【発明の詳細な説明】[産業上の利用分野]本発明は、ウェハ特性の電気的測定方法および装置、特
にMO5型半導体集積回路の製造工程におりるMO5型
半導体のC−V特性、 C−を特性などの高速多点測定
に好適な方法および装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for electrically measuring wafer characteristics, and in particular to C-V characteristics of MO5 type semiconductors in the manufacturing process of MO5 type semiconductor integrated circuits. - This invention relates to a method and apparatus suitable for high-speed multi-point measurement of characteristics and the like.
[従来の技術]MO5型半導体デバイスの開発においては、MOSの不
純物濃度、小数キャリアの発生ライフタイムおよび小数
キャリアの発生速度などを測定してデバイスの性能向上
や製造プロセスでの歩留り向上に寄与するために、MO
5型半導体のC−V特性、 C−を特性などの測定を行
っている。通常、この測定は、ウェハ状態のまま行われ
、ウェハの表面に数百人〜数千人の金属薄膜からなる多
数の評価用電極を設け、その評価用電極とウェハ裏面全
体に蒸着で設けたオーミック電極との間の容量の電圧依
存性(C−V特性)およびパルス的な電圧印加後の容量
の過渡応答特性(C−を特性)を容量計にて測定する方
7去がとられている(M、Zerbst;ハムngre
w Phys。[Conventional technology] In the development of MO5 type semiconductor devices, the impurity concentration of MOS, the generation lifetime of minority carriers, the generation rate of minority carriers, etc. are measured to contribute to improving device performance and yield in the manufacturing process. For the sake of M.O.
We measure the CV characteristics and C- characteristics of type 5 semiconductors. Usually, this measurement is carried out in the wafer state, with a large number of evaluation electrodes made of several hundred to several thousand metal thin films provided on the surface of the wafer, and a large number of evaluation electrodes made of several hundred to several thousand metal thin films formed by vapor deposition on the evaluation electrodes and the entire back surface of the wafer. The method of measuring the voltage dependence of the capacitance between the ohmic electrode (C-V characteristic) and the transient response characteristic of the capacitance after pulsed voltage application (C-characteristic) using a capacitance meter has been adopted. There is (M, Zerbst; Hamngre
w Phys.
22 (191i0) 30および宇佐美晶、応用物理
47. (1978)660参照)。22 (191i0) 30 and Akira Usami, Applied Physics 47. (1978) 660).
この際、容量計とクエへの評価用電極との電気的接続は
、従来、金属性針状プローブを用いて行っている。そし
て、プローブを被測定電極に対して押圧して測定を行い
、測定点が多点に及ぶ場合には、1箇所の測定を行った
後、測定を終えた被測定電極からプローブを離し、次の
被測定電極へプローブを位置合わせし、そして、該被測
定電極にプローブを押圧するという操作を行ったのち測
定を行うという手順を繰返していた。At this time, electrical connection between the capacitance meter and the evaluation electrode to the que is conventionally performed using a metallic needle probe. Measurement is performed by pressing the probe against the electrode to be measured. If there are multiple measurement points, after measuring one point, remove the probe from the electrode to be measured and move on to the next one. The procedure of positioning the probe to the electrode to be measured, pressing the probe to the electrode to be measured, and then performing measurement was repeated.
[発明が解決しようとする騨題コしかしながら、前述のような金属性プローブは評価用電
極との接触を完全なものとするために、先端部が鋭利な
金属製針状プローブであるので、評価用電極およびウェ
ハを損傷することが避は難いという問題があった。さら
に前述のように1箇所測定する毎に、ウェハまたはプロ
ーブを移動する方法では、1枚のウェハを測定するのに
多大の時間を要するという問題があった。これらの理由
から、従来の方法では、製造工程での評価には使えない
という問題があった。[Problem to be Solved by the Invention] However, the above-mentioned metallic probe is a metallic needle-like probe with a sharp tip in order to make perfect contact with the evaluation electrode. There was a problem in that it was inevitable that the electrodes and wafer would be damaged. Furthermore, the method described above in which the wafer or probe is moved each time one location is measured has a problem in that it takes a long time to measure one wafer. For these reasons, there was a problem that the conventional method could not be used for evaluation in the manufacturing process.
本発明の目的は前記問題点を解消し、被測定電極および
ウェハを損傷することなく、しかも高速で多点の測定が
可能なウェハ特性の電気的測定方法および装置を提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method and apparatus for electrically measuring wafer characteristics, which can perform multi-point measurements at high speed without damaging the electrode to be measured or the wafer.
[課題を解決するための手段]上記目的を達成するために、本発明のウェハ特性の電気
的測定方法は、被測定電極群が形成されたウェハの上に
、粒子径が1〜200μmの導電粒子を5〜20体積%
で含み、厚みが01〜2mmてその厚み方向に圧力が加
えられた部分が導電性状態となる感圧導電性ゴム板と、
被測定電極群に対応して位置する測定用端子群を備えた
端子保持板とをこの順に重ね、これらに圧接力を付与し
た状態で被測定点を切換えて順次測定する工程を含むこ
とを特徴とする。[Means for Solving the Problems] In order to achieve the above object, the method for electrically measuring wafer characteristics of the present invention provides a method for electrically measuring wafer characteristics using a conductive material having a particle size of 1 to 200 μm on a wafer on which a group of electrodes to be measured is formed. 5-20% by volume of particles
a pressure-sensitive conductive rubber plate having a thickness of 01 to 2 mm and having a conductive state when pressure is applied in the thickness direction;
It is characterized by including the step of stacking a terminal holding plate having a group of measurement terminals located corresponding to a group of electrodes to be measured in this order, and sequentially measuring the points to be measured by switching the points to be measured while applying a pressure contact force to these. shall be.
また、本発明のウェハ特性の電気的測定装置は、−面が
被測定電極群が形成されたウェハに当接され、粒子径が
1〜200μmの導電粒子を5〜20体オ!i%で含み
、厚みが0.1〜2mmてその厚み方向に圧力が加えら
れた部分が導電性状態となる感圧導電性ゴム板と、この
感圧導電性ゴム板の他面と対向し所定の間隙を有して設
けられた絶縁性の端子保持板と、この端子保持板に保持
され、端子保持板の表面から間隙内に突出する測定用端
子群と、端子保持板を感圧導電性ゴム板と共にウェハに
圧接させ、圧接力を付与する圧接力付与手段と、測定用
端子群の測定点を切換えて順次測定する測定手段とを備
えたことを特徴とする。Further, in the electrical measuring device for wafer characteristics of the present invention, the - side is brought into contact with a wafer on which a group of electrodes to be measured are formed, and 5 to 20 conductive particles having a particle diameter of 1 to 200 μm are measured. i%, the pressure-sensitive conductive rubber plate has a thickness of 0.1 to 2 mm, and the part where pressure is applied in the thickness direction becomes conductive, and the pressure-sensitive conductive rubber plate faces the other side. An insulating terminal holding plate provided with a predetermined gap, a group of measurement terminals held by this terminal holding plate and protruding into the gap from the surface of the terminal holding plate, and a pressure-sensitive conductive The present invention is characterized in that it is equipped with a pressing force applying means that presses the wafer together with a rubber plate and applies a pressing force, and a measuring means that sequentially measures measurement points by switching the measurement points of the measurement terminal group.
本発明におけるウェハとは、電流を印加することにより
、電位差が生ずるウェハであり、代表的にはMO5型半
導体が形成されシリコンウェハが挙げられる。The wafer in the present invention is a wafer on which a potential difference is generated by applying a current, and typically includes a silicon wafer on which an MO5 type semiconductor is formed.
本発明におけるウェハ特性とは、ウェハに通電すること
によって得られる特性であり、抵抗、静電容量およびリ
アクタンスならびにウェハに組込まれた回路の正常ある
いは異常なとである。The wafer characteristics in the present invention are characteristics obtained by applying electricity to the wafer, and include resistance, capacitance, reactance, and normal or abnormal circuits incorporated in the wafer.
本発明において電気的測定とは、ウェハに電流あるいは
電圧を印加して測定を行うことをいう。In the present invention, electrical measurement refers to measurement by applying current or voltage to the wafer.
本発明における被測定電極とは、ウェハ上に予め測定用
に設けられた配列パターン、例えはアルミニウム、金、
アルミニウムーシリコン、インジウムチンオキサイドな
どによる配列パターンの他、測定用に配列パターンが形
成されていなくとも感圧導電性ゴム板を圧接させて通電
する部分のことを意味する。The electrode to be measured in the present invention refers to an array pattern provided in advance on a wafer for measurement, such as aluminum, gold,
In addition to array patterns made of aluminum-silicon, indium tin oxide, etc., it refers to the part where a pressure-sensitive conductive rubber plate is pressed and energized even if no array pattern is formed for measurement.
[実施例]以下、図面に基いて本発明の詳細な説明する。[Example]Hereinafter, the present invention will be explained in detail based on the drawings.
第1図は本発明にかかるウェハ特性の電気的測定装置の
一実施例を示す断面図であり、1は被測定物であるウェ
ハAが載置されるステージで、樹脂等で形成されている
。ステージ1は不図示のメインフレームに固定され、そ
の上面に金メツキを施した銅製端子板11が設けられて
いる。2は、例えばエポキシ、ポリエステル、ポリイミ
ドなどの樹脂、あるいはそれらとガラス繊維や無機充填
剤との複合材、またはガラスやセラミックよりなる絶縁
性の端子保持板であり、その中央部においてウェハAの
表面に形成される後述の被測定電極群の配列パターンに
対応した位置において測定用端子群21が設りられてい
る。測定用端子群21はリベット状導電体、あるいはメ
ツキ、エツチング蒸着、印刷などの手段により端子保持
板2に形成することもできる。端子保持板2の下方には
、その厚さ方向に圧力が加えられたとき、その部分が厚
さ方向に導電性状態となる感圧導電性ゴム板3が所定の
間MS(例えば50μm)M間した状態でリテナ31に
より保持されている。そして、前述した測定用端子群2
1の先端部は間14s内に突出し感圧導電性ゴム板3と
当接されている。端子保持板2の周辺部には測定用端子
群21の個数に対応した個数の接続用端子群22か設け
られ、測定用端子群21と接続用端子群22との個々の
端子は、それぞれプリン]・配線23によって接続され
ている。そして、測定用端子群21の上端側はプリント
配線23を含みエポキシ樹脂などの絶縁レシス1〜24
でもって被覆されている。FIG. 1 is a sectional view showing an embodiment of the electrical measuring device for wafer characteristics according to the present invention, and 1 is a stage on which a wafer A as an object to be measured is placed, which is made of resin or the like. . The stage 1 is fixed to a main frame (not shown), and has a gold-plated copper terminal plate 11 on its upper surface. 2 is an insulating terminal holding plate made of resin such as epoxy, polyester, polyimide, or a composite material of these with glass fiber or inorganic filler, or glass or ceramic; A measurement terminal group 21 is provided at a position corresponding to an arrangement pattern of a group of electrodes to be measured which will be described later. The measurement terminal group 21 can also be formed on the terminal holding plate 2 using a rivet-like conductor, plating, etching vapor deposition, printing, or other means. Below the terminal holding plate 2, there is a pressure-sensitive conductive rubber plate 3 which becomes conductive in the thickness direction when pressure is applied in the thickness direction. It is held by a retainer 31 in a suspended state. Then, the aforementioned measurement terminal group 2
1 protrudes into the space 14s and comes into contact with the pressure-sensitive conductive rubber plate 3. A number of connection terminal groups 22 corresponding to the number of measurement terminal groups 21 are provided around the terminal holding plate 2, and each terminal of the measurement terminal group 21 and the connection terminal group 22 is connected to a printer. ]・Connected by wiring 23. The upper end side of the measurement terminal group 21 includes printed wiring 23 and insulation ratios 1 to 24 made of epoxy resin or the like.
It is covered with.
さらに、端子保持板2は絶縁レジスト24を介在させて
、加圧を均一に行うための発泡ウレタンまたは発泡ゴム
からなる弾性板4と、弾性板4は加圧板5とそれぞれ連
接されている。加圧板5は不図示のメインフレームに上
下動可能に支持されたロッド51に保持され、ロッド5
1は不図示のエアシリンダのピストンと連結されている
。Furthermore, the terminal holding plate 2 is connected to an elastic plate 4 made of foamed urethane or foamed rubber for uniformly applying pressure, and the elastic plate 4 is connected to a pressure plate 5 with an insulating resist 24 interposed therebetween. The pressure plate 5 is held by a rod 51 that is vertically movably supported by a main frame (not shown).
1 is connected to a piston of an air cylinder (not shown).
6はスキャナであり前述の接続用端子群22の個々の端
子と配線62でもって、およびステージ1の端子板11
と配線61でもって接続され、スキャナ6はコンピュー
タを含む計測制御器7に接続されている。Reference numeral 6 denotes a scanner, which uses the individual terminals and wiring 62 of the connection terminal group 22 described above, and the terminal board 11 of the stage 1.
The scanner 6 is connected to a measurement controller 7 including a computer.
本発明に用いる感圧導電性ゴム板3の素材としては、絶
縁性弾性体中に導電粒子を混合してなる導電性ゴムであ
り、(イ)導電粒子が主として圧接方向に配列して導電
路を形成したもの、および(ロ)導電粒子がウェハAの
被測定電極群の配列パターンに対応させて偏在されつつ
、厚み方向に配列したものを用いることができるが、後
者の方が被測定電極の面積が小さい場合(例えば0.2
mm2以下)および被測定電極間の間隙が狭い場合(例
えば0.2mm以下)に所望箇所の導通が確実に得られ
、好ましい。絶縁性弾性体としては、シリコンゴム、ウ
レタンゴム、ネオブレンゴム、アクリルゴム、ポリブタ
ジェンゴム、ブチルゴム、プリイソプレンゴム、フッ素
ゴム、ホスファーゼンゴムなどのゴム弾性体であり、導
電粒子としてはカーボンおよび金、銀、銅、ニッケル、
錫、アラミニラムなどの金属粒子、およびそれらに貴金
属メツキを施したもの、およびポリスチレンなどのポリ
マー粒子やジルコニア、アルミナ、シリカ、チタニアな
どの無機粒子に貴金属メツキを施したものである。さら
に導電粒子は、その粒子径が1〜200μmの範囲であ
ることが必要である。粒子径が1μm未満になると、測
定を行うに十分な接触状態か得られ難くなる。また、2
00μmを越えると、被測定電極を損傷するおそれが生
じる。The material of the pressure-sensitive conductive rubber plate 3 used in the present invention is a conductive rubber made by mixing conductive particles in an insulating elastic body, and (a) the conductive particles are mainly arranged in the pressure contact direction to form conductive paths. (b) conductive particles are unevenly distributed and arranged in the thickness direction in accordance with the array pattern of the electrodes to be measured on wafer A; however, the latter is more suitable for the electrodes to be measured. If the area of is small (e.g. 0.2
mm2 or less) and the gap between the electrodes to be measured is narrow (for example, 0.2 mm or less), as this is preferable because conduction can be reliably obtained at the desired location. Examples of insulating elastic materials include silicone rubber, urethane rubber, neoprene rubber, acrylic rubber, polybutadiene rubber, butyl rubber, pre-isoprene rubber, fluororubber, and phosphazene rubber, and conductive particles include carbon and gold, silver, copper, nickel,
These include metal particles such as tin and araminilam, and those plated with noble metals, and polymer particles such as polystyrene, and inorganic particles such as zirconia, alumina, silica, and titania, plated with noble metals. Further, the conductive particles need to have a particle diameter in the range of 1 to 200 μm. When the particle size is less than 1 μm, it becomes difficult to obtain a sufficient contact state for measurement. Also, 2
If it exceeds 00 μm, there is a risk of damaging the electrode to be measured.
また、感圧導電性ゴム板3は、厚さが01〜2mm 、
さらに導電粒子の混合量が5〜20体積%であることが
圧接時における導電路の形成上必要であり、その硬度が
20〜55(JIS−八ti s )であることが好ま
しい。このような感圧導電性ゴム板としては、例えば、
日本合成ゴム■製JSn PCR305−02を用いる
ことができる。Moreover, the pressure-sensitive conductive rubber plate 3 has a thickness of 01 to 2 mm,
Further, it is necessary that the mixed amount of the conductive particles be 5 to 20% by volume in order to form a conductive path during pressure contact, and the hardness is preferably 20 to 55 (JIS-8tis). Examples of such pressure-sensitive conductive rubber plates include:
JSn PCR305-02 manufactured by Nippon Synthetic Rubber Co., Ltd. can be used.
なお、被測定物であるウェハAには、その下面にオーミ
ック電極A1が全面に蒸着などにより形成され、上面に
例えば第2図に示すように等ピッチで被測定電極として
ショットキー電極へ、が形成される。The wafer A, which is the object to be measured, has ohmic electrodes A1 formed on the entire surface by vapor deposition on the lower surface thereof, and Schottky electrodes as electrodes to be measured are formed on the upper surface at equal pitches as shown in FIG. It is formed.
かかるウェハAの特性を上述した電気的測定装置で測定
するに際しては、まず、ステージ1の上にオーミック電
極酷と端子板11とが接触するようにウェハAを載置す
る。そして、不図示のエアシリンダなどにより端子保持
板2を含み加圧板5を下降し、感圧導電性ゴム板3とウ
ェハAの表面とを当接させ加圧し、例えば端子保持板2
と感圧導電性ゴム板3との間5M Sが消失するまで加
圧し、これにより感圧導電性ゴム板3において測定用端
子群21とこれに対応するウェハAの被測定電極として
のショットキー電極へ、との間を感圧導電性ゴム板3を
介して電気的に接続する。このとき感圧導電性ゴム板に
加わる圧接力が、通常、5〜1000g/mm2.好ま
しくは10〜500g/mm2となるようにエアシリン
ダなどによる加圧力を調整する。圧]妾力が5g/mm
2未満であると測定を行うに必要な充分な導通状態が得
られず、1000g/mm2を越えると被測定電極ひい
てはウェハAに損傷を与えることとなる。When measuring the characteristics of the wafer A using the above-mentioned electrical measuring device, the wafer A is first placed on the stage 1 so that the ohmic electrodes and the terminal plate 11 are in contact with each other. Then, the pressure plate 5 including the terminal holding plate 2 is lowered using an air cylinder (not shown), and the pressure-sensitive conductive rubber plate 3 and the surface of the wafer A are brought into contact and pressurized.
Pressure is applied between the pressure-sensitive conductive rubber plate 3 and the pressure-sensitive conductive rubber plate 3 until 5M S disappears, and as a result, the measurement terminal group 21 on the pressure-sensitive conductive rubber plate 3 and the corresponding Schottky as the electrode to be measured on the wafer A are connected. An electrical connection is made between the electrode and the electrode via a pressure-sensitive conductive rubber plate 3. At this time, the pressing force applied to the pressure-sensitive conductive rubber plate is usually 5 to 1000 g/mm2. The pressure applied by an air cylinder or the like is preferably adjusted to 10 to 500 g/mm2. Pressure] Concubine force is 5g/mm
If it is less than 2, a sufficient conduction state necessary for measurement cannot be obtained, and if it exceeds 1000 g/mm2, the electrode to be measured and eventually the wafer A will be damaged.
かくて、上記圧接力を付与した状態でスキャナ6および
計測制御器7により、被測定電極群の中から所定の電極
を選択し、ウェハAの特定の電気的測定を行えばよい。Thus, with the pressure contact force applied, a predetermined electrode is selected from the group of electrodes to be measured using the scanner 6 and the measurement controller 7, and a specific electrical measurement of the wafer A is performed.
例えばウェハA表面に設けられた多数のMOS型半導体
のC−■特性およびC−を特性を測定する場合には、ウ
ェハA表面の被測定電極群と感圧導電性ゴム板を介して
電気的に接続された測定用端子群の中から1つの測定用
端子を選択し、ウェハAのオーミック電極酷と接触する
端子板11を共通電極どして測定を行う。この1つの測
定用端子の計測が終了したら、別測制御器に接続された
スキャナ6によって次の測定用端子に切換え、同様に測
定を行う。このようにして、ウェハA上の多数のMOS
型半導体について、測定用端子のウェハAからの離間、
移動および加圧を繰返して行うことなくスキャナ6によ
って測定用端子の切換えを行うのて、高速の測定を行う
ことができる。For example, when measuring the C-■ characteristics and C- characteristics of a large number of MOS type semiconductors provided on the surface of wafer A, the electrical One measuring terminal is selected from the group of measuring terminals connected to the wafer A, and the terminal plate 11 in contact with the ohmic electrode of the wafer A is used as a common electrode to perform measurement. When the measurement of this one measurement terminal is completed, the scanner 6 connected to the separate measurement controller switches to the next measurement terminal and performs the measurement in the same manner. In this way, a large number of MOS on wafer A
For type semiconductors, the distance of the measurement terminal from wafer A,
High-speed measurement can be performed by switching the measurement terminals using the scanner 6 without repeating movement and pressurization.
また、例えば四探針法を用いて測定する場合には、被測
定電極と感圧導電性ゴム板3を介して電気的に接続され
た測定用端子群21の中から4個以上の複数の測定用端
子を選び、これらの任意の2点間に電流を流し、少なく
とも他の2点間の電圧を測定する。その後、これらの電
極を切換え制御することにより、四探針法によるウェハ
の電気的測定を行うことができる。For example, when measuring using the four-probe method, four or more of the measurement terminals 21 electrically connected to the electrode to be measured via the pressure-sensitive conductive rubber plate 3 are Select measurement terminals, flow a current between any two of these points, and measure the voltage between at least two other points. Thereafter, by switching and controlling these electrodes, electrical measurement of the wafer can be performed using the four-probe method.
(実験例)第1図に示す如き測定装置を用いて、被測定用ウェハA
として第2図に示す如き被測定電極群を形成したPチャ
ンネルMO5型半導体を形成したシリコンウェハを用い
、電気的測定を行った。ショットキー電極へ、のピッチ
は3mm 、径は1.2mmとした。感圧導電性ゴム板
3として、日本合成ゴム■製JSRPCR305−02
を用い、端子保持板2には感圧導電性ゴム板3と当接す
る先端に金メツキを施した直径1.2mmの測定用端子
群21をショットキー電極へ、と対応する位置に形成し
、弾性板4としては市販の厚さ10mmの発泡ゴム板を
用いた。そして、ウェハのC−■特性、 C−を特性、
およびC−を特性から得られる緩和時間Tfの測定を行
い、それぞれ第3図、第4図および第5図の結果を得た
。(Experiment example) Using a measuring device as shown in Fig. 1, the wafer to be measured A
Electrical measurements were carried out using a silicon wafer on which a P-channel MO5 type semiconductor was formed, on which a group of electrodes to be measured were formed as shown in FIG. The pitch of the Schottky electrodes was 3 mm, and the diameter was 1.2 mm. As the pressure-sensitive conductive rubber plate 3, JSR PCR305-02 manufactured by Japan Synthetic Rubber ■
A measuring terminal group 21 having a diameter of 1.2 mm and having a gold-plated tip that contacts the pressure-sensitive conductive rubber plate 3 is formed on the terminal holding plate 2 at a position corresponding to the Schottky electrode. As the elastic plate 4, a commercially available foamed rubber plate with a thickness of 10 mm was used. Then, the C-■ characteristic of the wafer, C- is the characteristic,
The relaxation time Tf obtained from the characteristics of and C- was measured, and the results shown in FIGS. 3, 4, and 5, respectively, were obtained.
第3図は容量Cと゛電圧Vの関係を示し、MOSキャパ
シタの典型的なC−v特性が得られることがわかる。FIG. 3 shows the relationship between capacitance C and voltage V, and it can be seen that typical C-v characteristics of a MOS capacitor can be obtained.
第4図はMOSキャパシタにおける電圧パルス印加後の
容量Cの過渡応答特性を示す。緩和時間Tfは容fXc
が飽和値に達する時間tより求められる。FIG. 4 shows the transient response characteristics of the capacitance C of the MOS capacitor after the voltage pulse is applied. The relaxation time Tf is the relaxation time fXc
It is determined from the time t at which the saturation value is reached.
第5図は感圧導電性ゴム板を加圧する圧力と緩和時間T
fとの関係を示し、測定用端子の断面積あたりの圧接力
が20g/mm2以上で良好な測定か行えることがわか
る。Figure 5 shows the pressure applied to the pressure-sensitive conductive rubber plate and the relaxation time T.
The relationship with f is shown, and it can be seen that good measurements can be made when the pressure contact force per cross-sectional area of the measurement terminal is 20 g/mm2 or more.
第6図は第3図に示した測定結果をもとにしてMO5型
半導体のキャパシタンスの変化から小数キャリアの発生
ライフタイム(τg)および発生速度(Sg)の算出の
ためのゼルブスト解析を行った結果をボし、これから発
生ライフタイム(τg)−2,54μsecと、発生速
度(Sg)−0,228cm7secと求められ、従来
の金属性針状プローブを用いて測定し算出した発生ライ
フタイム(τg)−2,73μsec、発生速度(Sg
)−0,272cm/secと同等であった。Figure 6 shows Zerbst analysis for calculating the generation lifetime (τg) and generation rate (Sg) of minority carriers from changes in the capacitance of the MO5 type semiconductor based on the measurement results shown in Figure 3. From the results, generation lifetime (τg) -2.54 μsec and generation speed (Sg) -0.228cm7sec are determined, and the generation lifetime (τg) calculated by measuring using a conventional metal needle probe )-2,73 μsec, generation speed (Sg
)-0,272 cm/sec.
[発明の効果コ以上の説明から明らかなように、本発明にかかるウェハ
特性の電気的測定方法によれば、ウェハの損傷を伴うこ
となく、微細ピッチの被測定電極および多点の被測定電
極に対しても同時に測定用端子を配置して測定すること
ができる利点を有し、半導体集積回路の開発を容易にす
るとともに、−度に多点の測定が可能となり、半導体集
積回路の生産性を向上させることができる。また、本発
明にかかるウェハ特性の測定装置では、上述した方法を
実施する上で好適に用いられ、構造が簡単でコスト的に
有利である。[Effects of the Invention] As is clear from the above description, the method for electrically measuring wafer characteristics according to the present invention enables the measurement of electrodes to be measured at fine pitches and electrodes to be measured at multiple points without damaging the wafer. It has the advantage that measurement terminals can be placed and measured at the same time, making it easier to develop semiconductor integrated circuits, and making it possible to measure multiple points at once, increasing the productivity of semiconductor integrated circuits. can be improved. Further, the wafer characteristic measuring apparatus according to the present invention is suitably used in carrying out the above-described method, and has a simple structure and is advantageous in terms of cost.
第1図は本発明のウェハ特性の測定装置の一実施例を示
す断面図、第2図はウェハ上に設りられる被測定電極の一例を示す
配列パターン図、第3図はpチャンネルMO5型半導体を形成したシリコ
ンウェハのC−■特性の評価結果を示すグラフ、第4図は同じ< C−を特性の評価結果を示すグラ乙第5図は同じく圧力−緩和時間の関係測定結果を示すグ
ラフ、第6図は第3図の結果に基いてゼルブスト解析を行った
結果を示すグラフである。1・・・ステージ、2・・・端子保持板、3・・・感圧導電性ゴム板、4・・・弾性板、5・・・加圧板、6・・・スキャナ、7・・・計測制御器、21・・・測定用端子群、22・・・接続用端子群。Fig. 1 is a sectional view showing an embodiment of the wafer characteristic measuring device of the present invention, Fig. 2 is an arrangement pattern diagram showing an example of the electrodes to be measured provided on the wafer, and Fig. 3 is a p-channel MO5 type. A graph showing the evaluation results of the C-■ characteristics of a silicon wafer on which a semiconductor has been formed. Graph, Figure 6 is a graph showing the results of Zerbst analysis based on the results of Figure 3. 1... Stage, 2... Terminal holding plate, 3... Pressure sensitive conductive rubber plate, 4... Elastic plate, 5... Pressure plate, 6... Scanner, 7... Measurement Controller, 21... Measurement terminal group, 22... Connection terminal group.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7662889AJP2751353B2 (en) | 1989-03-30 | 1989-03-30 | Method and apparatus for electrically measuring wafer characteristics |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7662889AJP2751353B2 (en) | 1989-03-30 | 1989-03-30 | Method and apparatus for electrically measuring wafer characteristics |
| Publication Number | Publication Date |
|---|---|
| JPH02257071Atrue JPH02257071A (en) | 1990-10-17 |
| JP2751353B2 JP2751353B2 (en) | 1998-05-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7662889AExpired - Fee RelatedJP2751353B2 (en) | 1989-03-30 | 1989-03-30 | Method and apparatus for electrically measuring wafer characteristics |
| Country | Link |
|---|---|
| JP (1) | JP2751353B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04302448A (en)* | 1991-03-29 | 1992-10-26 | Tokyo Electron Ltd | Collective inspection method for semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04302448A (en)* | 1991-03-29 | 1992-10-26 | Tokyo Electron Ltd | Collective inspection method for semiconductor device |
| Publication number | Publication date |
|---|---|
| JP2751353B2 (en) | 1998-05-18 |
| Publication | Publication Date | Title |
|---|---|---|
| US7023231B2 (en) | Work function controlled probe for measuring properties of a semiconductor wafer and method of use thereof | |
| TW589462B (en) | Probe card for probing wafers with raised contact elements | |
| KR100965440B1 (en) | Computer-readable storage media storing test methods, test devices and programs | |
| US20030141883A1 (en) | Multiple contact vertical probe solution enabling kelvin connection benefits for conductive bump probing | |
| EP1637893B1 (en) | Method and apparatus for testing electrical characteristics of object under test | |
| WO2000010016A1 (en) | Contactor and production method for contactor | |
| US20200124664A1 (en) | Electrical test apparatus having adjustable contact pressure | |
| KR100319130B1 (en) | Fine cantilever probe for measuring electrical characteristics of semiconductor wafers | |
| JP2009139298A (en) | Probe card | |
| JPH0926446A (en) | Electric resistance measuring device | |
| JPH02257071A (en) | Method and device for electrical measurement for characteristic of wafer | |
| JP2751460B2 (en) | Resistance measuring device | |
| JPH1164386A (en) | Probe card device | |
| JPH04262551A (en) | Wafer testing method and semiconductor device tested thereby | |
| JPH08111438A (en) | Probe for integrated circuit element | |
| KR101657986B1 (en) | Contact Resistance Measuring Module of Thermal Device and Measuring Apparatus Having The Same | |
| JPH07211752A (en) | Probe for electronic circuit | |
| JPS5917259A (en) | Method for measuring semiconductor element | |
| JPH05206233A (en) | Aging equipment for semiconductor | |
| JPH04342150A (en) | Inspection of semiconductor device | |
| JP2010276359A (en) | Inspection jig for board inspection device | |
| CN101587134A (en) | Probe of vertical probe card | |
| JP2007265705A (en) | Anisotropic conductive connector and its application | |
| JPH03280444A (en) | Inspection method for individual semiconductor devices | |
| JPH06295942A (en) | Substrate inspecting instrument |
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090227 Year of fee payment:11 | |
| LAPS | Cancellation because of no payment of annual fees |