【発明の詳細な説明】〔産業の利用分野〕本発明は、フェノールオキシダーゼ産生、分泌能を有す
る白色腐朽菌〔特にアラゲカワラタケ(Coriolu
s hirsutus IFO 4917))のメッセ
ンジャーRNA (以下、mRNAと略す)由来のフェ
ノールオキシダーゼ遺伝子を発現ベクターに挿入してな
る組換えDNA、これにより形質転換された大腸菌形質
転換株、フェノールオキシダーゼを含む該菌株の培養物
、およびフェノールオキシダーゼの製造方法に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to the use of white rot fungi [particularly Coriolu
A recombinant DNA obtained by inserting a phenol oxidase gene derived from the messenger RNA (hereinafter abbreviated as mRNA) of S. hirsutus IFO 4917)) into an expression vector, an E. coli transformed strain transformed with the recombinant DNA, and the strain containing phenol oxidase. and a method for producing phenol oxidase.
フェノールオキシダーゼは分子状酸素の存在下でフェノ
ール類を酸化し、0−キノンあるいはp−キノンを生成
する酵素であり、補欠分子団として銅を含むことが知ら
れている。フェノールオキシダーゼは、動植物界に広く
分布しているが特に白色腐朽菌と呼ばれる一群の菌類の
生産するフェノールオキシダーゼは産業上有用であると
考えられる.白色腐朽菌は木材等のリグノセルロース物質中のリグニ
ンを分解する能力が高いことが知られており、この白色
腐朽菌をリグノセルロース物質に接種、培養し、リグニ
ンの一部を分解させパルプを製造するバイオロジカルパ
ルピングの試みがなされている(特開昭50−4690
3号)。しかし、白色腐朽菌はリグニンを分解するだけ
でなく、パルプの原料となるセルロースやヘミセルロー
スをも分解する能力を有しており、バルプ収率の低下と
いう問題点を持っている。また、白色腐朽菌のリグニン
分解が二次代謝的に生育後期に起こるため時間がかかる
という問題点もあった。Phenol oxidase is an enzyme that oxidizes phenols in the presence of molecular oxygen to produce 0-quinone or p-quinone, and is known to contain copper as a prosthetic group. Phenol oxidase is widely distributed in the animal and plant kingdoms, but phenol oxidase produced by a group of fungi called white-rot fungi is considered to be particularly useful industrially. White rot fungi are known to have a high ability to decompose lignin in lignocellulosic materials such as wood, and these white rot fungi are inoculated into lignocellulosic materials, cultured, and a portion of the lignin is decomposed to produce pulp. Attempts have been made to develop biological pulping (Japanese Patent Application Laid-Open No. 1983-4690).
No. 3). However, white rot fungi have the ability not only to decompose lignin but also to decompose cellulose and hemicellulose, which are raw materials for pulp, and have the problem of reducing pulp yield. Another problem was that the decomposition of lignin by white-rot fungi occurs late in growth due to secondary metabolism, so it takes time.
白色腐朽菌のリグニン分解力は、白色腐朽菌が生産分泌
するフェノールオキシダーゼによるものが大きいと考え
られており、その遺伝子をクローニングする試みも行な
われており、本発明者等は先にアラゲカワラタケのフェ
ノールオキシダーゼ遺伝子をイントロンを含む塩基配列
として染色体から単離し(特願昭63−175235号
)、またイントロンを含まないcDNAをmRNAから
単離したが(特願昭63−175236号)、これらに
おいて、ベクターは遺伝子のクローニングのために用い
られているものであり、アラゲカワラタケ以外の異種生
物においてフェノールオキシダーゼ遺伝子を発現した例
は見当らない。一方、白色腐朽菌のフェノールオキシダ
ーゼと類似の活性を持っているラッカーゼについては、
ノイロスボラ・クラッサ(Neuro−spora c
rassa)のラッカーゼ遺伝子のクローニング(U.
S.Germann+ K.Lerch;(1988)
J.Biol.Chew+.%i3. 885−596
)が報告されているが、そのアミノ酸配列はアラゲカワ
ラタケ由来のフェノールオキシダーゼのアミノ酸配列と
は異なるものであり、ノイロスポラ・クラッサのラッカ
ーゼによるリグニン分解についても、まだ報告されてい
ない。The lignin decomposition ability of white-rot fungi is thought to be largely due to the phenol oxidase produced and secreted by white-rot fungi, and attempts have been made to clone the gene for this. The phenol oxidase gene was isolated from chromosomes as a nucleotide sequence containing introns (Japanese Patent Application No. 175,235/1982), and cDNA without introns was isolated from mRNA (Japanese Patent Application No. 175,236/1980); Vectors are used for gene cloning, and there have been no examples of expression of the phenol oxidase gene in a heterologous organism other than C. versicolor. On the other hand, regarding laccase, which has similar activity to phenol oxidase of white rot fungi,
Neurospora crassa (Neuro-spora c
Cloning of the laccase gene of U. rassa)
S. German+K. (1988)
J. Biol. Chew+. %i3. 885-596
) has been reported, but its amino acid sequence is different from that of phenol oxidase derived from C. versicolor, and lignin degradation by Neurospora crassa laccase has not yet been reported.
[発明が解決しようとする課題]本発明は、前述の従来の問題点を解消し、フェノールオ
キシダーゼ遺伝子を白色腐朽菌以外の異種生物の発現ベ
クターに挿入し、フェノールオキシダーゼだけを生産す
る新規生物を提供することを目的とするものである。[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional problems, inserts the phenol oxidase gene into an expression vector of a heterologous organism other than white rot fungi, and creates a new organism that produces only phenol oxidase. The purpose is to provide
自然界におけるリグニンの住分解は、数種の酵素が関与
していると考えられているが白色腐朽菌が生産するフェ
ノールオキシダーゼはその中で中心的役割を果たすと考
えられており、リグニン分解の研究においても必須の酵
素となっている.したがって、リグニン分解能力だけを
効率的に発現する新規生物としてフェノールオキシダー
ゼ生産能力を付与した生物が望まれている。Several types of enzymes are thought to be involved in the biodegradation of lignin in nature, and phenol oxidase produced by white rot fungi is thought to play a central role. It is also an essential enzyme. Therefore, a novel organism that efficiently expresses only the ability to decompose lignin and is endowed with the ability to produce phenol oxidase is desired.
(l)〈フェノールオキシダーゼ遺伝子の調製〉本発明
において、発現ベクターに挿入されるフェノールオキシ
ダーゼ遺伝子は、例えば前記の特願昭63−17523
6号に記載したものであって、下記のアミノ酸配列をコ
ードするフェノールオキシダーゼ遺伝子(II)である
か、PheTrpTyrHisserHisLeuserT
hrGlnTyrl;ysAspLityLeuVal
AsnAspGln(但し、式中396xはProまたは^laを表わす。(l) <Preparation of phenol oxidase gene> In the present invention, the phenol oxidase gene inserted into the expression vector can be
6 and encodes the following amino acid sequence, or PheTrpTyrHisserHisLeuserT
hrGlnTyrl;ysAspLityLeuVal
AsnAspGln (However, in the formula, 396x represents Pro or ^la.
)あるいは、上記アミノ酸配列をコードするDNAにハ
イブリッドするDNA配列であって、天然、合成、もし
くは半合成によって得られるものであり、上記アミノ酸
配列をコードするDNA配列に対して、ヌクレオチドの
置換、ヌクレオチドの挿入及びヌクレオチド配列の逆位
その他の変異によって関連づけられており、かつ、フェ
ノールオキシダーゼ活性を有するポリベプチドをコード
するDNAからなるフェノールオキシダーゼ遺伝子であ
る。) or a DNA sequence that hybridizes to the DNA encoding the above amino acid sequence, which is obtained naturally, synthetically, or semi-synthetically, and which is a nucleotide substitution or nucleotide The phenoloxidase gene is related by insertions, inversions of the nucleotide sequence, and other mutations, and consists of DNA encoding a polypeptide having phenoloxidase activity.
さらに、具体的には、フェノールオキシダーゼ遺伝子(
II)が次式(OJ−POM5)Va I Va IA
rgSerA l aG 1ySerT hrVa l
1’yrAsnryrAs pAsnrroGCCA
TTGGGCCCACCGCTGACCTCACCAT
CTCCAATGCCGCGTCGGATTTGCGG
GTGGTATCAACTCGGCCATCCTGCG
Cまたは次式(OJ−POM2)GCCATTGGGCCCACCGCTGACCTCA
CCATCTCCAATGCCGCGTCGGATTT
GCGGGTGGTATCAACTCGGCCATCC
TGCGCのDNA配列を有するものが挙げられる。Furthermore, specifically, the phenol oxidase gene (
II) is the following formula (OJ-POM5) Va I Va IA
rgSerA l aG 1ySerT hrVa l
1'yrAsnryrAs pAsnrroGCCA
TTGGGCCCACCGCTGACCTCACCAT
CTCCAATGCCGCGTCGGATTTGCGG
GTGGTATCAACTCGGCCATCCTGCG
C or the following formula (OJ-POM2) GCCATTGGGCCCACCGCTGACCTCA
CCATCTCCAATGCCGCGTCGGATTT
GCGGGTGGTATCAACTCGGCCATCC
Examples include those having the DNA sequence of TGCGC.
TCGGTAACTACTGGATTCGCGCCAA
CCCCAACTTCGGCAAなお、フェノールオキ
シダーゼ遺伝子が(OJ−POM 5)である場合、上
記アミノ酸配列の390XはAlaとなり、また、フェ
ノールオキシダーゼ遺伝子が(OJ−POM 2)であ
る場合、上記アミノ酸配列の390xはPro となる
。TCGGTAACTACTGGATTCGCGCCAA
CCCCAAACTTCGGCAAIn addition, when the phenol oxidase gene is (OJ-POM 5), 390X of the above amino acid sequence becomes Ala, and when the phenol oxidase gene is (OJ-POM 2), 390X of the above amino acid sequence becomes Pro. Become.
(2) < 5 ’末端の非翻訳領域の除去〉クローニ
ングしたフェノールオキシダーゼ遺伝子(I[)を含む
プラスミドをもつ大腸菌形質転換株は寄託されており、
(OJ−POM2 ;微工研菌寄第10055号,OJ
−POM 5 ;微工研菌寄第10061号)、これら
のプラスミドはフェノールオキシダーゼの構造遺伝子以
外の領域を含む(第1図、第2図参照)。(2) <Removal of untranslated region at the 5'end> An E. coli transformed strain carrying a plasmid containing the cloned phenol oxidase gene (I[) has been deposited.
(OJ-POM2; Microtechnical Research Institute No. 10055, OJ
-POM 5 ; Microtechnical Research Institute No. 10061), these plasmids contain regions other than the structural gene of phenol oxidase (see Figures 1 and 2).
大腸菌等の異種微生物を用いて発現生産させる場合、で
きるだけタンパク質をコードしていない領域を取り除く
ことが好ましい。取り除く方法としてはエキソヌクレア
ーゼm (Henikoff,S,Gene,28,3
51−359. (1984) )やBAL31ヌクレ
アーゼ(Guo.L,−H.et al.Method
s in Enzys+ologL 100+ 60−
96(1983) 3などの修飾酵素で非翻訳領域を削
除する方法により除去することが出来る。When performing expression production using a heterologous microorganism such as E. coli, it is preferable to remove regions that do not encode proteins as much as possible. Exonuclease m (Henikoff, S. Gene, 28, 3
51-359. (1984) ) and BAL31 nuclease (Guo. L, -H. et al. Method
s in Enzys+ologL 100+ 60-
96 (1983) 3, etc., by deleting the untranslated region.
(3)<発現ベクターへの連結〉大lI!111発現ベクターとしては大腸菌ベクターC
oIEI,pMBl系などに発現に関与するプロモータ
ー領域を、その下流にタンパク質合成に関与するSD領
域を、さらに翻訳開始点ATGを含むもので、その下流
に幾つかの制限酵素サイトを持つものであればいずれも
用いることが出来るが、pKK223−3(ファルマシ
ア社製) 、pKK233−2 (ファルマシア社製)
、pPL−lambda (ファルマシア社製)等が
例示される.これらの大腸菌発現ベクターの翻訳開始点ATGの下流
の適当な制限酵素サイトを用いて、5゜末端の非翻訳領
域を除いたフェノールオキシダーゼ遺伝子を翻訳のフレ
ームが一致するように、ベクター側の制限酵素で切断し
たDNA断片およびリンカーDNAと連結し、フェノー
ルオキシダーゼ遺伝子に関する発現プラスミドを構築す
ることが出来る.(4)<大腸菌への導入〉上記の組換えプラスミドを導入する宿主大腸菌はいずれ
の株も用いることが出来るが、公知のK12株系HBI
OI株、JM109株、C 600株などが例示される
。(3) <Connection to expression vector> Big lI! 111 expression vector is E. coli vector C.
A promoter region involved in expression such as oIEI or pMBl system, an SD region involved in protein synthesis downstream thereof, a translation initiation point ATG, and several restriction enzyme sites downstream thereof. Either pKK223-3 (manufactured by Pharmacia) or pKK233-2 (manufactured by Pharmacia) can be used.
, pPL-lambda (manufactured by Pharmacia), etc. Using an appropriate restriction enzyme site downstream of the translation start point ATG of these E. coli expression vectors, the phenol oxidase gene, excluding the untranslated region at the 5° end, is inserted into the restriction enzyme on the vector side so that the translation frame matches. It is possible to construct an expression plasmid for the phenol oxidase gene by ligating the DNA fragment cut with and linker DNA. (4) <Introduction into E. coli> Any strain of E. coli can be used as the host E. coli into which the above recombinant plasmid is introduced, but the known K12 strain HBI
Examples include OI strain, JM109 strain, and C600 strain.
上記のプラスミドを宿主大腸菌に形質転換する方法は、
例えば塩化カルシウム法、塩化ルビジウム法(Mani
atisら、”Molecular Cloning+
A Laboratory Manual”(1982
))など既存の技術によって行なうことが出来る。形質
転換株の選抜は、各々の発現ベクターにある薬剤耐性な
どのマーカーを利用して行なうことが出来る。例えば発
現ベクターとしてpKK223−3,ρKK233−2
を用いる場合には、形質転換株をアンピシリンを含むL
B寒天培地上に塗布、培養することにより形質転換株を
選抜することが出来る。The method for transforming the above plasmid into host E. coli is as follows:
For example, calcium chloride method, rubidium chloride method (Mani
atis et al., “Molecular Cloning+
A Laboratory Manual” (1982
)). Selection of transformed strains can be performed using markers such as drug resistance included in each expression vector. For example, pKK223-3, ρKK233-2 as an expression vector.
When using L, the transformed strain is treated with L containing ampicillin.
Transformed strains can be selected by coating and culturing on B agar medium.
pKK233−2のTrcプロモーターの下流にフレー
ムがあうように旧ndI[Iリンカーを介してフェノー
ルオキシダーゼ遺伝子OJ−POM5の構造遺伝子をつ
ないで得られたpKKPO5で形質転換した大腸菌E.
coliJM109/pKKPO5は微生物工業技術研
究所に寄託した(寄託番号FERM P−10576
)。Escherichia coli E. coli was transformed with pKKPO5, which was obtained by ligating the structural gene of the phenol oxidase gene OJ-POM5 downstream of the Trc promoter of pKK233-2 through the old ndI[I linker so that it matched the frame.
coli JM109/pKKPO5 was deposited with the Microbial Technology Research Institute (deposit number FERM P-10576).
).
(5)〈フェノールオキシダーゼの生産〉上記のように
して得られたフェノールオキシダーゼ遺伝子(■)を含
む大腸菌の発現プラスミドで形質転換した大腸歯形質転
換株を大腸菌の生育可能な適当な培地で培養することに
より、その培養物中にフェノールオキシダーゼを多量に
産生ずることができた。更に培地に銅イオンを添加する
とフェノールオキシダーゼの生産量が増大する。(5) <Production of phenol oxidase> The colon tooth transformant strain transformed with the E. coli expression plasmid containing the phenol oxidase gene (■) obtained as above is cultured in an appropriate medium in which E. coli can grow. As a result, a large amount of phenol oxidase could be produced in the culture. Furthermore, addition of copper ions to the medium increases the amount of phenol oxidase produced.
pKK223−3. pKK233−2を用いる場合に
は培地中にイソプロビルーβ一D−チオガラクトシド等
の大腸菌ラクトースオペロンの誘導物質を培地に添加す
ることにより、生産量の増大が図られる。pKK223-3. When pKK233-2 is used, the production amount can be increased by adding an inducer of the Escherichia coli lactose operon, such as isoprobil-β-D-thiogalactoside, to the medium.
フェノールオキシダーゼ遺伝子にコードされるタンパク
質は、大腸菌の培養物を超音波処理またはフレンチプレ
ス処理などにより、細胞を破砕し、アラゲカワラタケの
フェノールオキシダーゼに対する抗体を用いて検出した
。この様にして得られたフェノールオキシダーゼは通常
活性が無いかまたは低いが、レドックス系など一般に行
なわれる巻戻し操作により活性のあるタンパク質を得る
ことが出来る。例えば6Mグアニジン塩酸に溶解後、2
Mグアニジン塩酸溶液とし、銅イオンを含む溶液中でグ
ルタチオン処理することによりフェノールオキシダーゼ
の活性を上昇せしめることができる。The protein encoded by the phenol oxidase gene was detected by disrupting the cells of an E. coli culture by sonication or French press treatment, and using an antibody against the phenol oxidase of C. versicolor. The phenol oxidase obtained in this way usually has no or low activity, but an active protein can be obtained by a commonly performed unwinding operation such as a redox system. For example, after dissolving in 6M guanidine hydrochloride, 2
The activity of phenol oxidase can be increased by treating it with glutathione in a solution containing M guanidine hydrochloride and copper ions.
以下、実施例により本発明をさらに詳細に説明するが、
下記の実施例は本発明を制限するものではない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The examples below do not limit the invention.
また、特に断わりがない限りT.Maniatis &
ε.F.Fri tschらのrMolecular
Cloning (1982)JおよびS.L.Ber
ger &^.R.Xis+a+elのr Metho
ds inEnzymology Vo1.152.(
1987) J等に記載されている実験操作に従って行
った。Also, unless otherwise specified, T. Maniatis &
ε. F. rMolecular of Fritsch et al.
Cloning (1982) J and S. L. Ber
ger &^. R. Xis+a+el's rMetho
ds inEnzymology Vol1.152. (
1987) according to the experimental procedure described in J. et al.
以下、実施例により本発明を詳細に説明する.〔実施例
〕(1) DNAプローブのADNAプローブの合成は、アミダイト法により、DNA
合成機(日本ゼオン.GenetA − m )を用い
て行なった.3種の白色腐朽菌〔アラゲカワラタケ(IFO 491
7).カワラタケ(IFO 30340),カイガラタ
ケ(IPO B714))から精製したフェノールオキ
シダーゼのN末端からのアミノ酸配列をエドマン分解法
で25段目まで分析した結果を次に示す。Hereinafter, the present invention will be explained in detail with reference to Examples. [Example] (1) DNA probe A The DNA probe was synthesized using the amidite method.
This was carried out using a synthesizer (Nippon Zeon GenetA-m). Three types of white rot fungi [IFO 491
7). The results of an analysis of the amino acid sequence from the N-terminus of phenol oxidase purified from C. versicolor (IFO 30340) and C. versicolor (IPO B714)) up to the 25th stage using the Edman degradation method are shown below.
カツラタケAla−^rg−Gln−Ala−Val−カイガラタ
ケAla−Arg−Gln−Ala−Val−上記配列の
17段目のProから25段目のVal に対応するよ
うに、次のDNAプロープを合成した。Katsuratake Ala-^rg-Gln-Ala-Val-Scale mushroom Ala-Arg-Gln-Ala-Val-The following DNA probes were synthesized to correspond to Pro at the 17th line to Val at the 25th line of the above sequence. .
但しIはデオキシイノシン。However, I is deoxyinosine.
また、3種の白色腐朽菌のフェノールオキシダーゼをB
rCNで分解し、逆相系高速液体クロマトグラフィー〔
溶出条件,カラム: Phenyl−5PW RP(東
洋ソーダ社製), 溶出液20%アセトニトリル/0.
l%TFAから75%アセトリトリル/0.1%TF^
への濃度勾配溶出,室温〕で分離したポリペプチドのア
ミノ酸配列をエドマン分解法で分析した結果を次に示す
。In addition, B
Decomposition with rCN and reverse phase high performance liquid chromatography [
Elution conditions, column: Phenyl-5PW RP (manufactured by Toyo Soda Co., Ltd.), eluent 20% acetonitrile/0.
1% TFA to 75% acetotrile/0.1% TF^
The amino acid sequence of the polypeptide separated by concentration gradient elution at room temperature was analyzed using the Edman degradation method.The results are shown below.
アラゲカ15タケ Met−Ala−Phe−A
sn−Pheカワラタケ Met−Ala
−Phe−Asn−Pheカイiラタケ M
et−Ala−Phe−Asn−Phe上記アミノ酸配
列に対応するように次のDNAプローブを合成した。Arageka 15 Bamboo Met-Ala-Phe-A
sn-Phe Versicolor Met-Ala
-Phe-Asn-Phe Chiratake M
et-Ala-Phe-Asn-Phe The following DNA probe was synthesized to correspond to the above amino acid sequence.
GG(;I;以上の結果から白色腐朽菌が生産、分泌するフェノール
オキシダーゼのアミノ酸配列の相同性は非常に高く、本
発明で使用するDNAプローブを用いることにより、い
かなる白色腐朽菌のフェノールオキシダーゼ遺伝子(I
I)をもクローニングすることができる.したがって以
下の実施例では、アラゲカワラタケのフェノールオキシ
ダーゼ遺伝子(n)のクローニング方法について説明す
る。GG(;I; From the above results, the homology of the amino acid sequences of phenol oxidase produced and secreted by white rot fungi is very high. By using the DNA probe used in the present invention, it is possible to identify the phenol oxidase gene of any white rot fungi. (I
I) can also be cloned. Therefore, in the following example, a method for cloning the phenol oxidase gene (n) of C. versicolor will be described.
(2)且K八夏坦袈アラゲカワラタケ(IFO 4917)を11のYPD
培地(酵母エキス10g/ l ,ポリペプトン20g
/ l ,グルコース20g/ ft )が入った5l
容三角フラスコに植菌し、27℃,6日間振盪培養した
.培養液中にフェノールオキシダーゼを生産,分泌して
いることを確認した後、集菌し、液体窒素中で凍結した
結果、約20gの凍結菌体を得た。(2) And K. Yasatsudankesa Aragekawaratake (IFO 4917) with 11 YPD
Medium (yeast extract 10g/l, polypeptone 20g
/l, glucose 20g/ft)
The cells were inoculated into an Erlenmeyer flask and cultured with shaking at 27°C for 6 days. After confirming that phenol oxidase was produced and secreted in the culture solution, the bacteria were collected and frozen in liquid nitrogen, resulting in approximately 20 g of frozen bacterial cells.
Broda等の方法により、凍結菌体5gから11■の
全RNAを抽出した.凍結菌体5gを液体窒素を加えた
100−のりーリングブレンダーで破砕し、3倍量のT
NS緩衝液C1%tri−iso−Propylnap
hthalene sulphonic acid,
200mM Tris−HCI, 25mMEGT
A (pH7.8),250mM NaC1 )に溶か
した。遠心分離によりペレットを除き、上清lmAにつ
き、0.5gのフェノールを加え、5〜15℃に保ち溶
解した。全てのフェノールが溶けたら%量のクロロホル
ムを加え、遠心分離後、上清を回収し、クロロホルムで
2回抽出した後、エタノール沈澱により全RNA11m
gを回収した。11 μg of total RNA was extracted from 5 g of frozen bacterial cells by the method of Broda et al. Crush 5 g of frozen bacterial cells with a 100-ml ring blender containing liquid nitrogen, and add 3 times the amount of T.
NS buffer C1% tri-iso-Propylnap
hthalene sulfonic acid,
200mM Tris-HCI, 25mMEGT
A (pH 7.8), 250mM NaCl). The pellet was removed by centrifugation, and 0.5 g of phenol was added to each supernatant lmA, and the mixture was maintained at 5 to 15°C to dissolve. When all the phenol has dissolved, add 1% chloroform, centrifuge, collect the supernatant, extract twice with chloroform, and precipitate with ethanol to obtain 11 m of total RNA.
g was collected.
また、市販のRNA抽出キット〔アマシャム・ジャパン
■社製〕を用いた場合は、3gの凍結菌体から6.7■
の全RNAを抽出することができた.上述の2方法で回
収した全RNAは、フェノールオキシダーゼのDNAプ
ロープによるノーザン・フ゛口・冫ト・ハイフ゛リダイ
ゼーション法(Tho−vas.P.S.,Proc.
Natl.Acad.Sci.USA 77. 520
1 (1980))により、フェノールオキシダーゼ遺
伝子(II)由来のRNAを含むことを確認した。In addition, when using a commercially available RNA extraction kit (manufactured by Amersham Japan), 6.7 μg was extracted from 3 g of frozen bacterial cells.
We were able to extract the total RNA of. The total RNA recovered by the above two methods was subjected to Northern PCR using a phenoloxidase DNA probe (Tho-vas.P.S., Proc.
Natl. Acad. Sci. USA 77. 520
1 (1980)), it was confirmed that it contained RNA derived from the phenol oxidase gene (II).
全RNA5■からオリゴ(dT)セルロース力ラムを使
用するManiatis等の方法[ (Maniati
s他編,Mole−cular Cloning,A
LaboraLry Manual+ 197〜199
(19B2))を用いてポリ (八)mRNAの分離
・精製を行ない、約100μgのポリ (A) m R
N Aを精製した.実施例3(3)又旦N人夏金底白色腐朽菌アラゲカワラタケ由来ポリ (A) m R
NAよりcDNAの合成は、GublerとHoffm
anの方法(U.Gubier & B.J.lIof
fman ; Gene,25,263〜269(19
83) 参照)に従い、アマシャム・ジャパン製cDN
A合成キットを用いておこなった。The method of Maniatis et al. [(Maniati
Edited by S et al., Mole-cular Cloning, A
LaboraLry Manual+ 197-199
(19B2)) was used to separate and purify poly(8)mRNA, and about 100 μg of poly(A)mR
NA was purified. Example 3 (3) Poly (A) m R derived from the white rot fungus Arage kawaratake
Synthesis of cDNA from NA is performed by Gubler and Hoffm.
The method of an (U. Guvier & B.J. lIof
fman; Gene, 25, 263-269 (19
cDNA manufactured by Amersham Japan according to
A synthesis kit was used.
5μgのポリ (A)mRNAに50ユニットのヒト胎
児由来RNase阻害酵素(HPRI)の存在下5μg
のオリゴ(dT) 12〜18(ファルマシア社製27
−785801)を加え100ユニットの逆転写酵素を
42゜Cで1.5時間反応させて約30%の収率で1本
鎖cDNAを合成した.この反応液に4ユニットの大腸
菌リボヌクレアーゼHと115ユニットの大腸菌DNA
ポリメラーゼ■を加え12゜Cで1時間,22゜Cで1
時間反応させた後70゜Cで10分間放置して酵素を失
活させた.その後10ユニットのT4DNAポリメラ−
ゼを加え37゜Cで10分間反応させて、約95%の収
率で2本鎖cDNAを得た。5 μg of poly(A) mRNA in the presence of 50 units of human fetal RNase inhibitor enzyme (HPRI)
Oligo (dT) 12-18 (27 manufactured by Pharmacia)
-785801) and reacted with 100 units of reverse transcriptase at 42°C for 1.5 hours to synthesize single-stranded cDNA with a yield of about 30%. Add 4 units of E. coli ribonuclease H and 115 units of E. coli DNA to this reaction solution.
Add polymerase■ and incubate at 12°C for 1 hour, then at 22°C for 1 hour.
After reacting for an hour, the mixture was left at 70°C for 10 minutes to inactivate the enzyme. Then 10 units of T4 DNA polymer
A double-stranded cDNA was obtained with a yield of about 95%.
(4) c D N A−イブー奪−の市販のλgt
llクローニングシステム〔アマシャム・ジャパン■社
製〕を用いて、cDNAライブラリーを構築した.100μgの2本鎖cDNAを20ユニットのEcoR
Iメチラーゼを37゜Cで1時間反応させた後、Eco
RIリンカーを結合させた。これに16ユニフトのEc
oRIを加え37゜Cで2時間反応させた後、Seph
arose CL4Bカラムを通し、純化した。λgt
llアーム1μgとの連結反応後、in vitroパ
ッケージング(A.Becker & M.Gol
dHProc.Natl,八cad.Sci.USA+
72+581 (1975)参照〕を行ない、10
6個の組換え体λファージを得て、アラゲカワラタケの
mRNA由来のcDNAライブラリーとした.(5)フェノールオキシ ーゼ ■)のクローニ
ング実施例4で得られたアラゲカワラタケのmRNA由来の
cDNAライブラリーを大腸菌Y1090株に感染させ
、プラークを形成させた。(4) Commercially available λgt of cDNA-Ibuu
A cDNA library was constructed using the ll cloning system (manufactured by Amersham Japan). 100 μg of double-stranded cDNA was added to 20 units of EcoR.
After reacting I methylase at 37°C for 1 hour,
A RI linker was attached. In addition to this, 16 units of Ec
After adding oRI and reacting at 37°C for 2 hours, Seph
It was purified by passing through an arose CL4B column. λgt
After ligation reaction with 1 μg of ll arm, in vitro packaging (A. Becker & M. Gol
dHProc. Natl, 8 cad. Sci. USA+
72+581 (1975)] and 10
Six recombinant λ phages were obtained and used as a cDNA library derived from mRNA of C. versicolor. (5) Cloning of phenoloxise ①) The cDNA library derived from the mRNA of C. versicolor obtained in Example 4 was infected with E. coli strain Y1090 to form plaques.
フェノールオキシダーゼ遺伝子(II)を含むクローン
は、放射性同位元素〔γノ”P)ATP〔アマシャム・
ジャパン■社製PB10168 )とT4ボリヌクレオ
チドキナーゼ〔宝酒造■社製202LA〕を用いて標識
化(Richardson, C.C.(1965)+
Proc.Natl.Acad.Sci.U.S.A
., 54,158〜161参照〕した実施例1の合成
DNAプローブを用いてBen tonとDavisの
プラークハイプリダイゼーション法〔W.D.Bent
on & R.W. Davis; Science.
196 180(1977)参照〕に従って2種の
クローンを選別した。The clone containing the phenol oxidase gene (II) was isolated from the radioactive isotope [γ-P)ATP [Amersham.
Labeling (Richardson, C.C. (1965) +
Proc. Natl. Acad. Sci. U. S. A
.. The plaque hybridization method of Benton and Davis [W. D. Bent
on & R. W. Davis; Science.
196 180 (1977)], two types of clones were selected.
フェノールオキシダーゼ遺伝子(II)を含むλg t
llファージからのDNAの精製は、ThomasとD
avisの方法[M.Thomas & R,W.Da
vis ; Journalof Molecular
Biology+ 91,315(1974)参照〕
により行なった。λg t containing phenol oxidase gene (II)
Purification of DNA from phage was performed by Thomas and D.
avis method [M. Thomas & R.W. Da
vis; Journal of Molecular
See Biology+ 91, 315 (1974)]
This was done by
(5)で得られたフェノールオキシダーゼ遺伝子(n)
を含む2クローンλgtllDNAを5μg用いて、制
限酵素EcoRI (宝酒造製)10ユニットで37℃
、2時間消化し、フェノールオキシダーゼ遺伝子(II
)を含む領域1.9kbの断片をDNAセル(第−化学
薬品製)を用いて回収した。該D N A断片を大腸菌
プラスミドベクターpUc19またはpUc118のE
coRI サイトに挿入した。Phenoloxidase gene (n) obtained in (5)
Using 5 μg of 2 clones λgtll DNA containing
, digested for 2 hours, and extracted the phenol oxidase gene (II
) was recovered using a DNA cell (manufactured by Dai-Kyakuyaku). The DNA fragment was inserted into E. coli plasmid vector pUc19 or pUc118.
inserted into the coRI site.
pUc19にサブクローニングしたクローンをOJ−P
OM 5とし、plJc118にサブクローニングした
クローンをOJ−POM 2として、それぞれ微生物工
業技術研究所に寄託した(OJ−POM 2;微工研菌
寄第10055号、OJ−POM 5;微工研菌寄第1
0061号)。The clone subcloned into pUc19 was transferred to OJ-P.
The clone subcloned into OM 5 and plJc118 was named OJ-POM 2 and deposited with the National Institute of Microbial Technology (OJ-POM 2; Microbiological Research Institute No. 10055; OJ-POM 5; Microbiological Research Institute). 1st
No. 0061).
また、得られ′たプラスミドをpUcPO2(OJ−P
OM 2)、pUcPO5(OJ−POM 5)とした
。In addition, the obtained plasmid was pUcPO2 (OJ-P
OM 2) and pUcPO5 (OJ-POM 5).
それぞれの塩基配列および翻訳されてできるフェノール
オキシダーゼのアミノ酸配列を第1図(OJ−POM
5)、第2図(OJ−POM 2)ニ示した。The respective base sequences and the translated amino acid sequence of phenol oxidase are shown in Figure 1 (OJ-POM
5), as shown in Figure 2 (OJ-POM 2).
(7)非皿訳皿菫■徐去(6)で得られたプラスミドpUcPO5、10μgを
、制限酵素BamHI[0ユニット)およびPstl(
10ユニット)(宝酒造製)で、37゜C、2時間消化
し、エタノ?ル沈澱により塩などの不純物を除去した。(7) 10 μg of the plasmid pUcPO5 obtained in (6) was added to the restriction enzyme BamHI [0 units] and Pstl (
10 units) (manufactured by Takara Shuzo) at 37°C for 2 hours and digested with ethano? Impurities such as salts were removed by precipitation.
得られた沈澱物をエキソヌクレアーゼ■緩衝液(50m
MTris−HCI (pH8.0). 100mM
NaCl. 5mM MgC1z,10mM 2−メ
ルカプトエタノール)100tIfに溶解し、エキソヌ
クレアーゼ■(宝酒造製)180ユニット添加し、37
゜Cに保温した。20秒毎に10ulずつサンプリング
し、100ufのMung−beanヌクレアーゼ緩衝
液(40mM Na−acetate (pH4.5L
. loomM NaC1.2mM ZnC1z+ t
o%Glycerof)に順次加えてエキソヌクレアー
ゼ■の反応を停止させた。サンプリングがすべて終了し
た後、65゛Cで10分間熱失活を行った.37゜Cで
保温し、Mung−beanヌクレアーゼ(宝酒造製)
25ユニットを加え、30分間放置した後、フェノール
処理し、Mung−beanヌクレアーゼ失活させた後
、エタノール沈澱を行った。沈澱物を50,zfのKl
eno−緩衝液(7sM Tris−HCI (pH7
.5).0.1mM HDTA. 20s+M
NaC1.7a+M MgCl■ dATP, d
GTP,dCTP, dTTP各々0.1mM)に溶解
し、Klenow−enzyme(宝酒造製)2ユニッ
トを加え、37゜Cで15分間保温した.2.5倍量の
エタノールを加え遠心して、沈澱を回収し、沈澱物を4
0ttl!のTE緩衝液(10mM Tris−HCI
(p H8.0), 1mM EDTA)に溶解した
。The obtained precipitate was diluted with exonuclease ■ buffer (50 m
MTris-HCI (pH 8.0). 100mM
NaCl. Dissolve in 100tIf of 5mM MgC1z, 10mM 2-mercaptoethanol, add 180 units of exonuclease (manufactured by Takara Shuzo),
It was kept warm at °C. Sample 10ul every 20 seconds and add 100uf of Mung-bean nuclease buffer (40mM Na-acetate (pH 4.5L)
.. roomM NaC1.2mM ZnC1z+t
% Glycerof) to stop the exonuclease reaction. After all sampling was completed, heat inactivation was performed at 65°C for 10 minutes. Insulate at 37°C and incubate with Mung-bean nuclease (Takara Shuzo).
After adding 25 units and leaving the mixture for 30 minutes, it was treated with phenol to inactivate Mung-bean nuclease, and then ethanol precipitated. The precipitate was heated to 50, zf Kl.
eno-buffer (7sM Tris-HCI (pH 7)
.. 5). 0.1mM HDTA. 20s+M
NaC1.7a+M MgCl■ dATP, d
GTP, dCTP, and dTTP (0.1 mM each) were added, 2 units of Klenow-enzyme (manufactured by Takara Shuzo) were added, and the mixture was incubated at 37°C for 15 minutes. Add 2.5 times the volume of ethanol and centrifuge to collect the precipitate.
0ttl! of TE buffer (10mM Tris-HCI
(pH 8.0), 1mM EDTA).
そのうち5μ!を用いてライゲーシッン反応を16゜C
,一晩行ない、大腸菌JM109に形質転換を行った.
得られた大腸菌形質転換株のうちプラスミドの大きさが
やや短くなっている1GクローンをLB培地(Bact
o−trypton 1%, Bacto−Yeast
−extractO.5%. NaC1 1%)で37
゜C.一晩、培養し常法のアルカリ抽出により、組換え
DNAプラスミドを調製した。5゛上流の非翻訳領域約
50塩基が除去された組換えDNAの塩基配列を、ダイ
デオキシ法により決定した。5μ of that! The ligation reaction was carried out at 16°C using
, and transformed into E. coli JM109 overnight.
Among the E. coli transformants obtained, a 1G clone with a slightly shorter plasmid size was cultured in LB medium (Bact
o-trypton 1%, Bacto-Yeast
-extractO. 5%. 37 with NaC1 1%)
゜C. After culturing overnight, a recombinant DNA plasmid was prepared by conventional alkaline extraction. The base sequence of the recombinant DNA from which approximately 50 bases of the untranslated region upstream of the DNA were removed was determined by the dideoxy method.
16クローンのうち1クローンの塩基配列は、第4図に
示す通りであって、発現ベクターpKK233−2のβ
−ガラクトシダーゼ遺伝子の開始コドンからのフレーム
が、フェノールオキシダーゼのフレームと一致するもの
であった。The nucleotide sequence of one clone among the 16 clones is as shown in FIG.
- The frame from the start codon of the galactosidase gene matched the frame of phenol oxidase.
(8) に るDNA の(7)で得られ
た組換え体DN・Aブラスミド10μgをlOユニット
のEcoRIで切断し、エタノール沈澱により得られる
沈澱物をXleno一緩衝液100μlに溶解した。2
ユニットのKlenow−enzymeを加え、37゜
Cで30分反応し、フェノールークロロホルムで反応を
停止した.エタノール沈澱によりDNAを回収し沈澱物
を10χ74DNAリガーゼ緩衝液5ulに溶解した.
次にg overのtlindll!リンカー(宝酒造
製)1μgを含むように加え、さらに5μiのT4DN
Aリガーゼ(1.500ユニット)を加えた後、滅菌蒸
留水を加えて50μlとし16゜Cで1晩反応させた。(8) 10 μg of the recombinant DNA/A plasmid obtained in step (7) was digested with 10 units of EcoRI, and the precipitate obtained by ethanol precipitation was dissolved in 100 μl of Xleno buffer. 2
A unit of Klenow-enzyme was added, the reaction was carried out at 37°C for 30 minutes, and the reaction was stopped with phenol-chloroform. DNA was recovered by ethanol precipitation, and the precipitate was dissolved in 5 ul of 10x74 DNA ligase buffer.
Next up is tryndll! Added 1 μg of linker (manufactured by Takara Shuzo) and further added 5 μi of T4DN.
After adding A ligase (1.500 units), sterile distilled water was added to make 50 μl, and the mixture was reacted overnight at 16°C.
つぎに、lO×旧ndlll緩衝液10μ2及び10ユ
ニットの旧nd (宝酒造製)を加え滅菌蒸留水を加え
て100μ2とし37゜Cで2時間切断した。Next, 10 .mu.2 of 10.times.old ndlll buffer and 10 units of old nd (manufactured by Takara Shuzo) were added, and sterilized distilled water was added to make the volume 100 .mu.2, followed by cutting at 37.degree. C. for 2 hours.
その後アガロースゲル電気泳動により目的とするDNA
断片約1.8kbを得た.これを断片−1とする(第3
図).(9) ベ ーの大腸菌発現ベ
クターpKK233−2(ファルマシア製)5μgを含
む旧ndl[[5衝液にIOUの旧ndll[(宝酒造
製)を加えて37゜Cで2時間切断した。その後、アル
カリ・フォスファターゼ(E.coli C75)(宝
酒造製)を0.5U加え、65゜Cで30分反応し、フ
ェノールークロロホルムにより反応を停止し、エタノー
ル沈澱によりベクターDNAを精製した。これを断片−
2とする。つぎに、(8)で得られた断片一lと断片−
2とをT4DNAリガーゼを用いて連結し、フェノール
オキシダーゼに関する発現プラスミドpKKPO5を構
築した(第4図)。この組換えプラスミドを大腸菌JM
109株にカルシウム法により導入し、目的とする形質
転換株を得た。該形質転換体は微生物工業技術研究所に
寄託した(微工研菌寄第10576号)。Then, target DNA is extracted by agarose gel electrophoresis.
A fragment of approximately 1.8 kb was obtained. Let this be Fragment-1 (3rd
figure). (9) IOU of old ndll (manufactured by Takara Shuzo) was added to a solution containing 5 μg of the E. coli expression vector pKK233-2 (manufactured by Pharmacia) and cleaved at 37°C for 2 hours. Thereafter, 0.5 U of alkaline phosphatase (E. coli C75) (manufactured by Takara Shuzo) was added, the reaction was carried out at 65°C for 30 minutes, the reaction was stopped with phenol-chloroform, and the vector DNA was purified by ethanol precipitation. A fragment of this-
Set it to 2. Next, fragment 1 obtained in (8) and fragment -
2 was ligated with T4 DNA ligase to construct an expression plasmid pKKPO5 for phenol oxidase (Fig. 4). This recombinant plasmid was transferred to E. coli JM
It was introduced into strain 109 by the calcium method to obtain the desired transformed strain. The transformant was deposited with the Institute of Microbial Technology (Feikoken Bacterium No. 10576).
00)フェノールオキシ ーゼの(9)で得られた形質転換株1白金耳をLB培地2dに
接種して、37゜Cで1晩振盪培養し、100−の1m
Mの塩化第二銅を含むLB培地に該前培養液をIIn1
加え、37゜Cで培養を行い、対数後期に、最終濃度1
mMになるようにイソプロピルーβ一D−チオガラクト
シド(IPTG)を添加し、酵素生産を誘導した.
IPTG添加6時間後に菌体を集菌して、超音波破砕に
より全タンパク質試料を調製した.この全タンパク質試
料を用いてSOS−PAGEを行い、ニトロセルロース
フィルター(アマシャム社製Hybond−C)にトラ
ンスファーした.さらにアマシャム社製プロテイング検
出キットを用いて抗フェノールオキシダーゼウサギ血清
で検出した。アミノ酸配列より推定される分子量53,
000とほぼ一致する大きさのバンドが検出され、フェ
ノールオキシダーゼ遺伝子(■)にコードされるタンパ
ク質の生産が確められた。00) A platinum loop of the transformed strain 1 obtained in (9) of phenoloxise was inoculated into 2 d of LB medium, cultured overnight at 37°C with shaking, and 1 m of 100-
The preculture solution was transferred to LB medium containing cupric chloride of M.IIn1.
In addition, culture was carried out at 37°C, and at the late logarithmic stage, a final concentration of 1
Isopropyl-β-D-thiogalactoside (IPTG) was added at a concentration of mM to induce enzyme production.
Six hours after IPTG addition, the bacterial cells were collected and a total protein sample was prepared by ultrasonic disruption. SOS-PAGE was performed using this total protein sample and transferred to a nitrocellulose filter (Hybond-C manufactured by Amersham). Further, detection was performed using anti-phenol oxidase rabbit serum using a protein detection kit manufactured by Amersham. Molecular weight estimated from the amino acid sequence: 53,
A band with a size almost identical to 000 was detected, confirming the production of a protein encoded by the phenol oxidase gene (■).
puc PO2ニツuNてもpuc PO5と同様に上
記(7)〜00)を行ない、フェノールオキシダーゼ遺
伝子(旧(OJ−POM 2)にコードされるタンパク
質の生産を確かめた.〔発明の効果〕本発明においては、白色腐朽菌由来のフェノールオキシ
ダーゼ遺伝子を白色腐朽菌以外の異種生物に発現せしめ
たことにより、本発明の形質転換株はセルラーゼ、ヘミ
セルラーゼが混入することなくフェノールオキシダーゼ
のみを生圧丁ることができる.したがって、フェノール
オキシダーゼを含むその培養物はパルプ収率の低下をま
ねくことなくバイオロジカルパルビング、工場廃水の脱
色、木材糖化の前処理に利用でき、木材糖化の前処理に
利用できるものである.The above (7) to 00) were carried out for puc PO2 Nitsu uN in the same manner as for puc PO5, and the production of the protein encoded by the phenol oxidase gene (formerly (OJ-POM 2)) was confirmed. [Effects of the Invention] The present invention By expressing the phenol oxidase gene derived from white-rot fungi in a heterologous organism other than white-rot fungi, the transformed strain of the present invention can produce only phenol oxidase without contamination with cellulase or hemicellulase. Therefore, its culture containing phenol oxidase can be used for biological pulping, decolorization of industrial wastewater, and pretreatment of wood saccharification without causing a decrease in pulp yield; It is something.
第1図,第2図は、それぞれpUc PO5, puc
PO2のアラゲカワラヌケフェノールオキシダーゼ遺
伝子■の塩基配列および翻訳されてできると考えられる
アミノ酸配列を示す図である。図中、一・・一−・−・
−↓は発現ベクターに組み込む際、エキソヌクレアーゼ
で除去した部分を示す.第3図はフェノールオキシダー
ゼ遺伝子を含む断片−1の作成工程を示す図である。第
4図はフェノールオキシダーゼ遺伝子に関する発現ベク
ターの構築工程及びその連結部位の塩基配列とアミノ酸
配列を示す図である。Glr+AlaTrps*rAspLeucysPro
IleTyrAspAlaLeuAspyalAsn+
LspGlnzxz第図1laAgpGlylllsA*pLeuThrl I
slleGIuValAgp5sr11eAsn5er
GlnProLeuValVi1▲sp5arlleG
InllePhe▲laAIm第図(3)G laA IaTrpSerAspLauCysPr
a I I eTWrAspA laLeuAsp V
a lAmnAsp(i +獅嘯■■第図第図Figures 1 and 2 show pUc PO5 and puc, respectively.
FIG. 2 is a diagram showing the nucleotide sequence and the amino acid sequence thought to be produced by translation of the PO2 Arugae nigra phenol oxidase gene (2). In the figure, 1・・1−・−・
−↓ indicates the part removed with exonuclease when integrating into the expression vector. FIG. 3 is a diagram showing the steps for creating fragment-1 containing the phenol oxidase gene. FIG. 4 is a diagram showing the steps for constructing an expression vector for the phenol oxidase gene and the nucleotide sequence and amino acid sequence of its connection site. Glr+AlaTrps*rAspLeucysPro
IleTyrAspAlaLeuAspyalAsn+
LspGlnzxzFigure 1laAgpGlyllsA*pLeuThrl I
slleGIuValAgp5sr11eAsn5er
GlnProLeuValVi1▲sp5arlleG
InllePhe▲laAImFigure (3) G laA IaTrpSerAspLauCysPr
a I I eTWrAspA laLeuAsp V
a lAmnAsp(i + shi嘯■■ Figure Figure Figure
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5795289AJPH02238885A (en) | 1989-03-13 | 1989-03-13 | Phenol oxidase genetically recombinant DNA, microorganisms transformed with the recombinant DNA, culture thereof, and method for producing phenol oxidase |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5795289AJPH02238885A (en) | 1989-03-13 | 1989-03-13 | Phenol oxidase genetically recombinant DNA, microorganisms transformed with the recombinant DNA, culture thereof, and method for producing phenol oxidase |
| Publication Number | Publication Date |
|---|---|
| JPH02238885Atrue JPH02238885A (en) | 1990-09-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5795289APendingJPH02238885A (en) | 1989-03-13 | 1989-03-13 | Phenol oxidase genetically recombinant DNA, microorganisms transformed with the recombinant DNA, culture thereof, and method for producing phenol oxidase |
| Country | Link |
|---|---|
| JP (1) | JPH02238885A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6169065B1 (en) | 1997-09-08 | 2001-01-02 | Lever Brothers Company Division Of Conopco Company | Method for the activity of an enzyme |
| US6702863B1 (en) | 1999-06-22 | 2004-03-09 | Lion Corporation | Hairdye composition |
| WO2005005646A2 (en) | 2003-06-10 | 2005-01-20 | Novozymes North America, Inc. | Fermentation processes and compositions |
| WO2005042735A1 (en) | 2003-10-30 | 2005-05-12 | Novozymes A/S | Carbohydrate-binding modules of a new family |
| WO2005067531A2 (en) | 2004-01-16 | 2005-07-28 | Novozymes Inc. | Methods for degrading lignocellulosic materials |
| WO2005074647A2 (en) | 2004-01-30 | 2005-08-18 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
| WO2005100582A2 (en) | 2004-03-25 | 2005-10-27 | Novozymes Inc. | Methods for degrading or converting plant cell wall polysaccharides |
| WO2007015854A1 (en) | 2005-07-20 | 2007-02-08 | Novozymes A/S | Method for producing a soy protein product |
| WO2008134259A1 (en) | 2007-04-24 | 2008-11-06 | Novozymes North America, Inc. | Detoxifying pre-treated lignocellulose-containing materials |
| WO2010075402A1 (en) | 2008-12-24 | 2010-07-01 | Danisco Us Inc. | Laccases and methods of use thereof at low temperature |
| WO2010089598A1 (en) | 2009-02-05 | 2010-08-12 | Danisco A/S | Composition |
| EP2258836A1 (en) | 2004-09-10 | 2010-12-08 | Novozymes North America, Inc. | Methods for preventing, removing, reducing, or disrupting biofilm |
| WO2011025861A1 (en) | 2009-08-27 | 2011-03-03 | Danisco Us Inc. | Combined textile abrading and color modification |
| JP2011045302A (en)* | 2009-08-27 | 2011-03-10 | Gekkeikan Sake Co Ltd | Microorganism enzyme preparation and method for producing the same |
| EP2295545A1 (en) | 2002-09-26 | 2011-03-16 | Novozymes North America, Inc. | Fermentation methods and compositions |
| EP2385110A2 (en) | 2005-09-30 | 2011-11-09 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
| WO2011138366A1 (en) | 2010-05-05 | 2011-11-10 | Basf Se | Fibrous composition for paper and card production |
| US8093016B2 (en) | 2007-05-21 | 2012-01-10 | Danisco Us Inc. | Use of an aspartic protease (NS24) signal sequence for heterologous protein expression |
| US8105812B2 (en) | 2006-12-18 | 2012-01-31 | Danisco Us Inc. | Laccases, compositions and methods of use |
| WO2012038466A1 (en) | 2010-09-21 | 2012-03-29 | Novozymes A/S | Removal of selenocyanate or selenite from aqueous solutions |
| WO2012054485A1 (en) | 2010-10-18 | 2012-04-26 | Danisco Us Inc. | Local color modification of dyed fabrics using a laccase system |
| WO2012138474A1 (en) | 2011-04-06 | 2012-10-11 | Danisco Us Inc. | Laccase variants having increased expression and/or activity |
| WO2013148504A2 (en) | 2012-03-26 | 2013-10-03 | Novozymes North America, Inc. | Methods of preconditioning cellulosic material |
| WO2014090940A1 (en) | 2012-12-14 | 2014-06-19 | Novozymes A/S | Removal of skin-derived body soils |
| WO2014152674A1 (en) | 2013-03-14 | 2014-09-25 | Novozymes A/S | Enzyme and inhibitor containing water-soluble films |
| US8883485B2 (en) | 2009-03-03 | 2014-11-11 | Danisco Us Inc. | Oxidative decolorization of dyes with enzymatically generated peracid method, composition and kit of parts |
| WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
| WO2015150457A1 (en) | 2014-04-01 | 2015-10-08 | Novozymes A/S | Polypeptides having alpha amylase activity |
| WO2015181119A2 (en) | 2014-05-27 | 2015-12-03 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
| WO2016001319A1 (en) | 2014-07-03 | 2016-01-07 | Novozymes A/S | Improved stabilization of non-protease enzyme |
| WO2016007309A1 (en) | 2014-07-07 | 2016-01-14 | Novozymes A/S | Use of prehydrolysate liquor in engineered wood |
| WO2016029107A1 (en) | 2014-08-21 | 2016-02-25 | Novozymes A/S | Process for saccharifying cellulosic material under oxygen addition |
| WO2016079110A2 (en) | 2014-11-19 | 2016-05-26 | Novozymes A/S | Use of enzyme for cleaning |
| WO2016135351A1 (en) | 2015-06-30 | 2016-09-01 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
| WO2016162556A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
| WO2016162558A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Detergent composition |
| WO2016184944A1 (en) | 2015-05-19 | 2016-11-24 | Novozymes A/S | Odor reduction |
| WO2016202785A1 (en) | 2015-06-17 | 2016-12-22 | Novozymes A/S | Container |
| WO2017046232A1 (en) | 2015-09-17 | 2017-03-23 | Henkel Ag & Co. Kgaa | Detergent compositions comprising polypeptides having xanthan degrading activity |
| WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
| WO2017060505A1 (en) | 2015-10-07 | 2017-04-13 | Novozymes A/S | Polypeptides |
| WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
| WO2017066510A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Cleaning of water filtration membranes |
| WO2017093318A1 (en) | 2015-12-01 | 2017-06-08 | Novozymes A/S | Methods for producing lipases |
| WO2017117089A1 (en) | 2015-12-28 | 2017-07-06 | Novozymes Bioag A/S | Heat priming of bacterial spores |
| WO2017148919A1 (en) | 2016-02-29 | 2017-09-08 | G.L. PHARMA GmbH | Abuse-deterrent pharmaceutical compositions |
| WO2017148927A1 (en) | 2016-02-29 | 2017-09-08 | G.L. PHARMA GmbH | Abuse-deterrent pharmaceutical composition |
| WO2017210188A1 (en) | 2016-05-31 | 2017-12-07 | Novozymes A/S | Stabilized liquid peroxide compositions |
| WO2017220422A1 (en) | 2016-06-23 | 2017-12-28 | Novozymes A/S | Use of enzymes, composition and method for removing soil |
| WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
| WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
| WO2018011242A1 (en) | 2016-07-14 | 2018-01-18 | Basf Se | Fermentation medium comprising chelating agent |
| WO2018011276A1 (en) | 2016-07-13 | 2018-01-18 | The Procter & Gamble Company | Bacillus cibi dnase variants and uses thereof |
| WO2018060475A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Spore containing granule |
| WO2018060216A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Use of enzyme for washing, method for washing and warewashing composition |
| EP3309249A1 (en) | 2013-07-29 | 2018-04-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
| WO2018077938A1 (en) | 2016-10-25 | 2018-05-03 | Novozymes A/S | Detergent compositions |
| WO2018083093A1 (en) | 2016-11-01 | 2018-05-11 | Novozymes A/S | Multi-core granules |
| EP3321360A2 (en) | 2013-01-03 | 2018-05-16 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
| WO2018099762A1 (en) | 2016-12-01 | 2018-06-07 | Basf Se | Stabilization of enzymes in compositions |
| WO2018108865A1 (en) | 2016-12-12 | 2018-06-21 | Novozymes A/S | Use of polypeptides |
| WO2018178061A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having rnase activity |
| WO2018177938A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
| WO2018177936A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
| WO2018185181A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Glycosyl hydrolases |
| WO2018185280A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018184816A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018185269A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018184873A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2018184817A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018185267A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018185285A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2019002356A1 (en) | 2017-06-30 | 2019-01-03 | Novozymes A/S | Enzyme slurry composition |
| WO2019057902A1 (en) | 2017-09-22 | 2019-03-28 | Novozymes A/S | Novel polypeptides |
| WO2019057758A1 (en) | 2017-09-20 | 2019-03-28 | Novozymes A/S | Use of enzymes for improving water absorption and/or whiteness |
| EP3461881A1 (en) | 2013-05-03 | 2019-04-03 | Novozymes A/S | Microencapsulation of detergent enzymes |
| WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2019081721A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
| WO2019084349A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
| WO2019086528A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
| WO2019086530A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
| WO2019086532A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Methods for cleaning medical devices |
| WO2019091822A1 (en) | 2017-11-09 | 2019-05-16 | Basf Se | Coatings of enzyme particles comprising organic white pigments |
| WO2019154954A1 (en) | 2018-02-08 | 2019-08-15 | Novozymes A/S | Lipase variants and compositions thereof |
| WO2019201793A1 (en) | 2018-04-17 | 2019-10-24 | Novozymes A/S | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric. |
| WO2019201785A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
| WO2019201783A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
| EP3569611A1 (en) | 2013-04-23 | 2019-11-20 | Novozymes A/S | Liquid automatic dish washing detergent compositions with stabilised subtilisin |
| WO2019238761A1 (en) | 2018-06-15 | 2019-12-19 | Basf Se | Water soluble multilayer films containing wash active chemicals and enzymes |
| WO2020002604A1 (en) | 2018-06-28 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2020002608A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2020007875A1 (en) | 2018-07-03 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020007863A1 (en) | 2018-07-02 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
| WO2020070011A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
| WO2020070249A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Cleaning compositions |
| WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
| WO2020070063A2 (en) | 2018-10-01 | 2020-04-09 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2020070014A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity |
| WO2020074499A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020074498A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
| EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
| EP3647398A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins v |
| WO2020099491A1 (en) | 2018-11-14 | 2020-05-22 | Novozymes A/S | Oral care composition comprising a polypeptide having dnase activity |
| WO2020114965A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | LOW pH POWDER DETERGENT COMPOSITION |
| WO2020127775A1 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Detergent pouch comprising metalloproteases |
| WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
| WO2020188095A1 (en) | 2019-03-21 | 2020-09-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
| EP3715442A1 (en) | 2016-03-23 | 2020-09-30 | Novozymes A/S | Use of polypeptide having dnase activity for treating fabrics |
| EP3722406A1 (en) | 2014-04-11 | 2020-10-14 | Novozymes A/S | Detergent composition |
| WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
| WO2020208056A1 (en) | 2019-04-12 | 2020-10-15 | Novozymes A/S | Stabilized glycoside hydrolase variants |
| WO2021001400A1 (en) | 2019-07-02 | 2021-01-07 | Novozymes A/S | Lipase variants and compositions thereof |
| WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
| WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
| WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
| WO2021105336A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Compositions comprising polymer and enzyme |
| WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
| WO2021122121A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins ix |
| WO2021122117A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning composition coprising a dispersin and a carbohydrase |
| WO2021122120A2 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins viii |
| WO2021122118A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
| WO2021130167A1 (en) | 2019-12-23 | 2021-07-01 | Novozymes A/S | Enzyme compositions and uses thereof |
| WO2021148364A1 (en) | 2020-01-23 | 2021-07-29 | Novozymes A/S | Enzyme compositions and uses thereof |
| EP3878957A1 (en) | 2014-05-27 | 2021-09-15 | Novozymes A/S | Methods for producing lipases |
| EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
| WO2021204838A1 (en) | 2020-04-08 | 2021-10-14 | Novozymes A/S | Carbohydrate binding module variants |
| WO2021214059A1 (en) | 2020-04-21 | 2021-10-28 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
| EP3907271A1 (en) | 2020-05-07 | 2021-11-10 | Novozymes A/S | Cleaning composition, use and method of cleaning |
| EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
| EP3950939A2 (en) | 2015-07-06 | 2022-02-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
| WO2022043273A2 (en) | 2020-08-24 | 2022-03-03 | Novozymes A/S | Oral care composition comprising a fructanase |
| WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
| WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
| WO2022090320A1 (en) | 2020-10-28 | 2022-05-05 | Novozymes A/S | Use of lipoxygenase |
| WO2022106404A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of proteases |
| WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
| WO2022162043A1 (en) | 2021-01-28 | 2022-08-04 | Novozymes A/S | Lipase with low malodor generation |
| EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
| WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
| WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
| EP4218992A2 (en) | 2015-12-09 | 2023-08-02 | Basf Se | Method of purifying a protein from fermentation solids under desorbing conditions |
| WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
| WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
| WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
| WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
| WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
| WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2024163584A1 (en) | 2023-02-01 | 2024-08-08 | Danisco Us Inc. | Subtilisin variants and methods of use |
| WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
| WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
| WO2025002934A1 (en) | 2023-06-28 | 2025-01-02 | Novozymes A/S | Detergent composition comprising lipases |
| WO2025088003A1 (en) | 2023-10-24 | 2025-05-01 | Novozymes A/S | Use of xyloglucanase for replacement of optical brightener |
| US12291696B2 (en) | 2017-11-01 | 2025-05-06 | Henkel Ag & Co. Kgaa | Cleaning compositions containing Dispersins III |
| WO2025114053A1 (en) | 2023-11-30 | 2025-06-05 | Novozymes A/S | Biopolymers for use in detergent |
| EP4567094A2 (en) | 2017-09-27 | 2025-06-11 | Novozymes A/S | Lipase variants and microcapsule compositions comprising such lipase variants |
| EP4624572A1 (en) | 2024-03-27 | 2025-10-01 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202374A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202372A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202370A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202369A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202379A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6169065B1 (en) | 1997-09-08 | 2001-01-02 | Lever Brothers Company Division Of Conopco Company | Method for the activity of an enzyme |
| US6702863B1 (en) | 1999-06-22 | 2004-03-09 | Lion Corporation | Hairdye composition |
| EP2295545A1 (en) | 2002-09-26 | 2011-03-16 | Novozymes North America, Inc. | Fermentation methods and compositions |
| WO2005005646A2 (en) | 2003-06-10 | 2005-01-20 | Novozymes North America, Inc. | Fermentation processes and compositions |
| WO2005042735A1 (en) | 2003-10-30 | 2005-05-12 | Novozymes A/S | Carbohydrate-binding modules of a new family |
| WO2005067531A2 (en) | 2004-01-16 | 2005-07-28 | Novozymes Inc. | Methods for degrading lignocellulosic materials |
| EP2305703A1 (en) | 2004-01-30 | 2011-04-06 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
| EP2301958A1 (en) | 2004-01-30 | 2011-03-30 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
| EP2308890A1 (en) | 2004-01-30 | 2011-04-13 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
| WO2005074647A2 (en) | 2004-01-30 | 2005-08-18 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
| EP2314605A1 (en) | 2004-01-30 | 2011-04-27 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
| EP2305702A1 (en) | 2004-01-30 | 2011-04-06 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
| WO2005100582A2 (en) | 2004-03-25 | 2005-10-27 | Novozymes Inc. | Methods for degrading or converting plant cell wall polysaccharides |
| EP3219806A1 (en) | 2004-03-25 | 2017-09-20 | Novozymes, Inc. | Methods for degrading or converting plant cell wall polysaccharides |
| EP2258836A1 (en) | 2004-09-10 | 2010-12-08 | Novozymes North America, Inc. | Methods for preventing, removing, reducing, or disrupting biofilm |
| EP2258837A1 (en) | 2004-09-10 | 2010-12-08 | Novozymes North America, Inc. | Methods for preventing, removing, reducing, or disrupting biofilm |
| WO2007015854A1 (en) | 2005-07-20 | 2007-02-08 | Novozymes A/S | Method for producing a soy protein product |
| EP2385110A2 (en) | 2005-09-30 | 2011-11-09 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
| US8282688B2 (en) | 2006-12-18 | 2012-10-09 | Danisco Us Inc. | Laccase mediators and methods of use |
| US8105812B2 (en) | 2006-12-18 | 2012-01-31 | Danisco Us Inc. | Laccases, compositions and methods of use |
| US8772005B2 (en) | 2006-12-18 | 2014-07-08 | Danisco Us Inc. | Laccases, compositions and methods of use |
| WO2008134259A1 (en) | 2007-04-24 | 2008-11-06 | Novozymes North America, Inc. | Detoxifying pre-treated lignocellulose-containing materials |
| EP3219804A1 (en) | 2007-04-24 | 2017-09-20 | Novozymes North America, Inc. | Detoxifying pre-treated lignocellulose-containing materials |
| US8093016B2 (en) | 2007-05-21 | 2012-01-10 | Danisco Us Inc. | Use of an aspartic protease (NS24) signal sequence for heterologous protein expression |
| WO2010075402A1 (en) | 2008-12-24 | 2010-07-01 | Danisco Us Inc. | Laccases and methods of use thereof at low temperature |
| WO2010089598A1 (en) | 2009-02-05 | 2010-08-12 | Danisco A/S | Composition |
| US8883485B2 (en) | 2009-03-03 | 2014-11-11 | Danisco Us Inc. | Oxidative decolorization of dyes with enzymatically generated peracid method, composition and kit of parts |
| WO2011025861A1 (en) | 2009-08-27 | 2011-03-03 | Danisco Us Inc. | Combined textile abrading and color modification |
| JP2011045302A (en)* | 2009-08-27 | 2011-03-10 | Gekkeikan Sake Co Ltd | Microorganism enzyme preparation and method for producing the same |
| WO2011138366A1 (en) | 2010-05-05 | 2011-11-10 | Basf Se | Fibrous composition for paper and card production |
| WO2012038466A1 (en) | 2010-09-21 | 2012-03-29 | Novozymes A/S | Removal of selenocyanate or selenite from aqueous solutions |
| WO2012054485A1 (en) | 2010-10-18 | 2012-04-26 | Danisco Us Inc. | Local color modification of dyed fabrics using a laccase system |
| WO2012138474A1 (en) | 2011-04-06 | 2012-10-11 | Danisco Us Inc. | Laccase variants having increased expression and/or activity |
| WO2013148504A2 (en) | 2012-03-26 | 2013-10-03 | Novozymes North America, Inc. | Methods of preconditioning cellulosic material |
| WO2014090940A1 (en) | 2012-12-14 | 2014-06-19 | Novozymes A/S | Removal of skin-derived body soils |
| EP3321360A2 (en) | 2013-01-03 | 2018-05-16 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
| WO2014152674A1 (en) | 2013-03-14 | 2014-09-25 | Novozymes A/S | Enzyme and inhibitor containing water-soluble films |
| EP3569611A1 (en) | 2013-04-23 | 2019-11-20 | Novozymes A/S | Liquid automatic dish washing detergent compositions with stabilised subtilisin |
| EP3461881A1 (en) | 2013-05-03 | 2019-04-03 | Novozymes A/S | Microencapsulation of detergent enzymes |
| WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
| EP3613853A1 (en) | 2013-07-29 | 2020-02-26 | Novozymes A/S | Protease variants and polynucleotides encoding same |
| EP3309249A1 (en) | 2013-07-29 | 2018-04-18 | Novozymes A/S | Protease variants and polynucleotides encoding same |
| WO2015150457A1 (en) | 2014-04-01 | 2015-10-08 | Novozymes A/S | Polypeptides having alpha amylase activity |
| EP3722406A1 (en) | 2014-04-11 | 2020-10-14 | Novozymes A/S | Detergent composition |
| WO2015181119A2 (en) | 2014-05-27 | 2015-12-03 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
| EP3878957A1 (en) | 2014-05-27 | 2021-09-15 | Novozymes A/S | Methods for producing lipases |
| EP3760713A2 (en) | 2014-05-27 | 2021-01-06 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
| WO2016001319A1 (en) | 2014-07-03 | 2016-01-07 | Novozymes A/S | Improved stabilization of non-protease enzyme |
| WO2016007309A1 (en) | 2014-07-07 | 2016-01-14 | Novozymes A/S | Use of prehydrolysate liquor in engineered wood |
| WO2016029107A1 (en) | 2014-08-21 | 2016-02-25 | Novozymes A/S | Process for saccharifying cellulosic material under oxygen addition |
| WO2016079110A2 (en) | 2014-11-19 | 2016-05-26 | Novozymes A/S | Use of enzyme for cleaning |
| WO2016162558A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Detergent composition |
| WO2016162556A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
| WO2016184944A1 (en) | 2015-05-19 | 2016-11-24 | Novozymes A/S | Odor reduction |
| WO2016202785A1 (en) | 2015-06-17 | 2016-12-22 | Novozymes A/S | Container |
| WO2016135351A1 (en) | 2015-06-30 | 2016-09-01 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
| EP3950939A2 (en) | 2015-07-06 | 2022-02-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
| WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
| WO2017046232A1 (en) | 2015-09-17 | 2017-03-23 | Henkel Ag & Co. Kgaa | Detergent compositions comprising polypeptides having xanthan degrading activity |
| EP3708660A2 (en) | 2015-10-07 | 2020-09-16 | Novozymes A/S | Polypeptides |
| WO2017060505A1 (en) | 2015-10-07 | 2017-04-13 | Novozymes A/S | Polypeptides |
| WO2017066510A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Cleaning of water filtration membranes |
| WO2017064269A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptide variants |
| EP4324919A2 (en) | 2015-10-14 | 2024-02-21 | Novozymes A/S | Polypeptide variants |
| WO2017093318A1 (en) | 2015-12-01 | 2017-06-08 | Novozymes A/S | Methods for producing lipases |
| EP4218992A2 (en) | 2015-12-09 | 2023-08-02 | Basf Se | Method of purifying a protein from fermentation solids under desorbing conditions |
| WO2017117089A1 (en) | 2015-12-28 | 2017-07-06 | Novozymes Bioag A/S | Heat priming of bacterial spores |
| WO2017148927A1 (en) | 2016-02-29 | 2017-09-08 | G.L. PHARMA GmbH | Abuse-deterrent pharmaceutical composition |
| WO2017148919A1 (en) | 2016-02-29 | 2017-09-08 | G.L. PHARMA GmbH | Abuse-deterrent pharmaceutical compositions |
| EP3560484A1 (en) | 2016-02-29 | 2019-10-30 | G.L. Pharma GmbH | Abuse-deterrent pharmaceutical composition |
| EP3715442A1 (en) | 2016-03-23 | 2020-09-30 | Novozymes A/S | Use of polypeptide having dnase activity for treating fabrics |
| WO2017210188A1 (en) | 2016-05-31 | 2017-12-07 | Novozymes A/S | Stabilized liquid peroxide compositions |
| WO2017220422A1 (en) | 2016-06-23 | 2017-12-28 | Novozymes A/S | Use of enzymes, composition and method for removing soil |
| WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
| WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
| EP3950941A2 (en) | 2016-07-13 | 2022-02-09 | Novozymes A/S | Dnase polypeptide variants |
| WO2018011277A1 (en) | 2016-07-13 | 2018-01-18 | Novozymes A/S | Bacillus cibi dnase variants |
| WO2018011276A1 (en) | 2016-07-13 | 2018-01-18 | The Procter & Gamble Company | Bacillus cibi dnase variants and uses thereof |
| WO2018011242A1 (en) | 2016-07-14 | 2018-01-18 | Basf Se | Fermentation medium comprising chelating agent |
| WO2018060475A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Spore containing granule |
| WO2018060216A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Use of enzyme for washing, method for washing and warewashing composition |
| WO2018077938A1 (en) | 2016-10-25 | 2018-05-03 | Novozymes A/S | Detergent compositions |
| WO2018083093A1 (en) | 2016-11-01 | 2018-05-11 | Novozymes A/S | Multi-core granules |
| WO2018099762A1 (en) | 2016-12-01 | 2018-06-07 | Basf Se | Stabilization of enzymes in compositions |
| WO2018108865A1 (en) | 2016-12-12 | 2018-06-21 | Novozymes A/S | Use of polypeptides |
| WO2018177936A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
| WO2018177938A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
| WO2018178061A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having rnase activity |
| WO2018185181A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Glycosyl hydrolases |
| WO2018184816A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018185285A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| EP3626809A1 (en) | 2017-04-06 | 2020-03-25 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018185280A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018185269A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2018184873A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2018184817A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| EP3967756A1 (en) | 2017-04-06 | 2022-03-16 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2018185267A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2019002356A1 (en) | 2017-06-30 | 2019-01-03 | Novozymes A/S | Enzyme slurry composition |
| WO2019057758A1 (en) | 2017-09-20 | 2019-03-28 | Novozymes A/S | Use of enzymes for improving water absorption and/or whiteness |
| WO2019057902A1 (en) | 2017-09-22 | 2019-03-28 | Novozymes A/S | Novel polypeptides |
| EP4567094A2 (en) | 2017-09-27 | 2025-06-11 | Novozymes A/S | Lipase variants and microcapsule compositions comprising such lipase variants |
| WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2019084350A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
| WO2019081721A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
| WO2019084349A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
| WO2019081724A1 (en) | 2017-10-27 | 2019-05-02 | Novozymes A/S | Dnase variants |
| WO2019086532A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Methods for cleaning medical devices |
| WO2019086530A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
| WO2019086528A1 (en) | 2017-11-01 | 2019-05-09 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
| US12291696B2 (en) | 2017-11-01 | 2025-05-06 | Henkel Ag & Co. Kgaa | Cleaning compositions containing Dispersins III |
| EP4379029A1 (en) | 2017-11-01 | 2024-06-05 | Novozymes A/S | Polypeptides and compositions comprising such polypeptides |
| WO2019091822A1 (en) | 2017-11-09 | 2019-05-16 | Basf Se | Coatings of enzyme particles comprising organic white pigments |
| WO2019154954A1 (en) | 2018-02-08 | 2019-08-15 | Novozymes A/S | Lipase variants and compositions thereof |
| WO2019201793A1 (en) | 2018-04-17 | 2019-10-24 | Novozymes A/S | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric. |
| WO2019201783A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
| WO2019201785A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
| WO2019238761A1 (en) | 2018-06-15 | 2019-12-19 | Basf Se | Water soluble multilayer films containing wash active chemicals and enzymes |
| WO2020002604A1 (en) | 2018-06-28 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2020002608A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2020007863A1 (en) | 2018-07-02 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020007875A1 (en) | 2018-07-03 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020070063A2 (en) | 2018-10-01 | 2020-04-09 | Novozymes A/S | Detergent compositions and uses thereof |
| WO2020070011A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
| WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
| WO2020070014A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity |
| WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
| WO2020070249A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Cleaning compositions |
| WO2020074498A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020074499A1 (en) | 2018-10-09 | 2020-04-16 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2020088958A1 (en) | 2018-10-31 | 2020-05-07 | Henkel Ag & Co. Kgaa | Cleaning compositions containing dispersins v |
| EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
| EP3647398A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins v |
| WO2020099491A1 (en) | 2018-11-14 | 2020-05-22 | Novozymes A/S | Oral care composition comprising a polypeptide having dnase activity |
| WO2020099490A1 (en) | 2018-11-14 | 2020-05-22 | Novozymes A/S | Oral care composition comprising enzymes |
| WO2020114965A1 (en) | 2018-12-03 | 2020-06-11 | Novozymes A/S | LOW pH POWDER DETERGENT COMPOSITION |
| WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
| WO2020127775A1 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Detergent pouch comprising metalloproteases |
| WO2020188095A1 (en) | 2019-03-21 | 2020-09-24 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
| WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
| WO2020208056A1 (en) | 2019-04-12 | 2020-10-15 | Novozymes A/S | Stabilized glycoside hydrolase variants |
| WO2021001400A1 (en) | 2019-07-02 | 2021-01-07 | Novozymes A/S | Lipase variants and compositions thereof |
| WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
| WO2021053127A1 (en) | 2019-09-19 | 2021-03-25 | Novozymes A/S | Detergent composition |
| WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
| WO2021105336A1 (en) | 2019-11-29 | 2021-06-03 | Basf Se | Compositions comprising polymer and enzyme |
| WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
| WO2021122118A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins vi |
| WO2021122120A2 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins viii |
| WO2021122117A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning composition coprising a dispersin and a carbohydrase |
| WO2021122121A1 (en) | 2019-12-20 | 2021-06-24 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins ix |
| WO2021130167A1 (en) | 2019-12-23 | 2021-07-01 | Novozymes A/S | Enzyme compositions and uses thereof |
| WO2021148364A1 (en) | 2020-01-23 | 2021-07-29 | Novozymes A/S | Enzyme compositions and uses thereof |
| EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
| WO2021204838A1 (en) | 2020-04-08 | 2021-10-14 | Novozymes A/S | Carbohydrate binding module variants |
| WO2021214059A1 (en) | 2020-04-21 | 2021-10-28 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
| EP3907271A1 (en) | 2020-05-07 | 2021-11-10 | Novozymes A/S | Cleaning composition, use and method of cleaning |
| WO2021224389A1 (en) | 2020-05-07 | 2021-11-11 | Novozymes A/S | Medical cleaning composition, use and method of cleaning |
| WO2022008387A1 (en) | 2020-07-08 | 2022-01-13 | Henkel Ag & Co. Kgaa | Cleaning compositions and uses thereof |
| EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
| WO2022043273A2 (en) | 2020-08-24 | 2022-03-03 | Novozymes A/S | Oral care composition comprising a fructanase |
| WO2022074037A2 (en) | 2020-10-07 | 2022-04-14 | Novozymes A/S | Alpha-amylase variants |
| WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
| WO2022090320A1 (en) | 2020-10-28 | 2022-05-05 | Novozymes A/S | Use of lipoxygenase |
| WO2022106404A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of proteases |
| WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
| WO2022162043A1 (en) | 2021-01-28 | 2022-08-04 | Novozymes A/S | Lipase with low malodor generation |
| WO2022194668A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Polypeptide variants |
| WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
| EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
| WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
| WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
| WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
| WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
| WO2024126483A1 (en) | 2022-12-14 | 2024-06-20 | Novozymes A/S | Improved lipase (gcl1) variants |
| WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
| WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
| WO2024163584A1 (en) | 2023-02-01 | 2024-08-08 | Danisco Us Inc. | Subtilisin variants and methods of use |
| WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
| WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
| WO2025002934A1 (en) | 2023-06-28 | 2025-01-02 | Novozymes A/S | Detergent composition comprising lipases |
| WO2025088003A1 (en) | 2023-10-24 | 2025-05-01 | Novozymes A/S | Use of xyloglucanase for replacement of optical brightener |
| WO2025114053A1 (en) | 2023-11-30 | 2025-06-05 | Novozymes A/S | Biopolymers for use in detergent |
| EP4624572A1 (en) | 2024-03-27 | 2025-10-01 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202374A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202372A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202370A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202369A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| WO2025202379A1 (en) | 2024-03-27 | 2025-10-02 | Basf Se | Polypeptides having protease activity for use in detergent compositions |
| Publication | Publication Date | Title |
|---|---|---|
| JPH02238885A (en) | Phenol oxidase genetically recombinant DNA, microorganisms transformed with the recombinant DNA, culture thereof, and method for producing phenol oxidase | |
| KR920007666B1 (en) | Modified fibrinolytic agents | |
| JPS63502725A (en) | Recombinant human endothelial growth factor | |
| CN105985938B (en) | Glycosyltransferase mutant protein and its application | |
| KR20230017804A (en) | RHFGF21 fusion proteins, polynucleotides encoding RHFGF21 fusion proteins, compositions comprising RHFGF21 fusion proteins, and uses of RHFGF21 fusion proteins | |
| JPS63160581A (en) | Hybrid protein | |
| JP2002165593A (en) | Outer membrane protein F of Pseudomonas aeruginosa | |
| US5552302A (en) | Methods and compositions for production of human recombinant placental ribonuclease inhibitor | |
| JPH02501706A (en) | biological adhesive | |
| ITGE20130040A1 (en) | METHOD FOR THE PRODUCTION OF RECOMBINANT MARINE COLLAGEN AND ORGANISM ABLE TO PRODUCE THE SEA COLLAGEN | |
| JPS62501679A (en) | DNA molecules encoding lipocortin and transformed hosts | |
| US5858724A (en) | Recombinant rabbit tissue factor | |
| US5807726A (en) | Nucleic acids encoding dog gastric lipase and their use for the production of polypeptides | |
| CN115992109B (en) | Glycosyltransferase protein of physalis and its encoding gene and application | |
| US8017750B2 (en) | Haemocoagulase | |
| EP0422217B1 (en) | Human recombinant placental ribonuclease inhibitor and method of production | |
| CN108977455A (en) | For producing the recombinant plasmid, escherichia expression system and methods and applications of oxalate decarboxylase | |
| JPH06503712A (en) | Method for producing acyloxyacyl hydrolase | |
| JPH022362A (en) | Novel glutathione-peroxidase gene and its use | |
| US5187078A (en) | Plasma-type glutathione peroxidase gene and application of the same | |
| KR100384467B1 (en) | Lumburokinase gene isolated from a earthworm and overexpression method of lumburokinase protein in yeast | |
| JPS63503354A (en) | DNA molecule encoding minactivin | |
| JP4021123B2 (en) | New production method of raffinose | |
| JPH02234679A (en) | Human laminin b1 chain polypeptide fragment and manifestation vector to produce same | |
| JPH04144680A (en) | Cholesterol 7alpha-hydroxylase gene and its use |