Movatterモバイル変換


[0]ホーム

URL:


JPH02225317A - Method for manufacturing oxide superconductor by chemical vapor deposition method - Google Patents

Method for manufacturing oxide superconductor by chemical vapor deposition method

Info

Publication number
JPH02225317A
JPH02225317AJP4186089AJP4186089AJPH02225317AJP H02225317 AJPH02225317 AJP H02225317AJP 4186089 AJP4186089 AJP 4186089AJP 4186089 AJP4186089 AJP 4186089AJP H02225317 AJPH02225317 AJP H02225317A
Authority
JP
Japan
Prior art keywords
metal
vapor deposition
oxide superconductor
chemical vapor
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4186089A
Other languages
Japanese (ja)
Inventor
Yutaka Yamada
裕 山田
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co LtdfiledCriticalAsahi Glass Co Ltd
Priority to JP4186089ApriorityCriticalpatent/JPH02225317A/en
Publication of JPH02225317ApublicationCriticalpatent/JPH02225317A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】(産業上の利用分野)本発明は、化学的気相蒸着法による酸化物超伝導体の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an oxide superconductor by chemical vapor deposition.

(従来の技術)液体窒素温度以上のTcを有する超伝導体として、近年
YBatCusOx、 BLSraCaaCuJyおよ
びTIJaaCaxCuiO□等の酸化物超伝導体が発
見され、その実用化が期待されている0通常、酸化物超
伝導体は粉末の焼結により製造されるが、セラミックス
特有のもろさのため成形加工が困難であり、また、超伝
導体の応用分野では膜状の超伝導体も用いられるので、
気相から超伝導体を製造する方法が種々提案されている
(Prior art) In recent years, oxide superconductors such as YBatCusOx, BLSraCaaCuJy, and TIJaaCaxCuiO□ have been discovered as superconductors having Tc higher than the liquid nitrogen temperature, and their practical application is expected. Conductors are manufactured by sintering powder, but molding is difficult due to the inherent brittleness of ceramics, and film-like superconductors are also used in the field of superconductor applications.
Various methods have been proposed for producing superconductors from the gas phase.

たとえば、蒸着法やスパッタリング法などが提案されて
いるが、これらの手法は高真空状態を必要とし、それゆ
えに大量生産が困難、設備が高価等の問題があった。こ
れに対し、原料金属元素の化合物をガス状にし、気相反
応により基体上に所望の化合物を堆積させる化学的気相
蒸着法(CVD法)が提案されている。この手法は常圧
もしくは低真空状態でおこなうことができ、装置も単純
化可能である。CVD法に用いられる酸化物超伝導体製
造用金属元素を存する原料化合物としては従来金属アセ
デルアセトン化合物、金属ジピバロイルメタン化合物等
の金属β−ジケトン化合物類、ヨウ化物、臭化物等の金
属ハロゲン化物が用いられている。
For example, vapor deposition methods, sputtering methods, and the like have been proposed, but these methods require high vacuum conditions and therefore have problems such as difficulty in mass production and expensive equipment. In contrast, a chemical vapor deposition method (CVD method) has been proposed in which a compound of a raw metal element is made into a gaseous state and a desired compound is deposited on a substrate by a gas phase reaction. This method can be carried out under normal pressure or low vacuum conditions, and the equipment can be simplified. Conventional raw material compounds containing metal elements for producing oxide superconductors used in the CVD method include metal β-diketone compounds such as metal acedelacetone compounds and metal dipivaloylmethane compounds, and metals such as iodides and bromides. Halides are used.

(発明が解決しようとする課題)しかしながら、原料金属の中で超伝導体の必須構成元素
であるBa、 Sr、 Ca等のII A族の原料化合
物として従来用いられているジピバロイルメタン錯体は
、ガス化するときに一部分解しながらガス化する。蒸気
圧が一定でない、再現性の良い金属輸送量がとれない等
の問題点を有していた。一方、金属ハロゲン化物として
は通常ヨウ化物が用いられるが、これはガス化するため
には800℃以上の高温が必要、ヨウ素が超伝導体中に
残存し特性を著しく低下させるという問題点を有してい
た。
(Problems to be Solved by the Invention) However, among raw metals, dipivaloylmethane complexes, which are conventionally used as raw material compounds of Group II A such as Ba, Sr, and Ca, which are essential constituent elements of superconductors. When it is gasified, it is partially decomposed and gasified. This method had problems such as the vapor pressure was not constant and the amount of metal transported could not be obtained with good reproducibility. On the other hand, iodide is usually used as a metal halide, but this requires a high temperature of 800°C or higher to gasify, and has the problem that iodine remains in the superconductor and significantly deteriorates its properties. Was.

(課題を解決するための手段)本発明者は前述の問題点を解決するべく種々研究した結
果、周期表HA族金属を定量的に気体状態で輸送するこ
とのできる化合物を見出した。かくして本発明は、化学
的気相蒸着法による酸化物超伝導体の製造方法において
、元素周期表II A族からなる群より選ばれた1種以
上の金属とシクロペンタジェニル誘導体との錯体を原料
とし、これを気化した後分解することを特徴とする製造
方法を提供するものである。
(Means for Solving the Problems) As a result of various studies aimed at solving the above-mentioned problems, the inventors of the present invention have discovered a compound capable of quantitatively transporting metals from Group HA of the periodic table in a gaseous state. Thus, the present invention provides a method for producing an oxide superconductor by chemical vapor deposition, in which a complex of one or more metals selected from Group II A of the Periodic Table of Elements and a cyclopentagenyl derivative is used. The present invention provides a manufacturing method characterized by using the raw material as a raw material, vaporizing the raw material, and then decomposing the raw material.

本発明の錯体は、周期表II A族金属を2個のシクロ
ペンタジェニルl(側銷を有するものも含む)がサンド
イッチ状にはさみ込んだ構造を有する化合物である。
The complex of the present invention is a compound having a structure in which a group IIA metal of the periodic table is sandwiched between two cyclopentadienyls (including those having side hooks).

本発明におけるシクロペンタジェニル誘導体としてはシ
クロペンタジェニル環の側銷が、水素原子または炭素数
1〜8個のアルキル基もしくは芳香族基から選ばれた基
であることが好ましい。炭素数が9個以上になると金属
錯体のガス化が困難であるので好ましい。側銷は、水素
原子または炭素数1〜4個のアルキル基またはフェニル
基であることがさらに好ましい。シクロペンタジェニル
誘導体の好ましい具体例としては、シクロペンタジェニ
ル、メチルシクロペンタジエニル、エチルシクロペンタ
ジェニル、n−プロピルシクロペンタジェニル、イソプ
ロピルシクロペンタジェニル、n−ブチルシクロペンタ
ジェニル、S−ブチルシクロペンタジェニル、インブチ
ルシクロペンタジェニル、t−ブチルシクロペンタジェ
ニル、1.2−ジメチルシクロペンタジェニル、1.3
−ジメチルシクロペンタジェニル、l−メチル−3−エ
チルシクロペンタジェニル、1−メチル−2−エチルシ
クロペンタジェニル、1,2.3− トリメチルシクロ
ペンタジェニル、フェニルシクロペンタジェニル、1,
2.4− トリメチルシクロペンタジェニル、テトラメ
チルシクロペンタジェニル、ペンタメチルシクロペンタ
ジエニル、エチルテトラメチルシクロペンタジェニル、
n−プロピルテトラメチルシクロペンタジェニル、イソ
ブロビルテトラメヂルシクロペンタジエニル、n−ブチ
ルテトラメチルシクロペンタジェニル、イソブチルテト
ラメチルシクロペンタジェニル、S−ブチルテトラメチ
ルシクロペンタジェニル、t−ブチルテトラメチルシク
ロペンタジェニル、フェニルテトラメチルシクロペンタ
ジェニル等が挙げられる。1つの錯体中の2つのシクロ
ペンタジェニル誘導体は、必ずしも同一のものでなくて
良い。
In the cyclopentadienyl derivative in the present invention, it is preferable that the side part of the cyclopentadienyl ring is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aromatic group. If the number of carbon atoms is 9 or more, it is difficult to gasify the metal complex, so it is preferable. More preferably, the side handle is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group. Preferred specific examples of cyclopentadienyl derivatives include cyclopentadienyl, methylcyclopentadienyl, ethylcyclopentadienyl, n-propylcyclopentadienyl, isopropylcyclopentadienyl, and n-butylcyclopentadienyl. , S-butylcyclopentagenyl, inbutylcyclopentagenyl, t-butylcyclopentagenyl, 1.2-dimethylcyclopentagenyl, 1.3
-dimethylcyclopentagenyl, l-methyl-3-ethylcyclopentagenyl, 1-methyl-2-ethylcyclopentagenyl, 1,2.3-trimethylcyclopentagenyl, phenylcyclopentagenyl, 1 ,
2.4- Trimethylcyclopentadienyl, tetramethylcyclopentadienyl, pentamethylcyclopentadienyl, ethyltetramethylcyclopentadienyl,
n-propyltetramethylcyclopentadienyl, isobrobyltetramethylcyclopentadienyl, n-butyltetramethylcyclopentadienyl, isobutyltetramethylcyclopentagenyl, S-butyltetramethylcyclopentadienyl, t- Examples include butyltetramethylcyclopentagenyl, phenyltetramethylcyclopentagenyl, and the like. The two cyclopentadienyl derivatives in one complex do not necessarily have to be the same.

本発明においてシクロペンタジェニル誘導体と金属との
錯体は、例えば、対応する金属のヨウ化合物とシクロペ
ンタジェニル誘導体のナトリウム塩を、THF、1.2
−ジメトキシエタン、エーテル等の適当な溶媒中での反
応あるいは、金属とシクロペンタジェニル誘導体との直
接反応により合成される。
In the present invention, the complex of a cyclopentagenyl derivative and a metal can be prepared by, for example, adding an iodine compound of the corresponding metal and a sodium salt of a cyclopentagenyl derivative to THF, 1.2
-Synthesized by reaction in an appropriate solvent such as dimethoxyethane or ether, or by direct reaction of a metal and a cyclopentagenyl derivative.

本発明は、酸化物超伝導体を構成する金属元素のうち、
Ca、 Ba、 Sr等の周期表IIA族金属のシクロ
ペンタジェニル誘導体錯体を使用してCVD法により酸
化物超伝導体を製造するものである。
The present invention provides that among the metal elements constituting the oxide superconductor,
An oxide superconductor is produced by a CVD method using a cyclopentagenyl derivative complex of a group IIA metal of the periodic table, such as Ca, Ba, or Sr.

本発明によれば、周期表nAA族金属含むものであれば
、組成的に特に限定されずに酸化物超伝導体が製造でき
る。具体的にはY−Ba−Cu−0系、Yb −Ba 
−Cu −0系、Ho −Ha −Cu −0系、Er
 −Ba −Cu −0系、La −Sr −Cu −
0系などの希土類を含むいわゆるイツトリウム系超伝導
体、Bi −Sr −Ca −Cu −0系およびこの
系にさらにpbを添加した系などのビスマス系超伝導体
According to the present invention, an oxide superconductor can be produced without any particular compositional limitation as long as it contains a metal from group nAA of the periodic table. Specifically, Y-Ba-Cu-0 system, Yb-Ba
-Cu -0 system, Ho -Ha -Cu -0 system, Er
-Ba -Cu -0 series, La -Sr -Cu -
So-called yttrium-based superconductors containing rare earth elements such as the 0-based system, bismuth-based superconductors such as the Bi-Sr-Ca-Cu-0 system and systems in which PB is further added to this system.

Tl −Ba −Ca −Cu −0系およびこの系に
さらにpbを添加した系などのタリウム系超伝導体が挙
げられる。
Examples include thallium-based superconductors such as a Tl-Ba-Ca-Cu-0 system and a system in which PB is further added to this system.

上述のような系において、周期表II A族金属以外の
金属成分については金属アセチルアセトン錯体、金属ジ
ピバロイルメタン錯体、金属ヘキサフルオロアセチルア
セトン錯体、金属6,6゜7.7,8,8.8−へブタ
フルオロ−2,2−ジメチル−3,5−オクタジオン錯
体等のβ−ジケトン錯体、金属ポルフィリン錯体、金属
フタロシアニン類、金属シクロペンタジェニル錯体など
をCVD原料として用いることができる。
In the above-mentioned system, metal components other than Group II A metals of the periodic table include metal acetylacetone complex, metal dipivaloylmethane complex, metal hexafluoroacetylacetone complex, metal 6,6°7.7,8,8. β-diketone complexes such as 8-hebutafluoro-2,2-dimethyl-3,5-octadione complex, metal porphyrin complexes, metal phthalocyanines, metal cyclopentadienyl complexes, etc. can be used as CVD raw materials.

本発明において酸化物超伝導体を合成するにあたっては
、例えば上記の原料を加熱してガス化し、Ni、 Ar
等の不活性のキャリアガスにより加熱炉またはプラズマ
帯域のような酸化領域に輸送し、酸素を供給しながら酸
化領域で上記化合物を分解して基体上に堆積させる。こ
の場合、基体上には酸化物の薄膜が形成される。この後
さらに、600〜1000℃の空気中または酸素雰囲気
中での加熱焼成工程を加えても良い。原料の分解堆積は
、必ずしも酸素を必要とせず、堆積した後、堆積物を酸
素雰囲気中で焼成して、これらを酸化して、酸化物超伝
導体の膜を得ても良い。
In synthesizing the oxide superconductor in the present invention, for example, the above raw materials are heated and gasified, and Ni, Ar
The compound is transported to an oxidizing region such as a heating furnace or a plasma zone by an inert carrier gas such as, and decomposed in the oxidizing region while supplying oxygen and deposited on the substrate. In this case, a thin film of oxide is formed on the substrate. After this, a heating and firing step at 600 to 1000° C. in air or oxygen atmosphere may be added. Decomposition and deposition of raw materials does not necessarily require oxygen; after deposition, the deposits may be fired in an oxygen atmosphere to oxidize them to obtain an oxide superconductor film.

本発明に用いる基体としては、例えばMgO3rTiO
s、 A1201. ZrO,、NdGaOs、 La
Ga0z、LaAlOs等の単結晶あるいは焼結体から
なるセラミックス、金、銀、銅、鉄、ステンレス鋼など
の金属を始め種々の材質のものを使用できる。基板の形
状としても、板状、テープ状、線材状などの種々の形状
を採用できる。
As the substrate used in the present invention, for example, MgO3rTiO
s, A1201. ZrO,, NdGaOs, La
Various materials can be used, including ceramics made of single crystals or sintered bodies such as Ga0z and LaAlOs, and metals such as gold, silver, copper, iron, and stainless steel. Various shapes such as a plate shape, a tape shape, and a wire shape can be adopted as the shape of the substrate.

本発明の酸化物超伝導体は、基体上に堆積させる場合は
、薄膜状で得られる。膜の厚さは、金属化合物ガスの濃
度あるいは堆積時間を変えることにより制御可能である
。また、基体状に堆積させるのではなく、気体状の原料
化合物を反応させ、酸化することにより粉末状の焼結用
酸化物超伝導体粉末を得ることもできる。
The oxide superconductor of the present invention is obtained in the form of a thin film when deposited on a substrate. The thickness of the film can be controlled by changing the concentration of the metal compound gas or the deposition time. Further, instead of depositing it on a substrate, a powdery oxide superconductor powder for sintering can be obtained by reacting and oxidizing a gaseous raw material compound.

(実施例)実施例1ビス(ペンタメチルシクロペンタジェニル)バリウム(
以下BaMe、Cpという)のlIKをガラス容器に入
れて200℃に加熱し、発生した蒸気を1.0Torr
の減圧下アルゴンよりなる流量毎分150m1 (標準
状態以下同様)のキャリアガスに乗せて加熱された供給
管を通じて水冷した凝縮ゾーンに導入し固化させた。凝
縮ゾーンにはBaMeaCpが輸送されて固化していた
。ガラス容器に入れたBaMesCpと輸送されたBa
Me6CI)のBa含有量を元素分析により測定した結
果を表1に示す。Ba含有量の差がほとんどないことか
ら輸送の際の原料の分解はないと考えられる。また、輸
送されたBa−TPPの■と輸送時間の関係は、図1の
1のような直線関係なっており、輸送速度が一定である
ことがわかる。
(Example) Example 1 Bis(pentamethylcyclopentadienyl) barium (
The lIK of BaMe (hereinafter referred to as Cp) was placed in a glass container and heated to 200°C, and the generated steam was heated to 1.0 Torr.
The mixture was introduced into a water-cooled condensation zone through a heated supply pipe on a carrier gas consisting of argon at a flow rate of 150 m1 (same as under standard conditions) under a reduced pressure of 1, and was solidified. BaMeaCp was transported to the condensation zone and solidified. BaMesCp and transported Ba in a glass container
Table 1 shows the results of measuring the Ba content of Me6CI) by elemental analysis. Since there is almost no difference in Ba content, it is considered that there is no decomposition of the raw material during transportation. Moreover, the relationship between the amount of transported Ba-TPP and the transportation time is a linear relationship as shown in 1 in FIG. 1, and it can be seen that the transportation speed is constant.

実施例2〜15実施例1のBaMesCp、 200℃の加熱温度に代
^て、それぞれ表1に示したような原料化合物、加熱温
度にした以外はすべて実施例1と同様にして原料化合物
と輸送された物質の金属含有量および、輸送量と輸送時
間の関係を求めた。これらの結果を表1および図1に示
す。いずれも輸送の際の分解はないと考えられ、輸送速
度も一定であった。
Examples 2 to 15 Raw material compounds and transportation were carried out in the same manner as in Example 1, except that the raw material compounds and heating temperatures were changed to those shown in Table 1 instead of BaMesCp and 200°C heating temperature in Example 1. The metal content of the transported materials and the relationship between transport amount and transport time were determined. These results are shown in Table 1 and FIG. In either case, it is thought that there was no decomposition during transportation, and the transportation speed was also constant.

比較例1〜3実施例1のBaMeaCp、 200℃の加熱温度に代
えて、それぞれ表1に示したような原料化合物、加熱温
度にした以外はすべて実施例1と同様にして原料化合物
と輸送された物質(加熱開始から1時間の間に固化した
もの)の金属含有量および、輸送量と輸送時間の関係を
求めた。これらの結果を表1および図1に示す。輸送さ
れた物質は、原料化合物に比べて金属含有量が減少して
おり、輸送の際に原料が分解しているものと思われる。
Comparative Examples 1 to 3 The raw material compounds and the raw materials were transported in the same manner as in Example 1, except that instead of BaMeaCp and the heating temperature of 200°C in Example 1, the raw material compounds and heating temperatures were changed as shown in Table 1. The metal content of the material (solidified within 1 hour from the start of heating) and the relationship between transport amount and transport time were determined. These results are shown in Table 1 and FIG. The transported substance has a reduced metal content compared to the raw material compound, and it is thought that the raw material has decomposed during transportation.

また、図1に示したとおり、時間が経過するにつれて輸
送速度が低下しており、定量的な輸送が困難であること
がわかる。
Moreover, as shown in FIG. 1, the transport speed decreases as time passes, indicating that quantitative transport is difficult.

実施例16BaMesCp+ジピバロイルメタン銅、ジピバロイル
メタンイツトリウムをステンレス製の容器に入れ、それ
ぞれ150℃、120℃、125℃に加熱してガス化し
、10Torrの減圧下それぞれアルゴンよりなる流量
毎分200m1のキャリアガスにのせて加熱された供給
管を通じて反応管に導きそこで流量毎分100m1の酸
素ガスと混合した。この混合ガスを、850℃に加熱し
たMgO単結晶基板上に2時間通した。
Example 16 BaMesCp + copper dipivaloylmethane and yttrium dipivaloylmethane were placed in stainless steel containers and heated to 150°C, 120°C, and 125°C to gasify them, and each was made of argon under a reduced pressure of 10 Torr. It was placed on carrier gas at a flow rate of 200 ml/min and led through a heated feed tube to a reaction tube where it was mixed with oxygen gas at a flow rate of 100 ml/min. This mixed gas was passed over the MgO single crystal substrate heated to 850° C. for 2 hours.

この結果%MgO基板上にYBaxCusOyからなる
均質な超伝導体膜が得られた。この膜の直流抵抗の温度
依存性を4端子法で測定したところ臨界温度(Tc)は
86にであった。
As a result, a homogeneous superconductor film made of YBaxCusOy was obtained on the MgO substrate. When the temperature dependence of the direct current resistance of this film was measured by the four-terminal method, the critical temperature (Tc) was found to be 86.

実施例17〜19実施例16におけるBaMesC+)およびその加熱温
度150℃をそれぞれ表2に示す化合物および加熱1度
とした場合はすべて実施例16と同様にしてMgO単結
晶基板上にYBazCuJ、薄膜を得た。
Examples 17 to 19 A thin film of YBazCuJ was formed on an MgO single crystal substrate in the same manner as in Example 16, except that the heating temperature of BaMesC+) and the heating temperature of 150°C in Example 16 were respectively shown in Table 2 and the heating was 1 degree. Obtained.

同様にして測定したTcを表2に示す。Table 2 shows Tc measured in the same manner.

実施例20ビス(ペンタメチルシクロペンタジェニル)ストロンチ
ウム(以下SrMe、Cpという)、ビス(ペンタメチ
ルシクロペンタジェニル)カルシウム(以下CaMe、
Cpという)ジピバロイルメタン銅、トリフェニルビス
マスをステンレス製容器に入れ、それぞれ150℃、1
.50℃、130℃、1.25℃に加熱してガス化し、
10Torrの減圧下それぞれアルゴンよりなる流量毎
分280m1のキャリアガスにのせて加熱された供給管
を通じて反応管に導きそこで流量毎分120m1の酸素
ガスと混合した。この混合ガスを、850℃に加熱した
MgO単結晶基板上に2時間通した。
Example 20 Bis(pentamethylcyclopentagenyl)strontium (hereinafter referred to as SrMe, Cp), bis(pentamethylcyclopentagenyl)calcium (hereinafter referred to as CaMe,
Copper dipivaloylmethane (referred to as Cp) and triphenyl bismuth were placed in a stainless steel container and heated at 150°C for 1
.. Gasify by heating to 50°C, 130°C, 1.25°C,
Under reduced pressure of 10 Torr, each carrier gas consisting of argon at a flow rate of 280 ml/min was introduced through a heated supply pipe into a reaction tube, where it was mixed with oxygen gas at a flow rate of 120 ml/min. This mixed gas was passed over the MgO single crystal substrate heated to 850° C. for 2 hours.

この結果、MgO基板上にB115riCa2CuiO
yからなる均質な超伝導体膜が得られた。この膜のTc
は100にであった。
As a result, B115riCa2CuiO was formed on the MgO substrate.
A homogeneous superconductor film consisting of y was obtained. Tc of this film
was over 100.

実施例21〜23実施例20における5rhlesCp、 CaMeJ:
pおよびそれらの加熱温度をそれぞれ表3に示す化合物
および加熱温度とした以外はすべて実施例20と同様に
して、MgO基板上にBizSriCaiCusOy薄
膜を得た。それらのTcを表3に示す。
Examples 21-23 5rhlesCp in Example 20, CaMeJ:
A BizSriCaiCusOy thin film was obtained on an MgO substrate in the same manner as in Example 20, except that the compounds and heating temperatures shown in Table 3 were used. Their Tcs are shown in Table 3.

(発明の効果)本発明の周期表II A族金属とシクロペンクジエニル
誘導体との錯化合物は、気化した際に分解せずかつ蒸気
圧も一定であり、気化したものをキャリアガスにより輸
送したときの輸送速度も一定であるので、HA族金属を
含む酸化物超伝導体を化学的気相蒸着法で製造する際、
定量的に制御が容易で、作業性にも優れている。
(Effect of the invention) The complex compound of the Group II A metal of the periodic table and the cyclopencdienyl derivative of the present invention does not decompose when vaporized and has a constant vapor pressure, and the vaporized product can be transported by a carrier gas. When producing an oxide superconductor containing an HA group metal by chemical vapor deposition, the transport speed is constant.
It is easy to control quantitatively and has excellent workability.

化学的気相蒸着法によれば、超伝導体の線材あるいはテ
ープのように長い導線を連続的に製造することができ、
大量生産が容易になり、品質が良好で均質な線材あるい
はテープを経済的に得ることができる。
According to the chemical vapor deposition method, long conducting wires such as superconductor wires or tapes can be manufactured continuously.
Mass production is facilitated, and high-quality, homogeneous wire or tape can be obtained economically.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明の実施例1〜15および比較例1〜3に
おける原料化合物の輸送時間と輸送料の関係を示す図で
ある。図において、直線1〜15はそれぞれ実施例1〜
15に対応し、曲線16〜18はそれぞれ比較例1〜3
に対応する。
FIG. 1 is a diagram showing the relationship between transportation time and transportation fee for raw material compounds in Examples 1 to 15 and Comparative Examples 1 to 3 of the present invention. In the figure, straight lines 1 to 15 represent Examples 1 to 15, respectively.
15, and curves 16 to 18 correspond to Comparative Examples 1 to 3, respectively.
corresponds to

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims](1)化学的気相蒸着法による酸化物超伝導体の製造方
法において元素周期表IIA族からなる群より選ばれた1
種以上の金属とシクロペンタジエニル誘導体との錯体を
原料とし、これを気化した後分解することを特徴とする
製造方法。
(1) 1 selected from the group consisting of Group IIA of the periodic table in the method for producing oxide superconductors by chemical vapor deposition method.
A manufacturing method characterized in that a complex of at least one metal and a cyclopentadienyl derivative is used as a raw material, and the complex is vaporized and then decomposed.
(2)シクロペンタジエニル誘導体が、シクロペンタジ
エニル環の側銷が水素原子または炭素数1〜8個のアル
キル基もしくは芳香族基から選ばれた基からなるもので
ある請求項1の製造方法。
(2) The production according to claim 1, wherein the cyclopentadienyl derivative is one in which the side part of the cyclopentadienyl ring consists of a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aromatic group. Method.
JP4186089A1989-02-231989-02-23 Method for manufacturing oxide superconductor by chemical vapor deposition methodPendingJPH02225317A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP4186089AJPH02225317A (en)1989-02-231989-02-23 Method for manufacturing oxide superconductor by chemical vapor deposition method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP4186089AJPH02225317A (en)1989-02-231989-02-23 Method for manufacturing oxide superconductor by chemical vapor deposition method

Publications (1)

Publication NumberPublication Date
JPH02225317Atrue JPH02225317A (en)1990-09-07

Family

ID=12620002

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP4186089APendingJPH02225317A (en)1989-02-231989-02-23 Method for manufacturing oxide superconductor by chemical vapor deposition method

Country Status (1)

CountryLink
JP (1)JPH02225317A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6025222A (en)*1994-03-092000-02-15Fujitsu LimitedVapor phase growth of a dielectric film and a fabrication process of a semiconductor device having such a dielectric film
JP2008181995A (en)*2007-01-242008-08-07Tokyo Electron LtdMETHOD OF FORMING SrTiO3 FILM AND COMPUTER-READABLE STORAGE MEDIUM
JP2009030162A (en)*2007-06-262009-02-12Kojundo Chem Lab Co LtdMethod for forming strontium-containing thin film
JP2009040707A (en)*2007-08-082009-02-26Adeka Corp Thin film forming raw material and thin film manufacturing method
JP2009529579A (en)*2006-03-102009-08-20アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate and tantalate dielectric films
JP2012007192A (en)*2010-06-222012-01-12Adeka CorpMetallic compound, raw material for thin film deposition, and cyclopentadiene compound
US8293327B2 (en)2007-06-262012-10-23Kabushikikaisha Kojundokagaku KenkyushoProcess for forming the strontium-containing thin film
US9373677B2 (en)2010-07-072016-06-21Entegris, Inc.Doping of ZrO2 for DRAM applications
US9443736B2 (en)2012-05-252016-09-13Entegris, Inc.Silylene compositions and methods of use thereof
US10186570B2 (en)2013-02-082019-01-22Entegris, Inc.ALD processes for low leakage current and low equivalent oxide thickness BiTaO films
JP2020090712A (en)*2018-12-062020-06-11株式会社高純度化学研究所 Bis(alkyltetramethylcyclopentadienyl)zinc, raw material for chemical vapor deposition, and method for producing thin film containing zinc

Cited By (15)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6025222A (en)*1994-03-092000-02-15Fujitsu LimitedVapor phase growth of a dielectric film and a fabrication process of a semiconductor device having such a dielectric film
JP2009529579A (en)*2006-03-102009-08-20アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate and tantalate dielectric films
US9534285B2 (en)2006-03-102017-01-03Entegris, Inc.Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films
US8784936B2 (en)2006-03-102014-07-22Advanced Technology Materials, Inc.Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films
JP2008181995A (en)*2007-01-242008-08-07Tokyo Electron LtdMETHOD OF FORMING SrTiO3 FILM AND COMPUTER-READABLE STORAGE MEDIUM
KR101498732B1 (en)*2007-06-262015-03-04가부시키가이샤 코준도카가쿠 켄큐쇼Process for forming the strontium-containing thin film
JP2009030162A (en)*2007-06-262009-02-12Kojundo Chem Lab Co LtdMethod for forming strontium-containing thin film
US8293327B2 (en)2007-06-262012-10-23Kabushikikaisha Kojundokagaku KenkyushoProcess for forming the strontium-containing thin film
JP2009040707A (en)*2007-08-082009-02-26Adeka Corp Thin film forming raw material and thin film manufacturing method
JP2012007192A (en)*2010-06-222012-01-12Adeka CorpMetallic compound, raw material for thin film deposition, and cyclopentadiene compound
US9373677B2 (en)2010-07-072016-06-21Entegris, Inc.Doping of ZrO2 for DRAM applications
US9443736B2 (en)2012-05-252016-09-13Entegris, Inc.Silylene compositions and methods of use thereof
US10186570B2 (en)2013-02-082019-01-22Entegris, Inc.ALD processes for low leakage current and low equivalent oxide thickness BiTaO films
JP2020090712A (en)*2018-12-062020-06-11株式会社高純度化学研究所 Bis(alkyltetramethylcyclopentadienyl)zinc, raw material for chemical vapor deposition, and method for producing thin film containing zinc
WO2020116182A1 (en)*2018-12-062020-06-11株式会社高純度化学研究所Bis(alkyl tetramethylcyclopentadienyl)zinc, raw material for chemical vapor deposition, and production method for zinc-containing thin film

Similar Documents

PublicationPublication DateTitle
US4927670A (en)Chemical vapor deposition of mixed metal oxide coatings
Putkonen et al.Organometallic precursors for atomic layer deposition
JP2002523634A (en) Precursor chemistry for chemical vapor deposition of ruthenium or ruthenium oxide.
Norman et al.Volatile barium, strontium and calcium bis (hexafluoroacetylacetonate)(crown ether) complexes
JPH02225317A (en) Method for manufacturing oxide superconductor by chemical vapor deposition method
JP2000281694A (en) Organometallic compounds for metalorganic vapor phase epitaxy
US5185317A (en)Method of forming superconducting Tl-Ba-Ca-Cu-O films
WO1989007666A1 (en)Method of forming superconducting materials
US5296460A (en)CVD method for forming Bi -containing oxide superconducting films
JP2786200B2 (en) Raw material mixture for forming oxide superconductor thin film and method for forming oxide superconductor thin film
US4005990A (en)Superconductors
JPS63225528A (en)Production of superconductive compound oxide
EP0520365B1 (en)Method of making a Bi-Sr-Ca-Cu-O superconductive film
JPH02283603A (en) Method for manufacturing oxide ceramic superconductor layer on substrate
JPH02221116A (en)Production of oxide superconductor by cvd
JPH04333572A (en) Method for vaporizing MO raw material for oxide superconductor
JPH09195050A (en)Production of oxide or metal
JPH01308804A (en)Production of filmy superconductor
JPH01308808A (en)Production of filmy superconductor
JPH01308805A (en) Method for manufacturing membrane superconductor
JPS63307275A (en)Mocvd device for preparing thin film of high-temperature superconductor
JP2518121B2 (en) Method for producing BiSrCaCuO-based superconducting film
KR100298129B1 (en)PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER
US3488165A (en)Superconductors having a flexible substrate and a coating substantially of nbsn3
JPH05147905A (en)Production of oxide superconductor

[8]ページ先頭

©2009-2025 Movatter.jp