
1)として出力される。Constant envelope modulated waves S at (t), S ax(t
) are synthesized by the synthesizer 17 to produce an output signal wave S. (
1) is output.
位相比較回路18は、2系統の直交変調信号I+(t)
、 QlD)およびL(t)、 Qg(t)に基づ
いて、位相差の計算値α。が90度のときにトリガパル
スTを出力し、位相誤差検出回路21に供給している。The phase comparator circuit 18 receives two systems of orthogonal modulation signals I+(t)
, QlD) and L(t), Qg(t), the calculated value of the phase difference α. A trigger pulse T is output when the angle is 90 degrees, and is supplied to the phase error detection circuit 21.
位相比較回路19は、2系統の定包絡線変調波S、、(
t)、S、□(1)の位相差を検出する。位相比較回路
19の出力は、ローパスフィルタ20を透過することに
より高周波成分が取り除かれて、2系統の定包絡線変調
波S、+(t)、S、□(1)の位相差αに対応した信
号となる。以後、ローパスフィルタ20の出力を位相差
検出信号5p(t)と称する。この位相差検出信号5p
(U は、位相誤差検出回路21に導入されている。The phase comparator circuit 19 generates two systems of constant envelope modulated waves S, (
t), S, □(1) is detected. The output of the phase comparison circuit 19 passes through a low-pass filter 20 to remove high frequency components, and corresponds to the phase difference α between the two constant envelope modulated waves S, +(t), S, □(1). This will be a signal. Hereinafter, the output of the low-pass filter 20 will be referred to as a phase difference detection signal 5p(t). This phase difference detection signal 5p
(U is introduced into the phase error detection circuit 21.
ここで、位相比較回路19は、入力信号の位相差αが9
0度あるいは270度のときに出力の値が“0゛となる
ような特性を持つものとする。また、入力信号の位相差
αが0度のとき出力の値は最大となり、一方、位相差α
が180度のとき最小となる。Here, the phase comparison circuit 19 calculates that the phase difference α of the input signal is 9.
It is assumed that the output value is 0 degrees when the input signal phase difference α is 0 degrees or 270 degrees.The output value is maximum when the input signal phase difference α is 0 degrees; α
is minimum when is 180 degrees.
第5図に、2系統の定包絡線変調波Si+(t) 。FIG. 5 shows two systems of constant envelope modulated waves Si+(t).
S、z(t)の関係を示す。The relationship between S and z(t) is shown.
位相差検出信号S、(t)の値は、第5図(a)のよう
に、2系統の定包絡線変調波S、+(t) 、 S、
z(t)の位相差αが90度のとき“0パとなる。また
、第5図(b)のように、位相差αが90度よりも大き
いときは位相差検出信号5p(t)の値は負となり、一
方、第5図(C)のように、90度よりも小さいときは
正となる。The value of the phase difference detection signal S,(t) is, as shown in FIG. 5(a), two systems of constant envelope modulated waves S,+(t), S,
When the phase difference α of z(t) is 90 degrees, it becomes “0”. Also, as shown in FIG. 5(b), when the phase difference α is larger than 90 degrees, the phase difference detection signal 5p(t) The value of is negative, and on the other hand, when it is smaller than 90 degrees, as shown in FIG. 5(C), it is positive.
位相誤差検出回路21は、トリガパルスTが発生した時
点において、位相差検出信号5p(t)の値を調べるこ
とにより位相誤差を検出する。トリガパルスTが発生し
たときに、位相差検出信号5p(1)の値が“0°°で
あれば位相誤差δの値は0“。The phase error detection circuit 21 detects a phase error by checking the value of the phase difference detection signal 5p(t) at the time when the trigger pulse T is generated. When the trigger pulse T is generated, if the value of the phase difference detection signal 5p(1) is 0°, the value of the phase error δ is 0.
である。一方、位相差検出信号5p(t)が正の値であ
れば位相誤差δは負の方向に生じていることが分かる。It is. On the other hand, if the phase difference detection signal 5p(t) has a positive value, it can be seen that the phase error δ occurs in the negative direction.
また、位相差検出信号S、(t)が負の値であれば位相
誤差δは正の方向に生じていることが分かる。位相誤差
検出回路21は、この位相誤差の検出結果を位相誤差制
御回路22に供給する。Furthermore, it can be seen that if the phase difference detection signal S,(t) has a negative value, the phase error δ occurs in the positive direction. The phase error detection circuit 21 supplies the detection result of this phase error to the phase error control circuit 22.
位相誤差制御回路22は、位相誤差δの値が負である場
合は、定包絡線変調波S3□(1)の位相が相対的に進
み過ぎていると判断する。このとき位相誤差制御回路2
2は、定包絡線変調波S。(1)の位相が遅れるように
、直交変調信号1.(t)、 Q2(t)に補正を加
える。一方、位相誤差δの値が正である場合は、逆に定
包絡線変調波5a2(t)の位相が進むように、直交変
調信号1z(t)、 Qz(t)に補正を加える。If the value of the phase error δ is negative, the phase error control circuit 22 determines that the phase of the constant envelope modulated wave S3□(1) is relatively advanced. At this time, the phase error control circuit 2
2 is a constant envelope modulated wave S. (1) so that the phase of the quadrature modulated signal 1. (t) and Q2(t) are corrected. On the other hand, if the value of the phase error δ is positive, correction is applied to the orthogonal modulation signals 1z(t) and Qz(t) so that the phase of the constant envelope modulated wave 5a2(t) advances.
このようにして、伝送路の電気長が異なることによって
発生した位相誤差を補正する。In this way, phase errors caused by different electrical lengths of the transmission lines are corrected.
■、第2実施例の構成および動作第3図において、第2実施例による増幅装置は合成手段
としてハイブリッド23を用い、微分回路24を付加し
て構成されている。また、ハイブリッド23の出力端子
の一方は終端回路25を介して終端されている。(2) Structure and operation of the second embodiment In FIG. 3, the amplifier according to the second embodiment uses a hybrid 23 as a synthesizing means and is constructed by adding a differentiating circuit 24. Further, one of the output terminals of the hybrid 23 is terminated via a termination circuit 25.
ハイブリッド23の入力端子■1と入力端子I2には、
それぞれ定包絡線変調波S、+(t)、s、□(1)が
導入されている。ハイブリッド37は、定包絡線変調波
S、I(t)と定包絡線変調波S、z(t)の位相を9
0度だけ遅れさせたものとを合成し、出力信号波S。(
1)として出力する。The input terminal ■1 and input terminal I2 of the hybrid 23 have
Constant envelope modulated waves S, +(t), s, and □(1) are introduced, respectively. The hybrid 37 changes the phase of the constant envelope modulated wave S, I(t) and the constant envelope modulated wave S, z(t) by 9.
The output signal wave S is synthesized with the signal delayed by 0 degrees. (
Output as 1).
このため、波形生成演算回路32においては、90度だ
け位相を進ませた直交変調信号12(+9゜。Therefore, in the waveform generation calculation circuit 32, the orthogonal modulation signal 12 whose phase is advanced by 90 degrees (+9 degrees).
(t)、 QZ(。、。)(t)が生成される。変調器
24により、この直交変調信号12(49゜+(t)
+ QZ(−901−(1)によって搬送波を変調し、
定包絡線変調波S23.、。、(t)が得られる。(t), QZ(.,.)(t) are generated. The modulator 24 generates this orthogonal modulation signal 12 (49°+(t)
+ Modulate the carrier wave by QZ(-901-(1),
Constant envelope modulated wave S23. ,. , (t) are obtained.
第6図に、定包絡線変調波S r (t)と定包絡線変
調波S Z (+90) (t)および出力信号波S。FIG. 6 shows the constant envelope modulated wave S r (t), the constant envelope modulated wave S Z (+90) (t), and the output signal wave S.
(1)の関係を示す。The relationship (1) is shown below.
図のように、ハイブリッド23において、定包絡線変調
波S+(t)と定包絡線変調波S2(。qo)(t)と
を合成することにより、定包絡線変調波5t(t)およ
び5z(t)を合成した場合と同様の出力信号波5o(
t)を得る。As shown in the figure, in the hybrid 23, by combining the constant envelope modulated wave S+(t) and the constant envelope modulated wave S2(.qo)(t), constant envelope modulated waves 5t(t) and 5z The output signal wave 5o(
t) is obtained.
位相比較回路18は、2系統の直交変調信号I+(t)
、 Q+(t)および12(+9゜+(t) 、 QZ
+、9゜、(t)に基づいて、位相差の計算値α。が1
80度のときにトリガパルスTを出力し、位相誤差検出
回路21に供給している。The phase comparator circuit 18 receives two systems of orthogonal modulation signals I+(t)
, Q+(t) and 12(+9°+(t) , QZ
Calculated value α of phase difference based on +, 9°, (t). is 1
A trigger pulse T is output when the angle is 80 degrees, and is supplied to the phase error detection circuit 21.
ここで、直交変調信号It(t)、 Q+(t)および
12(。、。+(t) 、 QZ149゜、(t)から
求めた位相差の計算値α。が180度になる場合は、上
述した第1実施例において、位相差の計算値α。が90
度になる場合に対応している。Here, if the calculated value α of the phase difference obtained from the orthogonal modulation signals It(t), Q+(t) and 12(., .+(t), QZ149°, (t) becomes 180 degrees, then In the first embodiment described above, the calculated value α of the phase difference is 90.
It corresponds to cases where it becomes a degree.
位相比較回路19は、上述したような余弦関数的な位相
比較特性を持っているので、ローパスフィルタ20の出
力は、2系統の定包絡線変調波5at(t) 、 S
−2(1)の位相差αが180度のとき極小且つ最小と
なるように変化する。このようなローパスフィルタ40
の出力を、微分回路24により180度のとき0”とな
るように変換して、位相差検出信号59(1)として、
位相誤差検出回路21に供給する。Since the phase comparison circuit 19 has a cosine function-like phase comparison characteristic as described above, the output of the low-pass filter 20 is composed of two systems of constant envelope modulated waves 5at(t) and S.
When the phase difference α of -2(1) is 180 degrees, it changes to become the minimum. Such a low pass filter 40
The output of is converted by the differentiating circuit 24 so that it becomes 0'' at 180 degrees, and is used as the phase difference detection signal 59(1).
The signal is supplied to the phase error detection circuit 21.
これにより、上述した第1実施例と同様に、位相誤差検
出回路21により、位相差検出信号5P(1)の値に基
づいて位相誤差δが検出される。Thereby, similarly to the first embodiment described above, the phase error detection circuit 21 detects the phase error δ based on the value of the phase difference detection signal 5P(1).
同様にして、この位相誤差δに基づいて、位相誤差制御
回路42により、直交変調信号12(。、。。Similarly, based on this phase error δ, the phase error control circuit 42 controls the orthogonal modulation signal 12 (...,...).
(L) 、 QZ(。、。)(t)に補正が加えられ
る。(L), QZ(.,.)(t) are corrected.
■、実施例のまとめ上述した第1実施例のように、位相比較回路19・、ロ
ーパスフィルタ20により、2系統の定包絡線変調波S
a+(t) 、 Sa□(1)の位相差αに対応した値
を持つ位相差検出信号5p(t)が生成される。(2) Summary of the Embodiment As in the first embodiment described above, the phase comparison circuit 19 and the low-pass filter 20 generate two systems of constant envelope modulated waves S.
A phase difference detection signal 5p(t) having a value corresponding to the phase difference α between a+(t) and Sa□(1) is generated.
また、位相比較回路18は、位相差の計算値α。Further, the phase comparison circuit 18 calculates the calculated value α of the phase difference.
が90度のときに、トリガパルス′rを発生する。When the angle is 90 degrees, a trigger pulse 'r is generated.
また、第2実施例のように、合成手段としてハイプリン
ト23を用いた場合は、微分回路24を付加して構成し
、微分回路24の出力を位相差検出信号5p(t)とす
る。一方、位相比較回路18により位相差の計算値α。Further, when the high print 23 is used as the synthesis means as in the second embodiment, a differentiating circuit 24 is added and the output of the differentiating circuit 24 is used as the phase difference detection signal 5p(t). On the other hand, the phase comparison circuit 18 calculates the phase difference α.
が180度のときトリガパルスTを生成する。Trigger pulse T is generated when is 180 degrees.
位相誤差検出回路21により、トリガパルスTが発生し
た時点の位相差検出信号5p(t)の値が“0“である
か否かにより、位相誤差δが生じているか否かを判別す
ることが可能となる。また、位相差検出信号5p(t)
の値の符号により、位相誤差δの符号を判別することが
できる。The phase error detection circuit 21 can determine whether a phase error δ has occurred based on whether the value of the phase difference detection signal 5p(t) at the time when the trigger pulse T is generated is "0". It becomes possible. In addition, the phase difference detection signal 5p(t)
The sign of the phase error δ can be determined from the sign of the value of .
位相誤差制御回路22により、位相誤差δが“0°゛に
なるように直交変調信号12(t)、 QZ(t) (
あるいはtz<。9゜+(t) + QZ(+9゜1(
t))を補正する。The phase error control circuit 22 controls the quadrature modulation signals 12(t), QZ(t) (
Or tz<. 9゜+(t) + QZ(+9゜1(
t)).
上述のようにして、位相差の計算値α。と2系統の定包
絡線変調波311(t) 、 S、□(1)の位相差
αとが一致するように補正することができる。これによ
り、合成器17あるいはハイブリッド23によって合成
された出力信号波5o(t)の波形は、入力信号波S
i (t)を線形増幅した場合と同様に歪みのない波形
となる。The calculated value α of the phase difference is calculated as described above. The phase difference α between the constant envelope modulated waves 311(t), S, and □(1) of the two systems can be corrected so that they match. As a result, the waveform of the output signal wave 5o(t) synthesized by the synthesizer 17 or the hybrid 23 is the input signal wave S
Similar to the case where i (t) is linearly amplified, a distortion-free waveform is obtained.
ここで、定包絡線変調波を増幅する場合には、飽和領域
においても線形性は保持されるので、増幅器15.16
を飽和領域において動作させ、電力効率を高くして増幅
することが可能となる。Here, when amplifying a constant envelope modulated wave, linearity is maintained even in the saturation region, so the amplifier 15.16
It is possible to operate in the saturation region and perform amplification with high power efficiency.
■9発明の変形態様なお、上述した本発明の実施例にあっては、位相差の計
算値α。が90度(180度)のときの位相差検出信号
S、(t)の値により、位相誤差δの有無および位相誤
差δの符号を判別する場合を考えたが、トリガパルスT
を発生させる位相差の値には限られず、位相誤差δを検
出して補正するものであれば適用できる。(9) Modifications of the invention In the embodiment of the invention described above, the calculated value α of the phase difference. We have considered a case where the presence or absence of phase error δ and the sign of phase error δ are determined based on the value of phase difference detection signal S,(t) when T is 90 degrees (180 degrees).
The present invention is not limited to the value of the phase difference that causes .delta., and any value that detects and corrects the phase error .delta.
また、本発明は上述した実施例に限られることはなく、
本発明には各種の変形態様があることは当業者であれば
容易に推考できるであろう。Furthermore, the present invention is not limited to the above-mentioned embodiments,
Those skilled in the art will easily guess that there are various modifications to the present invention.
(発明の効果〕上述したように、本発明によれば、包絡線変動を有する
信号波を2系統の定包絡線変調波に分解し、それぞれの
定包絡線変調波の伝送路の電気長の差によって生じた位
相誤差を補正した後に合成することにより、包路線変動
を有する信号波を線形性を保持し、かつ、高い電力効率
によって増幅することができる。(Effects of the Invention) As described above, according to the present invention, a signal wave having envelope fluctuation is decomposed into two systems of constant envelope modulated waves, and the electrical length of the transmission path of each constant envelope modulated wave is By combining the signals after correcting the phase error caused by the difference, it is possible to maintain the linearity of a signal wave having an envelope fluctuation and amplify it with high power efficiency.
第1図は本発明による増幅装置の構成図、第2図は本発
明の第1実施例による増幅装置の構成図、第3図は本発明の第2実施例による増幅装置の構成図、第4図は直交変調信号の説明図、第5図は増幅後の定包絡線変調波の説明図、第6図は定
包絡線変調波と合成波の関係の説明図、第7図は増幅装
置の構成図である。図において、は直列並列変換回路1.72は波形生成用演算回路1.14,73.74は直交変調器、16.75.76は増幅器1.77は合成器2.19は位相比較回路、はローパスフィルタ、は位相誤差検出回路、は位相誤差制御回路、はハイブリッド、は微分回路、は終端回路、は直交検波器である。第図第図1 is a block diagram of an amplifier according to the present invention, FIG. 2 is a block diagram of an amplifier according to a first embodiment of the present invention, FIG. 3 is a block diagram of an amplifier according to a second embodiment of the present invention, Figure 4 is an explanatory diagram of the orthogonal modulation signal, Figure 5 is an explanatory diagram of the constant envelope modulated wave after amplification, Figure 6 is an explanatory diagram of the relationship between the constant envelope modulated wave and the composite wave, and Figure 7 is the amplification device. FIG. In the figure, is a serial-to-parallel conversion circuit 1. 72 is a waveform generation arithmetic circuit 1. 14, 73.74 are quadrature modulators, 16.75.76 are amplifiers 1. 77 is synthesizer 2. 19 is a phase comparison circuit, is a low-pass filter, is a phase error detection circuit, is a phase error control circuit, is a hybrid, is a differentiation circuit, is a termination circuit, and is a quadrature detector. Figure Figure
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63239963AJPH0793546B2 (en) | 1988-09-26 | 1988-09-26 | Amplifier |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63239963AJPH0793546B2 (en) | 1988-09-26 | 1988-09-26 | Amplifier |
| Publication Number | Publication Date |
|---|---|
| JPH0287708Atrue JPH0287708A (en) | 1990-03-28 |
| JPH0793546B2 JPH0793546B2 (en) | 1995-10-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63239963AExpired - Fee RelatedJPH0793546B2 (en) | 1988-09-26 | 1988-09-26 | Amplifier |
| Country | Link |
|---|---|
| JP (1) | JPH0793546B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5287069A (en)* | 1990-02-07 | 1994-02-15 | Fujitsu Limited | Constant-amplitude wave combination type amplifier |
| JPH07503926A (en)* | 1991-12-30 | 1995-04-27 | ポリートップ コーポレーション | Obturator with protective flange and sloped top lid that cannot be opened by children |
| WO2005034350A1 (en)* | 2003-09-30 | 2005-04-14 | Mitsubishi Denki Kabushiki Kaisha | Variable power distributor, its error detecting method and set value correcting method |
| US7184723B2 (en) | 2004-10-22 | 2007-02-27 | Parkervision, Inc. | Systems and methods for vector power amplification |
| US7355470B2 (en) | 2006-04-24 | 2008-04-08 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning |
| US7620129B2 (en) | 2007-01-16 | 2009-11-17 | Parkervision, Inc. | RF power transmission, modulation, and amplification, including embodiments for generating vector modulation control signals |
| JP2012182645A (en)* | 2011-03-01 | 2012-09-20 | Fujitsu Ltd | Synthetic amplifier, transmitter, and control method of synthetic amplifier |
| US8884694B2 (en) | 2007-06-28 | 2014-11-11 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification |
| US8913691B2 (en) | 2006-08-24 | 2014-12-16 | Parkervision, Inc. | Controlling output power of multiple-input single-output (MISO) device |
| US9094085B2 (en) | 2005-10-24 | 2015-07-28 | Parkervision, Inc. | Control of MISO node |
| US9106500B2 (en) | 2006-04-24 | 2015-08-11 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including embodiments for error correction |
| US9106316B2 (en) | 2005-10-24 | 2015-08-11 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification |
| US9419692B2 (en) | 2005-10-24 | 2016-08-16 | Parkervision, Inc. | Antenna control |
| US9608677B2 (en) | 2005-10-24 | 2017-03-28 | Parker Vision, Inc | Systems and methods of RF power transmission, modulation, and amplification |
| US9614484B2 (en) | 2005-10-24 | 2017-04-04 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including control functions to transition an output of a MISO device |
| US10278131B2 (en) | 2013-09-17 | 2019-04-30 | Parkervision, Inc. | Method, apparatus and system for rendering an information bearing function of time |
| DE102023211011A1 (en) | 2023-11-07 | 2025-05-08 | Robert Bosch Gesellschaft mit beschränkter Haftung | Phase shifter device and method for shifting a phase of a signal |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5287069A (en)* | 1990-02-07 | 1994-02-15 | Fujitsu Limited | Constant-amplitude wave combination type amplifier |
| JPH07503926A (en)* | 1991-12-30 | 1995-04-27 | ポリートップ コーポレーション | Obturator with protective flange and sloped top lid that cannot be opened by children |
| WO2005034350A1 (en)* | 2003-09-30 | 2005-04-14 | Mitsubishi Denki Kabushiki Kaisha | Variable power distributor, its error detecting method and set value correcting method |
| US9197163B2 (en) | 2004-10-22 | 2015-11-24 | Parkvision, Inc. | Systems, and methods of RF power transmission, modulation, and amplification, including embodiments for output stage protection |
| US9166528B2 (en) | 2004-10-22 | 2015-10-20 | Parkervision, Inc. | RF power transmission, modulation, and amplification embodiments |
| US9768733B2 (en) | 2004-10-22 | 2017-09-19 | Parker Vision, Inc. | Multiple input single output device with vector signal and bias signal inputs |
| US7184723B2 (en) | 2004-10-22 | 2007-02-27 | Parkervision, Inc. | Systems and methods for vector power amplification |
| US9143088B2 (en) | 2004-10-22 | 2015-09-22 | Parkervision, Inc. | Control modules |
| US7421036B2 (en) | 2004-10-22 | 2008-09-02 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including transfer function embodiments |
| US9197164B2 (en) | 2004-10-22 | 2015-11-24 | Parkervision, Inc. | RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments |
| US7466760B2 (en) | 2004-10-22 | 2008-12-16 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including transfer function embodiments |
| US7526261B2 (en) | 2004-10-22 | 2009-04-28 | Parkervision, Inc. | RF power transmission, modulation, and amplification, including cartesian 4-branch embodiments |
| US8913974B2 (en) | 2004-10-22 | 2014-12-16 | Parkervision, Inc. | RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments |
| US7639072B2 (en) | 2004-10-22 | 2009-12-29 | Parkervision, Inc. | Controlling a power amplifier to transition among amplifier operational classes according to at least an output signal waveform trajectory |
| US7647030B2 (en) | 2004-10-22 | 2010-01-12 | Parkervision, Inc. | Multiple input single output (MISO) amplifier with circuit branch output tracking |
| US7327803B2 (en) | 2004-10-22 | 2008-02-05 | Parkervision, Inc. | Systems and methods for vector power amplification |
| US9614484B2 (en) | 2005-10-24 | 2017-04-04 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including control functions to transition an output of a MISO device |
| US9705540B2 (en) | 2005-10-24 | 2017-07-11 | Parker Vision, Inc. | Control of MISO node |
| US9419692B2 (en) | 2005-10-24 | 2016-08-16 | Parkervision, Inc. | Antenna control |
| US9608677B2 (en) | 2005-10-24 | 2017-03-28 | Parker Vision, Inc | Systems and methods of RF power transmission, modulation, and amplification |
| US9094085B2 (en) | 2005-10-24 | 2015-07-28 | Parkervision, Inc. | Control of MISO node |
| US9106316B2 (en) | 2005-10-24 | 2015-08-11 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification |
| US7414469B2 (en) | 2006-04-24 | 2008-08-19 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning |
| US7378902B2 (en) | 2006-04-24 | 2008-05-27 | Parkervision, Inc | Systems and methods of RF power transmission, modulation, and amplification, including embodiments for gain and phase control |
| US9106500B2 (en) | 2006-04-24 | 2015-08-11 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including embodiments for error correction |
| US7423477B2 (en) | 2006-04-24 | 2008-09-09 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning |
| US7355470B2 (en) | 2006-04-24 | 2008-04-08 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning |
| US8913691B2 (en) | 2006-08-24 | 2014-12-16 | Parkervision, Inc. | Controlling output power of multiple-input single-output (MISO) device |
| US7620129B2 (en) | 2007-01-16 | 2009-11-17 | Parkervision, Inc. | RF power transmission, modulation, and amplification, including embodiments for generating vector modulation control signals |
| US8884694B2 (en) | 2007-06-28 | 2014-11-11 | Parkervision, Inc. | Systems and methods of RF power transmission, modulation, and amplification |
| JP2012182645A (en)* | 2011-03-01 | 2012-09-20 | Fujitsu Ltd | Synthetic amplifier, transmitter, and control method of synthetic amplifier |
| US10278131B2 (en) | 2013-09-17 | 2019-04-30 | Parkervision, Inc. | Method, apparatus and system for rendering an information bearing function of time |
| DE102023211011A1 (en) | 2023-11-07 | 2025-05-08 | Robert Bosch Gesellschaft mit beschränkter Haftung | Phase shifter device and method for shifting a phase of a signal |
| Publication number | Publication date |
|---|---|
| JPH0793546B2 (en) | 1995-10-09 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH0287708A (en) | Amplifier | |
| US7496333B2 (en) | Transmission circuit and communication apparatus employing the same | |
| CN1111975C (en) | Apparatus and method for use in a wireless transmitter | |
| JP2967699B2 (en) | Transmission device | |
| US6647073B2 (en) | Linearisation and modulation device | |
| Olson et al. | LINC imbalance correction using baseband preconditioning | |
| JP2002534908A (en) | Power IQ modulation system and method | |
| KR100438445B1 (en) | Compensating method and circuit of non-linear distortion | |
| JPH08163189A (en) | Transmission circuit | |
| US6519293B1 (en) | Radio transmitter and radio communication method | |
| JP2007300400A (en) | Transmission circuit, transmission method, and communication device using the same | |
| JP2003347854A (en) | Power amplifier | |
| US5745526A (en) | Radio transmitters and methods of operation | |
| JPH01284106A (en) | Amplifying device | |
| JP2005198109A (en) | Transmitter | |
| JP5248651B2 (en) | Linear RF amplifier with polar feedback | |
| JPWO2006054464A1 (en) | Transmission circuit, transmission method, and communication device using the same | |
| KR20090077615A (en) | Apparatus and method for amplifying signal power in communication system | |
| JP4518968B2 (en) | Transmitter circuit | |
| JP2011517215A (en) | Feedforward linearization of wireless power amplifiers | |
| WO2008099724A1 (en) | Linc transmission circuit and communication device using the same | |
| JPH0254607A (en) | Amplifier | |
| WO2008044268A1 (en) | Transmitter apparatus and transmitting method | |
| WO2006069477A1 (en) | A method and equipment of simulating predistortion linearization | |
| KR101336250B1 (en) | Apparatus and method for power transmitter in wirelass communication systems |
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |