Movatterモバイル変換


[0]ホーム

URL:


JPH02289782A - Dimming window - Google Patents

Dimming window

Info

Publication number
JPH02289782A
JPH02289782AJP13266889AJP13266889AJPH02289782AJP H02289782 AJPH02289782 AJP H02289782AJP 13266889 AJP13266889 AJP 13266889AJP 13266889 AJP13266889 AJP 13266889AJP H02289782 AJPH02289782 AJP H02289782A
Authority
JP
Japan
Prior art keywords
film
glass
liquid crystal
transparent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13266889A
Other languages
Japanese (ja)
Inventor
Kenji Nakatani
健司 中谷
Akira Shingu
新宮 公
Masao Suzuki
鈴木 将夫
Kunihiko Teranishi
寺西 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin LtdfiledCriticalTeijin Ltd
Publication of JPH02289782ApublicationCriticalpatent/JPH02289782A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To reduce the loss of cooling/heating energy by arranging a transparent heat ray reflecting film and a dimming film connectedly or separately. CONSTITUTION:A metal thin film or 50-500Angstrom or a metal oxide thin film of 1,000-5,000Angstrom is provided on a transparent organic polymer film to form a transparent heat ray reflecting film. A liquid crystal material layer is sandwiched by two transparent conducting films to form a liquid crystal dimming film. The transparent heat ray reflecting film is stuck on a glass, the liquid crystal dimming film is stuck on a glass, and a multi-layer glass is formed with both glasses. The multi-layer glass is fitted to a window so that the reflecting film is located on the indoor side and the dimming film is located on the outdoor side, and the voltage is applied to both films.

Description

Translated fromJapanese

【発明の詳細な説明】本発明は窓に関し、特に詳細には断熱性や耐光性を維持
しながら透視性をコントロールすることができる車輌や
、航空機,建物等の窓に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to windows, and more particularly to windows for vehicles, aircraft, buildings, etc. that can control transparency while maintaining heat insulation and light resistance.

近年の車輌や建造物は内部にいる者の環境性を上げるた
め透明窓部分を多大に取り込んである。
In recent years, vehicles and buildings have incorporated a large number of transparent windows in order to improve the environment for those inside.

かかる透明窓の導入は内部環境の向上は達成されるもの
の、一方、外部からの透視性も^まるため或る場合には
望ましくない場合もある。このため従来からカーテンや
ブラインドが用いられてきたが、これらは操作が繁雑で
あったり、外観が必ずしも好ましいものではない。
Although the introduction of such transparent windows improves the internal environment, it also reduces visibility from the outside, which may be undesirable in some cases. For this reason, curtains and blinds have traditionally been used, but these are complicated to operate and do not necessarily have a desirable appearance.

更に、これらの車輌.建物内は、冷暖房されているもが
ほとんどであるが、透明窓部分が増加するとその部分の
断熱性が低いために、そこからの冷暖房エネルギーのロ
スが多大となり、そのロスの低減も要望されていた。
Furthermore, these vehicles. Most buildings are heated and air-conditioned, but as the number of transparent windows increases, the insulation properties of those areas are low, resulting in a large loss of heating and cooling energy, and there is a need to reduce this loss. Ta.

そこで本発明者は、上記種々の要望を一挙に解決する手
段について鋭意研究し本発明に到達した。
Therefore, the present inventor conducted extensive research on means to solve the above-mentioned various demands all at once, and arrived at the present invention.

即ち、本発明は1以上の透明板を有する窓において、透
明熱線反射フィルム及び調光フィルムを接合して(又は
分離して配置したことを特徴とする調光窓である。
That is, the present invention is a light control window having one or more transparent plates, characterized in that a transparent heat ray reflective film and a light control film are arranged together (or separately).

本発明の基本となる窓はガラス板等の透明板を1以上有
するものである。例えばガラス板で考えれば、ガラス板
を2以上有する場合、それは合せガラスの如くガラス同
士が接合されているものであってもよく、また複層ガラ
スの如くガラス板が空間を介して相対している形態のち
のでもよい。
The window that forms the basis of the present invention has one or more transparent plates such as glass plates. For example, if we consider a glass plate, if there are two or more glass plates, it may be one in which the glass plates are bonded together, such as laminated glass, or two or more glass plates may be bonded together, such as in laminated glass, or two or more glass plates may be bonded together, such as in double-glazed glass, where the glass plates are faced to each other with a space between them. It may be after the form you are in.

もちろん、合せガラスと複層ガラスとの複合体であって
もよい。ガラス板以外のものを用いる場合も同様に考え
られる。
Of course, it may also be a composite of laminated glass and double-glazed glass. The same can be considered when using something other than a glass plate.

上記の如き窓に接合して、又は分離して配置せしめられ
る熱線反射フィルム及び調光フィルムは以下の如きもの
である。先ず透明熱線反射フィルムとは、可視光線をよ
く透過し、赤外線及び/又は近赤外線を良く反射しつる
フィルムのことである。
The heat ray reflective film and light control film that can be placed in conjunction with or separately from the window as described above are as follows. First, a transparent heat-reflecting film is a film that transmits visible light well and reflects infrared rays and/or near-infrared rays well.

これらは、例えばポリエチレンテレフタレートフィルム
に代表される透明可撓性フィルム、例えば透明有機高分
子フィルム上に、50〜500人の金属薄膜又は100
0〜5000人の金属酸化物の薄膜を設けたものがあげ
られる。金属薄膜の場合、その透明性を上げるために、
片面又は両面を50〜600人の高屈折率誘電体層で覆
うことが好ましい。金属の種類としては、AQ , A
ll . CIJ又はこれらの合金が好ましく、厚さと
しても80〜200人が好ましい。この上に形成されつ
る高屈折率誘電体層としては、屈折率1.8以上のもの
が好ましく、例えば酸化チタン.酸化インジウム.酸化
ジルコニウム等が挙げられる。金属酸化物の薄膜の場合
、111203やSnO2から選ばれるものが好ましい
。透明プラスチックフィルムは、代表的にはポリエチレ
ンテレフタレートフィルムの10〜250μmのものを
用いればよい。現在市販されているものとしては例えば
レフテル■ZA−05T,同ZA− 05G ,同ZC
−05T,同ZC−05G,同ZΔ一Wタイプが挙げら
れるが、これらに限定される必要はない。
These are, for example, a transparent flexible film typified by a polyethylene terephthalate film, such as a transparent organic polymer film, and a metal thin film of 50 to 500 or 100
Examples include those provided with a thin film of metal oxide having a density of 0 to 5,000. In the case of metal thin films, to increase their transparency,
Preferably, one or both sides are covered with 50 to 600 high refractive index dielectric layers. The types of metals are AQ, A
ll. CIJ or an alloy thereof is preferable, and the thickness is preferably 80 to 200. The high refractive index dielectric layer formed thereon is preferably one with a refractive index of 1.8 or more, such as titanium oxide. Indium oxide. Examples include zirconium oxide. In the case of a metal oxide thin film, one selected from 111203 and SnO2 is preferred. The transparent plastic film may typically be a polyethylene terephthalate film with a thickness of 10 to 250 μm. Examples of currently commercially available products include Leftel ZA-05T, ZA-05G, and ZC.
Examples include ZC-05T, ZC-05G, and ZΔ-W types, but there is no need to be limited to these.

調光フィルムとしては入射する光の量を調整Jるものな
ら良く、好ましくは液晶調光フィルム、エレクトロクO
ミックフィルム、あるいはフォ1〜クロミックフィルム
、勺一モクロミックフィルムが用いられる。
Any light control film that can adjust the amount of incident light may be used, preferably a liquid crystal light control film or an electrochromic film.
A chromic film, a chromic film, or a chromic film is used.

液晶調光フィルムとしては、2枚の透明導電性フィルム
で液晶月料層をサンドインチした構成のものが挙げられ
る。この際、透明導電性フィルムの透明導電性層側が液
晶材料層側を向くことになる。代表的な透明導電性フィ
ルムとしては、ポリエチレンテレフタレートフィルム上
に錫を含有するインジウム酸化物(ITO)膜を100
〜2000人、通常100〜400人の厚さに形成した
ものが挙げられる。しかしながら透明111i性膜は周
知であり、これらの中から随R液晶材料との組合せで選
択することができる。
Examples of the liquid crystal light control film include those having a structure in which a liquid crystal layer is sandwiched between two transparent conductive films. At this time, the transparent conductive layer side of the transparent conductive film faces the liquid crystal material layer side. A typical transparent conductive film is an indium oxide (ITO) film containing tin on a polyethylene terephthalate film.
-2000 thickness, usually 100 to 400 thickness. However, transparent 111i films are well known and can be selected from among these in combination with 111i liquid crystal materials.

本発明における液晶材料に用いる液晶化合物はネマチッ
ク型,コレステリック型.スメクチック型のいずれもが
用いられる。
The liquid crystal compounds used in the liquid crystal material in the present invention are nematic type and cholesteric type. Any smectic type can be used.

ネマチック型としては、ボリ〈p−フェニレンテレフタ
ルアミド),ボリ(p−ペンズアミド),ポリ(p−フ
ェニレンベンゾビスオキサゾール),ボリ(p−7ェニ
レンベンゾビスチアゾール)等の高分子液晶、あるいは
4′−メトキシベンジリデン−4′−ブチルアニリン,
4−シアノー4′一ヘキソキシビフェニル,シアノビフ
ェニル化合物,シアノフェ―ルシク口ヘキサン化合物,
シアノシク口へキシルシク口ヘキサン化合物などの化合
物があげられる。
Nematic types include polymeric liquid crystals such as poly(p-phenylene terephthalamide), poly(p-penzamide), poly(p-phenylenebenzobisoxazole), poly(p-7 phenylenebenzobisthiazole), or poly(p-phenylenebenzobisthiazole); '-Methoxybenzylidene-4'-butylaniline,
4-cyano-4'-hexoxybiphenyl, cyanobiphenyl compound, cyanophyl hexane compound,
Examples include compounds such as cyanosylhexane compounds.

これらの化合物は、駆動特性.安定性などを調整するた
めに数1混合されて使用される場合が多い。又、それら
混合された商品も多数市販されており、これらも適用で
きる。
These compounds have good driving properties. In many cases, a mixture of several 1 is used to adjust stability and other properties. In addition, many products containing these mixtures are commercially available, and these can also be applied.

コレステリック型としては、コレステリルリノレート,
コレステリルオレエート,セルロース,セルロース誘導
体,DNA,RNA,ポリベブチド等がある。
As cholesteric type, cholesteryl linoleate,
Examples include cholesteryl oleate, cellulose, cellulose derivatives, DNA, RNA, and polybebutide.

スメクチック型としては、ポリエステル等がある。Examples of the smectic type include polyester.

本発明における液晶材料は、正の誘電異方性を備えたネ
マチック型の液晶が好ましい。
The liquid crystal material in the present invention is preferably a nematic liquid crystal with positive dielectric anisotropy.

本発明の液晶層は、これら液晶材料をそのままで用いる
こともできるし、高分子化合物などの固体物質中に包含
させることもできる。包含η”る方法としては、単純に
高分子化合物と液晶材料を溶剤などと共に混合し、電極
を備えたプラスチックフィルム基根などに塗布した後、
溶剤をとばして該基板フィルム上に液晶材料を包含した
高分子化合物の膜として形成する方法、あらかじめ液晶
材料をマイク0カプセル化しておきその後に高分子化合
物及び溶剤と混合して塗布,乾燥する方法及び多孔質高
分子フィルムに液晶を含浸させる方法などがあり、任意
の方法が選択される。この場合、液晶層の膜厚は数μm
〜数百μmの範囲で任意に選ばれるが、コス[〜,透明
性の点などから数十μmの膜厚が好ましい。
In the liquid crystal layer of the present invention, these liquid crystal materials can be used as they are, or they can be incorporated into a solid substance such as a polymer compound. In order to do this, simply mix the polymer compound and liquid crystal material together with a solvent, apply it to a plastic film base equipped with electrodes, etc.
A method in which a film of a polymer compound containing a liquid crystal material is formed on the substrate film by evaporating the solvent, or a method in which the liquid crystal material is encapsulated in advance, and then mixed with a polymer compound and a solvent, coated, and dried. There are also methods of impregnating a porous polymer film with liquid crystal, and any method can be selected. In this case, the thickness of the liquid crystal layer is several μm.
The film thickness is arbitrarily selected in the range of ~ several hundred μm, but a film thickness of several tens of μm is preferable from the viewpoint of cost [~, transparency, etc.].

上記の中でも液晶材料は高分子材料等の固体物質中に数
μ亀の大きさに球状に包含される事が好ましい。公知の
通り液晶層はこのような状態で電極に電圧を印加しない
場合、液晶材料が全体としてランダムに配向するために
入射してくる光を散乱ずる。そして電極に所定例えば5
0〜ioovの直流ないし交流電圧を印加すると液晶材
料の持つ誘電異方性により液晶材料は電場に平行に配向
し、入用ずる光を散乱する事なく透過する。この現象に
より積層構成の調光フィルムは電圧のオン,オフにより
光の透過聞を調整する事ができ、調光窓,調光カーテン
などとして使用できる。
Among the above, it is preferable that the liquid crystal material be included in a spherical shape with a size of several micrometers in a solid substance such as a polymeric material. As is well known, when a voltage is not applied to the electrodes of the liquid crystal layer in this state, the liquid crystal material as a whole is randomly oriented and thus scatters incident light. Then, the electrode is given a predetermined value, for example, 5
When a DC or AC voltage of 0 to ioov is applied, the dielectric anisotropy of the liquid crystal material causes the liquid crystal material to align parallel to the electric field and transmit the incident light without scattering. Due to this phenomenon, a light control film with a laminated structure can adjust the light transmission level by turning on and off the voltage, and can be used as a light control window, light control curtain, etc.

エレクトロクロミックフィルムとしては2枚の透明IL
ti性フィルムで電場によって発色するエレクl〜ロク
ロミンク(EC)層と電解質をサンドイッチした構成の
ものが挙げられる。この際、透明導電性フィルムの透明
導電性層側がEC層側,電解質層側を向くことになる。
Two transparent IL electrochromic films
One example is a structure in which an electrolyte is sandwiched between a ti-based film and an electrolyte (EC) layer that develops color in response to an electric field. At this time, the transparent conductive layer side of the transparent conductive film faces the EC layer side and the electrolyte layer side.

透明導電性フィルムとしては液晶調光フィルムと同じ種
類のものの中からEC層,電解貿層との組合せで選択で
きる。
The transparent conductive film can be selected from the same types as the liquid crystal light control film in combination with the EC layer and the electrolyte layer.

EC層としてはタングステンオキサイド(WO3).酸
化ヴアナジューム(V2 05 ) .酸化イリジュー
ム(IrOx)等の公知の金属酸化物,プルシャンブル
ー系の如き可逆的酸化還元反応をなす金属イオン塩、あ
るいはフタ口シアニン系化合物,ビオロゲン系等の有機
化合物が用いられる。
Tungsten oxide (WO3) is used as the EC layer. Vanadium oxide (V2 05). Known metal oxides such as iridium oxide (IrOx), metal ion salts that undergo reversible redox reactions such as Prussian blue, or organic compounds such as phthalocyanine compounds and viologen compounds are used.

これらのEC層は真空蒸@等の物理的堆積法,電着法,
ゾルーゲル法.印刷・塗布法等によって0.1〜10u
a+の適当な厚さに設けられる。
These EC layers can be formed by physical deposition methods such as vacuum evaporation, electrodeposition methods,
Sol-gel method. 0.1~10u depending on printing/coating method, etc.
It is provided at an appropriate thickness of a+.

電解質層としてはブロビレンーカーボネート液,セルソ
ルブ・アセテート液などの非水溶媒に過塩素酸リチュー
ム等を加えた溶液系や、尿素−pトルエンスルホン酸,
ヘキサメチレンテトラミンlil!酸,チタン酸等の固
体電解質が用いられ各々の組合せで最適なものが選択さ
れる。このエレク1・ロクロミックフィルムに電圧を印
加するとEC層の選択に欧字手各種の色を着色すること
が出来、透過光市を変化できる調光材料として用いるこ
とが出来る。
The electrolyte layer may be a solution system in which lithium perchlorate is added to a non-aqueous solvent such as brobylene-carbonate solution or Cellsolve acetate solution, or urea-p-toluenesulfonic acid, etc.
Hexamethylenetetramine lil! Solid electrolytes such as acid and titanic acid are used, and the optimal one is selected for each combination. When a voltage is applied to this EC layer, the EC layer can be colored in various colors, and it can be used as a light control material that can change the amount of transmitted light.

フオトクロミツクフィルムとしては透明な高分子フィル
ム状にもうけた光量に応じて自然に可逆的に着色するフ
ィルムである。具体的にはポリエステルフィルム上に塗
布、あるいは蒸着したスビロビラン系,フルギド系,ジ
ヒドロビレン系等の有機系フォトクロミツク材料や、銀
化合物等の無機系物質であり、紫外光,可視光吊に応じ
て着色し透過光量を自動的に調節する機能を有している
Photochromic film is a transparent polymeric film that naturally and reversibly colors depending on the amount of light received. Specifically, these include organic photochromic materials such as subirobilane, fulgide, and dihydrobyrene that are coated or vapor-deposited on a polyester film, as well as inorganic materials such as silver compounds. It has the function of coloring and automatically adjusting the amount of transmitted light.

サーモクロミツクフィルムとしては透明な^分子フィル
ム上に設けた光聞に応じて白濁あるいは着色し、透過光
mを調節できるフィルムである。
A thermochromic film is a transparent molecular film that becomes cloudy or colored depending on the light beam provided on it, and can adjust the amount of transmitted light m.

具体的にはポリエステルフィルム上にスビロビラン系な
どのサーモクロミツク有機色素や、サーモクロミンク液
晶,各種フルオラン系などの電子供与考色性色素とフェ
ノール性水酸基を有する化合物などの電子受容性物質の
組合せ材料を0.1〜10μmの適当な厚さに設けたフ
ィルムである。
Specifically, on a polyester film, a combination of thermochromic organic dyes such as subirobilane, thermochromic liquid crystals, electron-donating color dyes such as various fluorans, and electron-accepting substances such as compounds with phenolic hydroxyl groups is used. It is a film made of material with an appropriate thickness of 0.1 to 10 μm.

次に、ガラス板(Gと表わす),透明熱線反射フィルム
(Rと表わす),調光フィルム(王と表わす)の組合せ
例を示す。ここにおいて、例えばG/TはGと王が接合
していることを、G−TはGとTが離れていることを表
わす。また向きは左側が室外側5右側が室内側を表わす
Next, examples of combinations of a glass plate (denoted as G), a transparent heat ray reflective film (denoted as R), and a light control film (denoted as King) will be shown. Here, for example, G/T means that G and the king are joined, and GT means that G and T are separated. Also, the left side represents the outdoor side and the right side represents the indoor side.

(A)一重窓の場合の例(△−1)  G/T/T(A−2)  G/T/R/G(A−3)  G/R/T(A−4)  G/R/T/G(B)二重窓の場合の例(B−I   G/R−T/G(B−2   G/T−R/G(B−3   G/T/R−G(B−4   G/R/T−G(B−5   G−R/T/G(B−6   G−T/R/G(B−7   G/R−G/T/G(B−8   G/T/G−R/G(B−9)   G−T/R/Gこれらを、調光特性(「調」),断熱特性([断]),
日照調整特性(「日」).通電デフロスト性(「デ」)
及び耐久性(「耐」)の観点から比較すると下表の如く
なる。
(A) Example of single window (△-1) G/T/T (A-2) G/T/R/G (A-3) G/R/T (A-4) G/R/ T/G (B) Example for double-glazed windows (B-I G/R-T/G (B-2 G/T-R/G (B-3 G/T/R-G (B-4 G/R/T-G (B-5 G-R/T/G (B-6 G-T/R/G (B-7 G/R-G/T/G (B-8 G/T/ G-R/G (B-9) G-T/R/G
Sunlight adjustment characteristics (“day”). Current-carrying defrost property (“De”)
A comparison from the viewpoint of durability ("resistance") is as shown in the table below.

以上は一重窓と二重窓について示したが、これらはもら
ろん三重窓以上にも適用しつる。
The above explanations are for single-paned windows and double-paned windows, but they also apply to triple-paned windows and above.

本発明の窓は、可視光線は通すが熱線を遮断するもので
あり、また紫外線吸収剤等でもって紫外線吸収能が付与
された透明有機高分子フィルムを用いれば紫外線もカッ
トすることができ、しかも内部の透視性も任意にコント
ロールすることができるために、単に車輌や建物等内部
に人間が存在ずる場所だけでなく、倉庫,保存棚.陳列
ケースなど、普段は内部を見る必要はないが、必要なと
きに扉を開けずに内部を見ることができると便利な場所
に広く用いることがでぎる。
The window of the present invention allows visible light to pass through but blocks heat rays, and can also block UV rays by using a transparent organic polymer film that has been given UV absorbing ability with an UV absorber or the like. Since the transparency inside can be controlled arbitrarily, it can be used not only in places where there are people inside such as vehicles and buildings, but also in warehouses and storage shelves. It can be used in a wide range of places, such as display cases, where it is not usually necessary to see the inside, but where it is convenient to be able to see the inside without opening the door when necessary.

以下、実施例により具体的に説明する。Hereinafter, this will be explained in detail using examples.

実施例1 二重窓の例二重窓を作製するに当り次の材料を用いた。Example 1 Example of double-glazed windowsThe following materials were used to make the double-glazed windows.

明 線反射フィルム(以降Rフィルムと略称)厚み25
μmのポリエステルフィルムの上にスパッタリング法に
より、酸化チタン層300人,AQ ・Cll  (C
IJ :10%〉層130人,M化チタン層300人の
順に積層し、更にポリエステルフィルムの背面にアクリ
ル系感圧粘着剤層を塗工法により形成しRフィルムを作
製した。
Bright line reflective film (hereinafter abbreviated as R film) thickness 25
A titanium oxide layer of 300 μm, AQ・Cll (C
A 130-layer IJ: 10%> layer and a 300-layer M titanium layer were laminated in this order, and an acrylic pressure-sensitive adhesive layer was further formed on the back side of the polyester film by a coating method to prepare an R film.

かくして作製されたRフィルムの光量特性は、波長55
0nmで測定された可視光透過率は80%であり、又波
長10μmで測定された赤外線反射率は90%であった
。又表面抵抗は9.80/口であった。
The light quantity characteristics of the R film thus produced are as follows: wavelength 55
The visible light transmittance measured at 0 nm was 80%, and the infrared reflectance measured at 10 μm wavelength was 90%. Moreover, the surface resistance was 9.80/mouth.

かくして作製されたRフィルムを9oC,,x  10
0cmの3m厚の板ガラスへ貼合せ、81cm×97c
mにフィルムをカットした。両長辺に銀ペーストの電極
を塗布し、各々通電できる様にリード線を設けた。
The thus prepared R film was heated to 9oC,, x 10
Laminated to 0cm 3m thick plate glass, 81cm x 97cm
The film was cut to m. Silver paste electrodes were applied to both long sides, and lead wires were provided on each side so that electricity could be applied.

リード線間の抵抗を測定したところ9.00であった。The resistance between the lead wires was measured and found to be 9.00.

調光フィルム(以降Tフィルムと略称)厚み100μm
のポリエステルフィルムの上に、スパッタリング法によ
り膜厚400人のITO膜を形成した透明導電性フィル
ムを作製した。表面抵抗は200Ω/口であった。
Light control film (hereinafter abbreviated as T film) thickness 100μm
A transparent conductive film was prepared by forming an ITO film with a thickness of 400 on a polyester film using a sputtering method. The surface resistance was 200Ω/mouth.

続いて、上記ITOg1面上に、アクリル樹脂〈三菱レ
ーヨン製 LR  574)と液晶(BDH社(,37
)とのメチルエチルケトン溶液(固形分2o重聞%)か
ら固形分換筒で50対50の液晶膜を塗工法により形成
し、100℃で乾燥様によりメチルエチルケトンを排出
後、直ちに、上記と全く同じに作製された透明導電性フ
ィルムのITO面をはり合せた。得られた液晶躾厚は1
0μmであった。次いで、背面側へ同様にアクリル系感
圧粘着剤層を塗布し、Tフィルムを作製した。
Next, acrylic resin (Mitsubishi Rayon LR 574) and liquid crystal (BDH Co., Ltd., 37
) and methyl ethyl ketone solution (solid content: 20 weight percent), a 50:50 liquid crystal film was formed using a solid content conversion tube by a coating method, and after drying at 100°C to remove the methyl ethyl ketone, the film was immediately treated in exactly the same manner as above. The ITO surfaces of the produced transparent conductive films were pasted together. The obtained liquid crystal thickness is 1
It was 0 μm. Next, an acrylic pressure-sensitive adhesive layer was similarly applied to the back side to produce a T film.

Tフィルムは前述のRフィルムと同寸法になる様に作製
し、又、Rフィルムと同寸法のガラスに貼り合せた後、
両短辺の各々の導電面へ導電面同士が接触しない様・に
し、更にリード線接続部が接触しない様に独立に通電用
のリード線を設けた。
The T film was made to have the same dimensions as the R film described above, and after being attached to glass with the same dimensions as the R film,
The conductive surfaces on both short sides were made so that they did not come into contact with each other, and lead wires for conducting current were provided independently so that the lead wire connection parts did not come into contact with each other.

次に、上記のRフィルム付ガラスとTフィルム付ガラス
を空間層12#Imになる様に前掲B−2の如き複層ガ
ラスを作製した。
Next, a double-glazed glass as shown in B-2 above was fabricated using the above-mentioned R film-attached glass and T-film attached glass so that the space layer was 12#Im.

断熱性能をみる為、K値を測定したところ1.4kca
l / Id − hr− ℃であった。Rフィルム,
Tフィルムなしの複層ガラスは2.2 kcal / 
rd − hr・℃であり著しく断熱性の向上が認めら
れた。
To check the insulation performance, we measured the K value and found it to be 1.4kca.
l/Id-hr-°C. R film,
Double-glazed glass without T-film is 2.2 kcal/
rd − hr·°C, and a remarkable improvement in heat insulation was observed.

又、■フィルムへ100vを印加したところ、ずみやか
に波長550rvでの可視光透過率が6%から63%に
なり透明になった。
Further, when 100V was applied to the film, the visible light transmittance at a wavelength of 550rv rapidly increased from 6% to 63%, making it transparent.

続いて、建物のはめ込み式の窓に、Rフィルム側が室内
側.■フィルム側が室外側になる様にとりつけ、Rフィ
ルムのリード線へ交流電圧を連続印加出来る様に配線し
、一万Tフィルムへは100■が適宜印加出来る様に配
線した。室温が20゜Cに暖房され、室内の湿度が70
%RHであり、室外が無用状態日射光無し、温度O℃の
冬期にJ3いて、室内側ガラス面への結露は認められな
かった。この状態では室内から外の景色は見えないが、
Tフィルム側へ交流電圧100Vを印加すると瞬時に透
明になり、外の景色を鮮明に透視できた。電圧印加を止
めると同様に瞬時に不透明になり、室外の景色が見えな
くなった。
Next, place the R film side on the indoor side of the built-in window of the building. ■It was installed so that the film side faced the outdoor side, and the wiring was wired so that an AC voltage could be applied continuously to the lead wire of the R film, and the wire was wired so that a voltage of 100cm could be appropriately applied to the 10,000T film. The room temperature is heated to 20°C, and the indoor humidity is 70°C.
%RH, there was no sunlight outside, and the temperature was 0°C in the winter at J3, and no dew condensation was observed on the indoor glass surface. In this state, you cannot see the outside scenery from inside the room, but
When an AC voltage of 100 V was applied to the T-film side, it instantly became transparent and the outside scenery could be seen clearly. When the voltage application was stopped, it instantly became opaque and the outside scenery could no longer be seen.

続いて、Rフィルムに21Vの交流電圧を印加したとこ
ろ、室内側ガラス表面温度が5℃上昇し、ほとんど完全
に結露を防止できる窓を得ることができた。
Subsequently, when an AC voltage of 21 V was applied to the R film, the indoor glass surface temperature rose by 5° C., making it possible to obtain a window that could almost completely prevent dew condensation.

尚Rフィルム及びTフィルムを使用しないN層ガラスを
用いると、室内側ガラスの表面に結露が認められた。
Note that when N-layer glass without R film and T film was used, dew condensation was observed on the surface of the indoor glass.

実施例2実施例1と同じく2重窓を作成した。本例の材料として
は実施例1と同じ透明熱線反射フィルム(以降Rフィル
ムと略する》とエレクトロクロミックフィルムの調光フ
ィルム(以降Tフィルムと略する)を用いた。
Example 2 A double-glazed window was created in the same manner as in Example 1. As materials for this example, the same transparent heat ray reflective film (hereinafter abbreviated as R film) and electrochromic light control film (hereinafter abbreviated as T film) used in Example 1 were used.

■フィルムとしては厚み100μmのポリエステルフィ
ルムの上に、スパッタリング法により厚み400人のI
TO膜を形成した透明導電性フィルムを作成した。表面
抵抗は100Ω/口であった。
■As a film, a film with a thickness of 400 μm was created by sputtering on a polyester film with a thickness of 100 μm.
A transparent conductive film on which a TO film was formed was created. The surface resistance was 100Ω/mouth.

続いて、上記ITO面上にEC層としてタングステンオ
キサイド膜(WO3)が真空蒸着法によって0.8 −
 2,Ox 10−3T orrで約0.5amの厚み
に堆積された。更にこのEC層の上に電解質成分をグリ
セリンと混合したゲル状物をフィルム状電解質躾として
約50〜100umの厚さで塗布した。
Subsequently, a tungsten oxide film (WO3) was deposited as an EC layer on the ITO surface using a vacuum evaporation method.
2, Ox was deposited to a thickness of about 0.5 am at 10-3 Torr. Further, on this EC layer, a gel-like material in which an electrolyte component was mixed with glycerin was applied as a film electrolyte layer to a thickness of about 50 to 100 um.

更にこの電解MrlAにITO層が接するように上記透
明導電性フィルムを設けラミネートする事によって、T
フィルムを作成した。
Furthermore, by providing and laminating the transparent conductive film so that the ITO layer is in contact with this electrolytic MrlA, T
created a film.

■フィルムは前述のRフィルムと同寸法になる様に作製
し、又、Rフィルムと同寸法のガラスに貼り合せた後、
両短辺の各々の導電面へ導電面同士が接触しない様にし
、更にリード線接続部が接触しない様に独立に通電用の
リード線を設けた。
■The film is made to have the same dimensions as the R film mentioned above, and after being attached to glass with the same dimensions as the R film,
Lead wires for conducting current were provided independently to the conductive surfaces on both short sides so that the conductive surfaces did not come into contact with each other, and further, so that the lead wire connection portions did not come into contact with each other.

次に、上記のRフィルム付ガラスとTフィルム付ガラス
を空間層12mになる様に前掲B−2の如き複層ガラス
を作製した。
Next, a double-glazed glass as shown in B-2 above was fabricated using the above-mentioned R film-attached glass and T-film attached glass so that the space layer was 12 m.

断熱性能をみる為、K値を測定したところ1.4kca
l /TIt− hr− ’Cであった。Rフィルム,
Tフィルムなしの複層ガラスは2.2 kca+ /7
77・hr・℃であり著しく断熱性の向上が認められた
To check the insulation performance, we measured the K value and found it to be 1.4kca.
l/TIt-hr-'C. R film,
Double glazing without T-film is 2.2 kca+ /7
The temperature was 77·hr·°C, and a remarkable improvement in heat insulation was observed.

又、Tフィルムへ1.5Vを印加したところ、すみやか
に波長5500!lでの可視光透過率が68%から21
%に変化し、調光効果を示した。
Also, when 1.5V was applied to the T film, the wavelength was 5500! Visible light transmittance at l is 68% to 21
%, showing a dimming effect.

続いて、建物のはめ込み式の窓に、Rフィルム側が室内
側.Tフィルム側が室外側になる様にとつつけ、Rフィ
ルムのリード線へ交流電圧を連続印加出来る様に配線し
、一方Tフィルムへは1.5Vが適宜印加出来る様に配
線した。室温が20℃に暖房ざれ、室内の湿度が70%
R l−1であり、室外が無風状態日射光無し、温度O
℃の冬期において、室内側ガラス而への結露は認められ
なかった。この状態では室内から外の景色は見えるが、
Tフィルム側へ直流電圧1.5vを印加すると青色に着
色し、調光効果を示した。電圧印加方向を道転させると
透明になり、室外の県色が見える様になった。
Next, place the R film side on the indoor side of the built-in window of the building. The T film side was attached to the outside of the room, and the lead wires of the R film were wired so that AC voltage could be continuously applied, while the T film was wired so that 1.5 V could be applied as appropriate. The room temperature is heated to 20℃, and the humidity in the room is 70%.
R l-1, no wind outdoors, no sunlight, temperature O
No condensation was observed on the indoor glass in winter at ℃. In this state, you can see the scenery outside from inside the room, but
When a DC voltage of 1.5 V was applied to the T film side, it was colored blue and exhibited a dimming effect. When I changed the direction of voltage application, it became transparent and I could see the prefectural color outside.

続いて、Rフィルムに21Vの交流電圧を印加したとこ
ろ、室内側ガラス表面温度が5℃上昇し、ほとんど完全
に結露を防止できる窓を1qることができた。
Subsequently, when an AC voltage of 21 V was applied to the R film, the indoor glass surface temperature rose by 5° C., making it possible to create a 1q window that could almost completely prevent dew condensation.

尚Rフィルム及びTフィルムを使用しない複層ガラスを
用いると、室内側ガラスの表面に結露が認められた。
Note that when double-glazed glass without R film and T film was used, dew condensation was observed on the surface of the indoor glass.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]1以上の透明板を有する窓において、透明熱線反射フィ
ルム及び調光フィルムを接合して又は分離して配置した
ことを特徴とする調光窓。
A light control window having one or more transparent plates, characterized in that a transparent heat ray reflective film and a light control film are arranged together or separately.
JP13266889A1989-02-091989-05-29Dimming windowPendingJPH02289782A (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
JP1-286691989-02-09
JP28669891989-02-09

Publications (1)

Publication NumberPublication Date
JPH02289782Atrue JPH02289782A (en)1990-11-29

Family

ID=12254918

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP13266889APendingJPH02289782A (en)1989-02-091989-05-29Dimming window

Country Status (1)

CountryLink
JP (1)JPH02289782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2019183547A (en)*2018-04-132019-10-24Ykk Ap株式会社Solar radiation adjustment window
JP2019182720A (en)*2018-04-132019-10-24Ykk Ap株式会社Solar radiation shielding glass and solar radiation shielding window provided therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2019183547A (en)*2018-04-132019-10-24Ykk Ap株式会社Solar radiation adjustment window
JP2019182720A (en)*2018-04-132019-10-24Ykk Ap株式会社Solar radiation shielding glass and solar radiation shielding window provided therewith

Similar Documents

PublicationPublication DateTitle
US6055088A (en)Glazing with variable optical and/or energetic properties
EP0028147B1 (en)Electro-optical light transmission controlling panel
US6160655A (en)Units with variable optical/energetic properties
US4964251A (en)Dual-pane thermal window with liquid crystal shade
US4848875A (en)Dual-pane thermal window with liquid crystal shade
US5197242A (en)Dual-pane thermal window with liquid crystal shade
US5152111A (en)Dual-pane thermal window with liquid crystal shade
US4893902A (en)Dual-pane thermal window with liquid crystal shade
US5111629A (en)Dual-pane thermal window with liquid crystal shade
US9063358B2 (en)Smart photochromic chiral nematic liquid crystal window
JP3955641B2 (en) Electrochromic device
US4899503A (en)Dual-pane thermal window with liquid crystal shade
GranqvistChromogenic materials for transmittance control of large-area windows
US10247997B2 (en)Switchable hydride smart window and the methods for producing the same
JP2002520654A (en) Glazing with electrically controllable optical / energy properties
CN103345097A (en)EC-type electrochromism laminated glass and intelligent dimming system based on same
CA2273052A1 (en)Electrochromic assembly based on poly(3,4-ethylenedioxythiophene) derivatives and a uv-stabilized gel electrolyte
WO1993014436A1 (en)Light modulating devices incorporating an improved electrode
WO2022262463A1 (en)Electrochromic apparatus based on polymer dispersed liquid crystals, and preparation method and electronic device
LampertChromogenic switchable glazing: Towards the development of the smart window
MacrelliOptical characterization of commercial large area liquid crystal devices
CA2120854C (en)Light valve with low emissivity coating as electrode
JPH02289782A (en)Dimming window
JP2003149686A (en) Semi-transmissive variable transmittance element
JPH1138455A (en) Device with variable optical properties

[8]ページ先頭

©2009-2025 Movatter.jp