Movatterモバイル変換


[0]ホーム

URL:


JPH0219730A - fiber optic temperature sensor - Google Patents

fiber optic temperature sensor

Info

Publication number
JPH0219730A
JPH0219730AJP16768588AJP16768588AJPH0219730AJP H0219730 AJPH0219730 AJP H0219730AJP 16768588 AJP16768588 AJP 16768588AJP 16768588 AJP16768588 AJP 16768588AJP H0219730 AJPH0219730 AJP H0219730A
Authority
JP
Japan
Prior art keywords
optical fiber
light
temperature
optical
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16768588A
Other languages
Japanese (ja)
Inventor
Kazuo Hisama
和生 久間
Shuichi Tai
田井 修市
Masanobu Takahashi
正信 高橋
Toshio Aranishi
新西 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric CorpfiledCriticalMitsubishi Electric Corp
Priority to JP16768588ApriorityCriticalpatent/JPH0219730A/en
Publication of JPH0219730ApublicationCriticalpatent/JPH0219730A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To execute the measurement with high accuracy by propagating a light beam from a light source through an optical fiber, and detecting a temperature of a sensor part from a light beam allowed to pass through an optical filter and a light beam which is not allowed to pass through, with respect to a diffracted light diffracted by a diffraction grating. CONSTITUTION:A light beam from a light source LS is made incident on an optical fiber (OF) 1a. Subsequently, a diffracted light returned from a sensor part 10A through the inside of the OF 1a is brought to optical coupling to an OF 1c by an optical fiber coupler 23a, divided into two by an optical fiber coupler 23b, one of them is propagated through the inside of the OF 1c, the other is propagated through the inside of an OF 1b, and they are allowed to pass through an optical fiber PF. When a characteristics of this filter PF Is selected in advance so as to have an interrupting wave in a spectrum of the diffracted light, the intensity of a filter PF passing light is varied by a temperature variation of the sensor part 10A. Next, light beams divided into two by a coupler 23 are divided by a divider 36 through photodetectors 21a, 21b and pre-amplifiers 22a, 22b, and a signal depending on only the temperature of the sensor part 10A is outputted, and brought to linearization processing by a signal processor 37.

Description

Translated fromJapanese

【発明の詳細な説明】[産業上の利用分野〕この発明は、光ファイバを用いた温度センサ、特に簡単
な光学系を用いるにもか1わらず安定でかつ高精度の光
ファイバ温度センサに関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a temperature sensor using an optical fiber, and particularly to an optical fiber temperature sensor that is stable and highly accurate despite using a simple optical system. It is something.

[従来の技術]第5図は、例えば株式会社情報調査会から昭和61年1
月21日に発行された、久間和生および布下正置共著の
本「光ファイバセンサく基礎と応用〉」の第134ペー
ジに掲載された従来の光ファイバ温度センサの構成およ
び検出原理を説明する図である。第5A図は、従来の光
ファイバ温度センサのセンサ部を示す断面図である。こ
の第5A図に示すように、センサ部10は、直径が例え
ば0.8xaでかつPFA (フッ素・カーボン)で作
られた円筒状の保護ジャケット11、この保護ジャケッ
ト11の中に先端部が挿入された光ファイバ12、およ
び保護ジャケット11の内面と光ファイバ12の先端と
の間に充填された燐光物質13例えば[(GdO−99
EuO00+)202S]から構成される。センサ部1
0は、矢印Aで示す紫外励起光で励起されると、矢印B
で示す可視蛍光を発する。
[Prior art] Figure 5 is, for example, published in 1986 by Information Research Committee Co., Ltd.
This article explains the configuration and detection principle of a conventional optical fiber temperature sensor, which was published on page 134 of the book ``Optical Fiber Sensor Basics and Applications'' co-authored by Kazuo Kuma and Masaki Nunoshita, published on August 21st. It is a diagram. FIG. 5A is a sectional view showing a sensor section of a conventional optical fiber temperature sensor. As shown in FIG. 5A, the sensor section 10 has a cylindrical protective jacket 11 having a diameter of, for example, 0.8 xa and made of PFA (fluorine carbon), and the distal end thereof is inserted into the protective jacket 11. phosphorescent material 13 filled between the inner surface of the protective jacket 11 and the tip of the optical fiber 12, for example [(GdO-99
EuO00+)202S]. Sensor part 1
0, when excited by the ultraviolet excitation light shown by arrow A,
It emits visible fluorescence indicated by .

第5B図は、従来の光ファイバ温度センサの温度検出部
および信号処理部を一部ブロック図で示す概略構成図で
ある。この第5B図に示すように、光ファイバ12の一
端は上述したセンサ部10に結合されるが、光ファイバ
12の他端は光ファイバコネクタ14を介して温度検出
部20に結合される。この温度検出部20は、紫外光光
源例えば紫外線ランプVL、レンズL、〜L4、光学フ
ィルタF、ミラーD1〜D3、ビームスプリッタB S
、。
FIG. 5B is a schematic configuration diagram showing a partial block diagram of a temperature detection section and a signal processing section of a conventional optical fiber temperature sensor. As shown in FIG. 5B, one end of the optical fiber 12 is coupled to the sensor section 10 described above, while the other end of the optical fiber 12 is coupled to the temperature detection section 20 via the optical fiber connector 14. The temperature detection unit 20 includes an ultraviolet light source such as an ultraviolet lamp VL, lenses L to L4, an optical filter F, mirrors D1 to D3, and a beam splitter BS.
,.

BS2、およびバンドパスフィルタIFI、IF2から
成る光学系、並びに光検出器21a、21b、および前
置増幅器22a、22bを備えている。このような温度
検出部20は信号処理部30と電気的に接続されている
。この信号処理部30は、温度検出部20中の前置増幅
器22aおよび22bに接続されたA/D変換器31、
このA/D変換器31の出力側に接続されたマイクロプ
ロセッサ32、このマイクロプロセッサ32と相互接続
されているメモリ例えばROM33、並びにマイクロプ
ロセッサ32の出力側に接続された表示器例えばLED
表示器34およびD/A変換器35によって構成されて
いる。
The optical system includes a BS2, bandpass filters IFI and IF2, photodetectors 21a and 21b, and preamplifiers 22a and 22b. Such a temperature detection section 20 is electrically connected to a signal processing section 30. This signal processing section 30 includes an A/D converter 31 connected to preamplifiers 22a and 22b in the temperature detection section 20,
A microprocessor 32 connected to the output side of the A/D converter 31, a memory such as a ROM 33 interconnected with the microprocessor 32, and a display device such as an LED connected to the output side of the microprocessor 32.
It is composed of a display 34 and a D/A converter 35.

第5C図および第5D図は従来の光ファイバ温度センサ
の検出原理を説明する図である。
FIGS. 5C and 5D are diagrams explaining the detection principle of a conventional optical fiber temperature sensor.

従来の光ファイバ温度センナは上述したように構成され
ており、第5B図から明らかなように温度検出部20中
の紫外線ランプVLから発せられた紫外光は、レンズL
1でコリメートされた後、光学フィルタFで可視光が除
去される。可視光除去後の紫外光は、更にミラーD1お
よびD2で反射された後、ビームスプリッタ例えばハー
フミラBS、を介してレンズL2から光ファイバ12に
入射される。センサ部10中の光ファイバ先端の燐光物
質13に第5C図の紫外励起光Aが照射されると、この
燐光物質13は可視蛍光Bを発生する。この可視蛍光B
の強度には、第5D図に示すように温度に大きく依存す
るもの(カーブb:波長510 nm)と、温度が変っ
てもあまり変化しないもの(カーブa:波長630 n
m)とがある、これら2つの可視蛍光Bを同一の光ファ
イバ12でセンサ部10から温度検出部20へ導びき、
レンズL2でコリメートした後、ビームスプリッタBS
、を介してビームスプリッタBS2で二分する。一方は
波長510nmの光を通すバンドパスフィルタIF、、
他方はミラーD3で反射させた後に63On−の光を通
すバンドパスフィルタIF2に通される。その後、光は
それぞれレンズL3+L4でコリメートされた後光検出
器21a、21bで受光されて電気信号に変換され、各
電気信号はそれぞれ前置増幅器22a、22bで増幅さ
れる。
The conventional optical fiber temperature sensor is constructed as described above, and as is clear from FIG. 5B, the ultraviolet light emitted from the ultraviolet lamp VL in the temperature detection section 20 is transmitted through the lens L
1, visible light is removed by an optical filter F. After the visible light has been removed, the ultraviolet light is further reflected by mirrors D1 and D2, and then enters the optical fiber 12 from the lens L2 via a beam splitter, for example, a half mirror BS. When the phosphorescent substance 13 at the tip of the optical fiber in the sensor section 10 is irradiated with the ultraviolet excitation light A shown in FIG. 5C, the phosphorescent substance 13 generates visible fluorescence B. This visible fluorescence B
As shown in Figure 5D, the intensity of
m) guiding these two visible fluorescence B from the sensor section 10 to the temperature detection section 20 through the same optical fiber 12;
After collimating with lens L2, beam splitter BS
, and is divided into two by the beam splitter BS2. One is a bandpass filter IF that passes light with a wavelength of 510 nm.
The other light is reflected by a mirror D3 and then passed through a bandpass filter IF2 that passes 63On- light. Thereafter, the light is collimated by lenses L3 and L4, respectively, and then received by photodetectors 21a and 21b and converted into electrical signals, and each electrical signal is amplified by preamplifiers 22a and 22b, respectively.

増幅後の電気信号は信号処理部30中のA/D変換器3
1でA/D変換された後、マイクロプロセッサ32にお
いて波長510ns(カーブb)の光による信号で波長
630ns(カーブa)の光による信号を割算する。そ
のカーブa/bを第5D図に示す。
The amplified electrical signal is sent to the A/D converter 3 in the signal processing section 30.
1, the microprocessor 32 divides the signal of light with a wavelength of 630 ns (curve a) by the signal of light with a wavelength of 510 ns (curve b). The curve a/b is shown in FIG. 5D.

このカーブa/bに対応する温度をメモリ33に予め記
憶させておき、マイクロプロセッサ32からの信号a/
bによりメモリ33から得られた温度信号つまりセンサ
部10の検出温度はディジタル出力として取り出されて
表示器34に表示されたり、或はD/A変換器35に通
されてアナログ出力として取り出される。
The temperature corresponding to this curve a/b is stored in the memory 33 in advance, and the signal a/b from the microprocessor 32 is stored in advance.
The temperature signal obtained from the memory 33 by b, that is, the temperature detected by the sensor section 10, is taken out as a digital output and displayed on the display 34, or passed through the D/A converter 35 and taken out as an analog output.

[発明が解決しようとする課題]従来の光ファイバ温度センサは、温度情報を含む光が可
視光のため、光ファイバで大きな損失を受ける。従って
、光ファイバ長が異なると、校正をやり直す必要がある
。また光学系が非常に複雑であり、スイッチを投入して
から系が熱的に安定するまで数10分という長い時閉を
要する。そのうえ、紫外線ランプの寿命が短いという問
題点もあった。
[Problems to be Solved by the Invention] In the conventional optical fiber temperature sensor, the light containing temperature information is visible light, and therefore suffers a large loss in the optical fiber. Therefore, if the optical fiber length differs, it is necessary to recalibrate. In addition, the optical system is very complicated, and it takes a long time, several tens of minutes, after the switch is turned on until the system becomes thermally stable. Furthermore, there was also the problem that the life of the ultraviolet lamp was short.

この発明は、このような問題点を解決するためになされ
たもので、簡単な光学系で構成され、測定精度が光ファ
イバ長に依存せず、安定で高精度な光7アイバ温度セン
サを得ることを目的とする。
This invention was made to solve these problems, and provides a stable and highly accurate optical 7-eye temperature sensor that is configured with a simple optical system and whose measurement accuracy does not depend on the length of the optical fiber. The purpose is to

[課題を解決するための手段]この発明に係る光ファイバ温度センサは、広いスペクト
ルを有する光源と、光ファイバの先端部に形成された回
折格子を有するセンサ部と、回折光のスペクトル内にし
ゃ断波長を有する光学フィルタと、この光学フィルタに
よって区別された2つの光からセンサ部の温度を検出す
る温度検出部とを備えている。
[Means for Solving the Problems] An optical fiber temperature sensor according to the present invention includes a light source having a wide spectrum, a sensor portion having a diffraction grating formed at the tip of an optical fiber, and a light source having a light source having a wide spectrum, a sensor portion having a diffraction grating formed at the tip of an optical fiber, and a light source having a light source having a wide spectrum. The sensor includes an optical filter having a wavelength, and a temperature detecting section that detects the temperature of the sensor section from two lights differentiated by the optical filter.

[作用]この発明においては、光源から発せられた光が光ファイ
バを伝搬し、その先端部に形成された回折格子はそのピ
ッチに応じた波長の光を回折させる。回折格子のピッチ
が周囲温度の変化によって変わるため、回折された光の
波長も温度に応じて変化する。従って、回折光を光学フ
ィルタに通した光と、通さない光とからセンサ部の温度
を検出できる。
[Operation] In the present invention, light emitted from a light source propagates through an optical fiber, and a diffraction grating formed at the tip of the fiber diffracts light having a wavelength corresponding to the pitch of the grating. Since the pitch of the diffraction grating changes with changes in ambient temperature, the wavelength of the diffracted light also changes with temperature. Therefore, the temperature of the sensor section can be detected from the diffracted light that passes through the optical filter and the light that does not pass through the optical filter.

[実施例]以下、この発明の一実施例を添付図面について詳しく説
明する。
[Embodiment] Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1A図は、この発明に係る光ファイバ温度センサに用
いられるセンサ部の基本構成を示す断面図である。この
第1A図に示すように、センサ部10Aは光ファイバ1
aから成り、この光ファイバ1aは例えば石英ガラスや
多成分系ガラスで作られた、中心のコア2およびこのコ
ア2のまわりに形成されたクラッド3から成り、このク
ラッド3の先端部には所定のピッチを有する回折格子4
が形成されている。なお、センサ部10Aの先端が斜め
研磨されているのは、フレネル反射光を戻さないためで
ある。
FIG. 1A is a sectional view showing the basic configuration of a sensor section used in the optical fiber temperature sensor according to the present invention. As shown in FIG. 1A, the sensor section 10A is connected to the optical fiber 1.
The optical fiber 1a consists of a central core 2 and a cladding 3 formed around the core 2, made of quartz glass or multi-component glass, for example.The tip of the cladding 3 has a predetermined Diffraction grating 4 with a pitch of
is formed. Note that the reason why the tip of the sensor section 10A is obliquely polished is to prevent the Fresnel reflected light from returning.

第1B図はこの発明の一実施例を一部ブロック図で示す
概略構成図であり、温度検出部2OAは後で詳しく説明
する光源LSを備え、この光源LSは光ファイバ1aに
よって第1A図のセンサ部10Aに接続されている。光
ファイバ1aの途中に設けられた光ファイバカップラ2
3aは光ファイバ1aと1cを光結合し、この光ファイ
バ1cの途中に設けられた光ファイバカップラ23bは
光ファイバ1cと1bを光結合する。温度検出部2OA
は更に第5B図に示したのと同様な光検出器21a、2
1bおよび各光検出器の出力側にそれぞれ接続された前
置増幅器22a、22bを備えている。上述した光ファ
イバ1bは後で詳しく説明する光学フィルタPFを介し
て光検出器21aに結合されるが、光ファイバ1cは光
検出器21bに直接結合される。前置増幅器22&およ
び22bの出力側は信号処理部30A中の割算器36に
接続され、この割算器36の出力側は信号処理器37に
接続されている。
FIG. 1B is a schematic configuration diagram showing a partial block diagram of an embodiment of the present invention, and the temperature detection section 2OA is equipped with a light source LS, which will be explained in detail later, and this light source LS is connected to the optical fiber 1a by an optical fiber 1a. It is connected to the sensor section 10A. Optical fiber coupler 2 provided in the middle of optical fiber 1a
3a optically couples the optical fibers 1a and 1c, and an optical fiber coupler 23b provided in the middle of the optical fiber 1c optically couples the optical fibers 1c and 1b. Temperature detection part 2OA
further includes photodetectors 21a, 2 similar to those shown in FIG. 5B.
1b and preamplifiers 22a and 22b respectively connected to the output side of each photodetector. The above-mentioned optical fiber 1b is coupled to the photodetector 21a via an optical filter PF which will be explained in detail later, whereas the optical fiber 1c is directly coupled to the photodetector 21b. The output sides of the preamplifiers 22& and 22b are connected to a divider 36 in the signal processing section 30A, and the output side of the divider 36 is connected to a signal processor 37.

第2図はこの発明の光ファイバ温度センサの検出原理を
説明する図であって、第2A図は第1B図に示した光源
LSのスペクトルを示し、第2B図は第1A図に示した
回折格子4で回折された光つまり回折光のスペクトルを
示し、そして第2C図は第1B図に示した光学フィルタ
PFの特性を示す。
FIG. 2 is a diagram explaining the detection principle of the optical fiber temperature sensor of the present invention, in which FIG. 2A shows the spectrum of the light source LS shown in FIG. 1B, and FIG. 2B shows the diffraction spectrum shown in FIG. 1A. FIG. 2C shows the spectrum of the light diffracted by the grating 4, that is, the diffracted light, and FIG. 2C shows the characteristics of the optical filter PF shown in FIG. 1B.

この発明の一実施例は上述したように構成されており、
第1A図および第1B図から明らかなように、光源LS
は例えば発光ダイオードであって、第2A図に示したよ
うな広いスペクトルを有している。このような光源LS
から発せられた光は光ファイバ1aに入射される。その
際、光はコア2内のみに閉じ込められるのではなく、ク
ラッド3へもしみ出して伝搬されて行く、このようにク
ラッド3へしみ出した光をエバネッセント波と云う。
One embodiment of the present invention is configured as described above,
As is clear from FIGS. 1A and 1B, the light source LS
is, for example, a light emitting diode and has a wide spectrum as shown in FIG. 2A. Such a light source LS
The light emitted from the optical fiber 1a is incident on the optical fiber 1a. At this time, the light is not confined only within the core 2, but also leaks out to the cladding 3 and propagates. The light that leaks out into the cladding 3 in this way is called an evanescent wave.

このエバネッセント波がセンサ部10Aに、達すると、
光ファイバ1aの先端部のコア2近傍に形成された回折
格子4によってそのピッチに応じた波長の光だけが回折
され、光ファイバ1aの中を逆方向に戻って行く、この
回折光の波長は回折格子4のピッチに依存し、このピッ
チは周囲温度の変化例えば熱膨張や熱収縮に応じて変わ
る。一般に、回折格子4のピッチが高温のために増大す
ると回折光の波長は第2B図に示したように長くなり、
逆にピッチが低温のために減少すると回折光の波長は短
くなる。従って、回折光の波長をモニタすることにより
、センサ部10Aの温度を検出することができる。
When this evanescent wave reaches the sensor section 10A,
Only light with a wavelength corresponding to the pitch is diffracted by the diffraction grating 4 formed near the core 2 at the tip of the optical fiber 1a, and returns in the opposite direction inside the optical fiber 1a.The wavelength of this diffracted light is It depends on the pitch of the diffraction grating 4, which changes with changes in the ambient temperature, for example thermal expansion or contraction. Generally, when the pitch of the diffraction grating 4 increases due to high temperature, the wavelength of the diffracted light becomes longer as shown in Figure 2B.
Conversely, when the pitch decreases due to low temperature, the wavelength of the diffracted light becomes shorter. Therefore, by monitoring the wavelength of the diffracted light, the temperature of the sensor section 10A can be detected.

光ファイバ1aの中をセンサ部10Aから戻されて来た
回折光は光ファイバカップラ23aによって光ファイバ
1cに光結合され、この光ファイバ1cを伝搬する回折
光は光ファイバカップラ23bで二分され、一方はその
ま)光ファイバIC中を伝搬するが、他方は光ファイバ
lb中を伝搬する。この光ファイバ1b中を伝搬する回
折光は光学フィルタPFに通される。この光学フィルタ
PFの特性を、第2C図に示したように回折光のスペク
トル中にしゃ断波長を有するように選んでおくと、セン
サ部10Aの温度変化により、回折光のスペクトルが高
温なら長波長側へ、逆に低温なら短波長側へ移動するた
め、光学フィルタPF通過光はその強度が変化する。従
って、この光学フィルタPF透過光量よりセンサ部10
Aの温度が分る。
The diffracted light returned from the sensor section 10A through the optical fiber 1a is optically coupled to the optical fiber 1c by the optical fiber coupler 23a, and the diffracted light propagating through the optical fiber 1c is divided into two by the optical fiber coupler 23b, one of which is split into two by the optical fiber coupler 23b. (as it is) propagates through the optical fiber IC, while the other propagates through the optical fiber lb. The diffracted light propagating through the optical fiber 1b is passed through an optical filter PF. If the characteristics of this optical filter PF are selected so that the spectrum of the diffracted light has a cutoff wavelength as shown in FIG. Conversely, if the temperature is low, the light moves toward the short wavelength side, so the intensity of the light passing through the optical filter PF changes. Therefore, from the amount of light transmitted through this optical filter PF, the sensor unit 10
The temperature of A is known.

しかし、これだけでは光源LSの発光強度が変化したり
、光ファイバ1aの曲がりなどで光ファイバ1aの伝送
損失が変化したりすると、検出誤差を招くため、上述し
たように光検出器を2個用意し、回折光を光ファイバカ
ップラ23bで二分した後、一方を光学フィルタPFに
通した後に光検出器21aで受光し、他方をそのまま光
検出器21bで受光する。なお、光検出器21bには回
折光の全スペクトルが入射される。光検出器21a、2
1bに入射される光はともに光源LSの出力変動、光フ
ァイバ1aの損失変動の影響を受けているため、その出
力は各々次のように表わされる。
However, if this alone causes a detection error if the emission intensity of the light source LS changes or the transmission loss of the optical fiber 1a changes due to bending of the optical fiber 1a, etc., two photodetectors are prepared as described above. After the diffracted light is divided into two parts by the optical fiber coupler 23b, one part is passed through the optical filter PF and then received by the photodetector 21a, and the other part is directly received by the photodetector 21b. Note that the entire spectrum of the diffracted light is incident on the photodetector 21b. Photodetector 21a, 2
Since both the light incident on 1b is influenced by the output fluctuation of the light source LS and the loss fluctuation of the optical fiber 1a, the respective outputs are expressed as follows.

Va = A I (T)V b = A I totalここで、Aは光源LSの出力変動、光ファイバ1aの損
失に応じた定数であり、I(T)は光学フィルタPFを
通った回折光の強度に依存する、センサ部10Aの温度
の関数であり、そしてI totalは回折光の全スペ
クトルに依存した信号であって、温度には依存しない、
従って、これらの出力信号を信号処理部30A中の割算
器36で割算すれば、その出力は、Vout= ” =−よ−1(T)Vb   rtotalとなり、センサ部10Aの温度のみに依存した信号が得
られる0割算器36の出力は信号処理器37で例えば直
線化処理される。
Va = A I (T) V b = A I total Here, A is a constant depending on the output fluctuation of the light source LS and the loss of the optical fiber 1a, and I (T) is the value of the diffracted light that has passed through the optical filter PF. is a function of the temperature of the sensor section 10A, which depends on the intensity, and I total is a signal that depends on the entire spectrum of the diffracted light and is independent of the temperature.
Therefore, if these output signals are divided by the divider 36 in the signal processing section 30A, the output will be Vout = " = - 1 (T) Vbrtotal, which depends only on the temperature of the sensor section 10A. The output of the zero divider 36 from which the signal obtained is subjected to, for example, linearization processing in the signal processor 37.

次に、センサ部の具体的構成を第3図の断面図について
説明する。光ファイバに回折格子を直接形成するのは難
しいため、まず光ファイバ1aのクラッド3をコア2近
傍まで研磨し、その上にS i3N 41115を形成
し、それに例えば干渉露光法で回折格子4を形成する。
Next, the specific configuration of the sensor section will be explained with reference to the cross-sectional view of FIG. 3. Since it is difficult to directly form a diffraction grating on an optical fiber, first, the cladding 3 of the optical fiber 1a is polished to the vicinity of the core 2, Si3N 41115 is formed on it, and the diffraction grating 4 is formed thereon by, for example, interference exposure method. do.

この回折格子4を保護するためにSi3N4膜5の上に
5i02膜6を蒸着し、更にその上に例えばA1などの
金属膜7を蒸着してセンサ部10Bを完成させる。この
ようにすれば、金属膜7は熱膨張係数が大きいため、温
度センサとしての感度が向上する。なお、金属膜7の代
りに、熱膨張係数の大きいセラミックや高分子薄膜例え
ばPMMA、ポリビニールアルコール、ポリアセチレン
を使用しても良い。
A 5i02 film 6 is deposited on the Si3N4 film 5 to protect the diffraction grating 4, and a metal film 7, such as A1, is further deposited thereon to complete the sensor section 10B. By doing so, the metal film 7 has a large coefficient of thermal expansion, so that the sensitivity as a temperature sensor is improved. Note that instead of the metal film 7, a ceramic or polymer thin film having a large coefficient of thermal expansion, such as PMMA, polyvinyl alcohol, or polyacetylene, may be used.

なお、上記実施例では、光源LSを直流的に駆動する例
を示したが、第4図のこの発明の他の実施例に示すよう
に光源LSをパルス駆動すれば検出感度が更に向上する
。また、上記実施例では検定誤差補償法として、光学フ
ィルタPFを通った光と通らない光による信号の比をと
った例を示したが、第4図に示すように光字フィルタP
Fの透過光と反射光による信号の比をとっても良い。
In the above embodiment, an example was shown in which the light source LS was driven with direct current, but if the light source LS was driven in pulses as shown in another embodiment of the present invention shown in FIG. 4, the detection sensitivity would be further improved. In addition, in the above embodiment, as a verification error compensation method, an example was shown in which the ratio of the signal due to the light that passed through the optical filter PF and the signal due to the light that did not pass was taken, but as shown in FIG.
It is also possible to take the ratio of the signal due to the transmitted light and the reflected light of F.

第4図の他の実施例において、光源LSが光ファイバ1
aによってセンサMI OAに接続される点は、第1B
図の実施例と同じである。しかしながら、第4図の他の
実施例では、光ファイバ1aの途中に設けられた光ファ
イバカップラ23mは光ファイバ1aと1dを光結合し
°、この光ファイバ1dは光学フィルタPFに至る。温
度検出部20Bは、光学フィルタPFのそれぞれ透過光
、反射光を受光して電気信号に変換する光検出器21m
、21b、その出力側に接続された前置増幅器22m、
22bに加えて、その出力側に接続されたロックイン式
またはサンプルホール式の増幅器24m、24bを備え
ている。なお、各増幅器24・、24bは、光源LSに
接続されたパルス発生器と同期している。増幅器24m
および24bの出力側は信号処理部30B中の演算器3
8に接続され、この演算器38の出力側は信号処理器3
7に接続されている。
In another embodiment of FIG. 4, the light source LS is connected to the optical fiber 1
The point connected to sensor MI OA by a is the 1st B
This is the same as the embodiment shown in the figure. However, in the other embodiment shown in FIG. 4, an optical fiber coupler 23m provided in the middle of the optical fiber 1a optically couples the optical fibers 1a and 1d, and the optical fiber 1d reaches the optical filter PF. The temperature detection unit 20B includes a photodetector 21m that receives transmitted light and reflected light from the optical filter PF and converts them into electrical signals.
, 21b, a preamplifier 22m connected to its output side,
22b, lock-in type or sample hole type amplifiers 24m and 24b connected to the output side thereof are provided. Note that each amplifier 24., 24b is synchronized with a pulse generator connected to the light source LS. amplifier 24m
The output side of 24b is the arithmetic unit 3 in the signal processing unit 30B.
8, and the output side of this arithmetic unit 38 is connected to the signal processor 3
7 is connected.

上述したように構成された他の実施例では、光源LSが
パルス発生器PGによってパルス駆動される。このよう
にパルス駆動された光源LSから発された光は光ファイ
バ1aを伝搬し、センサ部10Aで回折され、光ファイ
バ1aの中を戻って来て、光ファイバカップラ23aか
ら光ファイバ1dを通して光学フィルタPFに入射され
る。この光学フィルタPFの透過特性は第2C図に示し
た通りであるが、その反射特性は透過特性と全く逆の特
性である。すなわち、一方が増えれば、他方が減少する
という特性を示す、この光学フィルタPFを通った透過
光、光学フィルタPFで反射された反射光を各々光検出
器21a、21bで受光した後、その出力を前置増幅器
22a、22bで増幅しかつパルス発生器PGに同期さ
せてロックイン式またはサンプルホールド式の増幅器2
4a。
In another embodiment configured as described above, the light source LS is pulsed by a pulse generator PG. The light emitted from the pulse-driven light source LS propagates through the optical fiber 1a, is diffracted by the sensor section 10A, returns through the optical fiber 1a, and is optically transmitted from the optical fiber coupler 23a through the optical fiber 1d. The light is input to filter PF. The transmission characteristics of this optical filter PF are as shown in FIG. 2C, but its reflection characteristics are completely opposite to the transmission characteristics. That is, the transmitted light passing through the optical filter PF and the reflected light reflected by the optical filter PF, which exhibit a characteristic that as one increases, the other decreases, are received by the photodetectors 21a and 21b, respectively, and the output thereof is A lock-in type or sample hold type amplifier 2
4a.

24bで検出する。それらの各出力Va、Vbはそれぞ
れVa=BI(T)Vb = B (I total −I (T))で与
えられる。ここで、Bは光出力に関係した量、I to
ta!はセンサ部10Aから戻ってくる全光出力、I(
T)は光学フィルタPFの透過光出力である。従って、
演算器38でなる演算を行なえば、光出力の変動に影響されず、正確
な温度検出を行なえる。
24b. Their respective outputs Va and Vb are given by Va=BI(T) Vb=B (I total −I (T)), respectively. Here, B is a quantity related to optical output, I to
Ta! is the total light output returned from the sensor section 10A, I(
T) is the transmitted light output of the optical filter PF. Therefore,
If the calculation performed by the calculation unit 38 is performed, accurate temperature detection can be performed without being affected by fluctuations in optical output.

また、上記実施例では光ファイバ先端を斜め研磨したセ
ンサ部を示したが、垂直研磨しておき、そこからのフレ
ネル反射光を参照光として使用することも可能である。
Further, in the above embodiment, the sensor portion is shown in which the tip of the optical fiber is obliquely polished, but it is also possible to vertically polish the tip and use the Fresnel reflected light therefrom as the reference light.

更に、上記実施例では温度センサについて説明したが、
センサ部に蒸着する金属を磁気歪みの大きい例えばNi
にすれば、その磁歪効果によって回折格子が伸び縮みす
るため、磁気センサとしても使用できる。更に、電界に
よって歪みが生ずるような材料、例えば圧電セラミック
スを取り付ければ、電界センサとしても使用可能である
Furthermore, although the temperature sensor was explained in the above embodiment,
The metal to be deposited on the sensor part is made of a material with high magnetostriction, such as Ni.
Since the diffraction grating expands and contracts due to the magnetostrictive effect, it can also be used as a magnetic sensor. Furthermore, if a material that is distorted by an electric field, such as piezoelectric ceramics, is attached, it can also be used as an electric field sensor.

[発明の効果]以上、詳述したように、この発明は、広いスペクトルを
有する光源と、この光源に一端が接続され、前記光源か
ら発せられた光を伝搬させる光ファイバと、この光ファ
イバの他端部に形成された回折格子を有するセンサ部と
、前記回折格子によって回折された光を前記光ファイバ
に逆方向に伝搬させた後、前記回折光のスペクトル内に
しゃ断波長を有する光学フィルタまで導く手段と、前記
光学フィルタを透過した光と、前記光学フィルタを透過
しないか前記光学フィルタで反射された光とから前記セ
ンサ部の温度を検出する温度検出部とを備えているので
、光源から発せられた光が光ファイバで大きな損失を受
けることなく、センサ部が小型でかつ頑丈であり、光学
系の構成が簡単であり、そして光ファイバ長に依存しな
い安定で高精度な光ファイバ温度センサが得られるとい
う効果を奏する。
[Effects of the Invention] As described in detail above, the present invention provides a light source having a wide spectrum, an optical fiber whose one end is connected to the light source and which propagates the light emitted from the light source, and a light source of the optical fiber. a sensor section having a diffraction grating formed at the other end; and after the light diffracted by the diffraction grating is propagated in the opposite direction to the optical fiber, to an optical filter having a cutoff wavelength within the spectrum of the diffracted light. and a temperature detecting section that detects the temperature of the sensor section from the light that has passed through the optical filter and the light that has not passed through the optical filter or has been reflected by the optical filter. An optical fiber temperature sensor that does not cause large losses in the emitted light through the optical fiber, has a small and sturdy sensor unit, has a simple optical system configuration, and is stable and highly accurate regardless of the length of the optical fiber. This has the effect that the following can be obtained.

はそのセンサ部の基本構成を示す断面図でありかルを示
し、第2B図は回折光のスペクトルを示し、かつ第2C
図は光学フィルタの特性を示す、第3図はセンサ部の具
体的構成を示す断面図である。
2B is a cross-sectional view showing the basic configuration of the sensor section; FIG. 2B is a spectrum of diffracted light; and FIG.
The figure shows the characteristics of the optical filter, and FIG. 3 is a sectional view showing the specific configuration of the sensor section.

イバ温度センサを示し、第5A図はそのセンサ部の構成
を示す断面図であり、第5B図はその温度検出部および
信号処理部を一部ブロック図で示す構成図であり、かつ
第5C図および第5D図は検出原理を示す図である。
FIG. 5A is a sectional view showing the structure of the sensor section, FIG. 5B is a block diagram partially showing the temperature detection section and signal processing section thereof, and FIG. 5C is a block diagram showing the temperature sensor. and FIG. 5D are diagrams showing the detection principle.

図において、IOAはセンサ部、1a〜1dは光ファイ
バ、4は回折格子、LSは光源、23aと23bは光フ
ァイバカップラ、PFは光学フィルタ、2OAと20B
は温度検出部、30Aと30Bは信号処理部である。
In the figure, IOA is a sensor section, 1a to 1d are optical fibers, 4 is a diffraction grating, LS is a light source, 23a and 23b are optical fiber couplers, PF is an optical filter, 2OA and 20B
is a temperature detection section, and 30A and 30B are signal processing sections.

なお、図中、同一符号は同一、又は相当部分を示す。In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

説明する図であって、第2A図は光源のスペクト第1A図23Qと23b : 1t7qイバカヅブラ第図第A図第B図第C図建学フィルタの特性第図「丸癌架C塑翅FIG. 2A is a diagram for explaining the spectrum of the light source.1Afigure23Q and 23b: 1t7q ibaKazubraNo.figureNo.AfigureNo.BfigureNo.CfigureCharacteristics of construction filterNo.figure"Maru cancer frame C plastic wing

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims](1)広いスペクトルを有する光源と、この光源に一端
が接続され、前記光源から発せられた光を伝搬させる光
ファイバと、この光ファイバの他端部に形成された回折
格子を有するセンサ部と、前記回折格子によって回折さ
れた光を前記光ファイバに逆方向に伝搬させた後、前記
回折光のスペクトル内にしゃ断波長を有する光学フィル
タまで導く手段と、前記光学フィルタを透過した光と、
前記光学フィルタを透過しないか前記光学フィルタで反
射された光とから前記センサ部の温度を検出する温度検
出部とを備えた光ファイバ温度センサ。
(1) A light source with a wide spectrum, an optical fiber connected at one end to the light source to propagate the light emitted from the light source, and a sensor section having a diffraction grating formed at the other end of the optical fiber. , means for propagating the light diffracted by the diffraction grating in the opposite direction to the optical fiber and then guiding it to an optical filter having a cutoff wavelength within the spectrum of the diffracted light; and the light transmitted through the optical filter;
An optical fiber temperature sensor comprising: a temperature detection section that detects the temperature of the sensor section from light that does not pass through the optical filter or is reflected by the optical filter.
JP16768588A1988-07-071988-07-07 fiber optic temperature sensorPendingJPH0219730A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP16768588AJPH0219730A (en)1988-07-071988-07-07 fiber optic temperature sensor

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP16768588AJPH0219730A (en)1988-07-071988-07-07 fiber optic temperature sensor

Publications (1)

Publication NumberPublication Date
JPH0219730Atrue JPH0219730A (en)1990-01-23

Family

ID=15854328

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP16768588APendingJPH0219730A (en)1988-07-071988-07-07 fiber optic temperature sensor

Country Status (1)

CountryLink
JP (1)JPH0219730A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6174080B1 (en)*1998-08-062001-01-16Applied Materials, Inc.Apparatus and methods for measuring substrate temperature
KR100335366B1 (en)*1999-08-022002-05-06오영환Signal processing appatatus of optical fiber temperature sensor
US8277119B2 (en)*2006-12-192012-10-02Vibrosystm, Inc.Fiber optic temperature sensor
US8727610B2 (en)*2002-06-182014-05-20Hamamatsu Photonics K.K.Laser processing apparatus,laser processing temperature measuring apparatus,laser processing method,and laser processing temperature measuring method
JP2015038487A (en)*2009-10-262015-02-26ザ・ボーイング・カンパニーTheBoeing CompanyOptical sensor interrogation system
WO2016147261A1 (en)*2015-03-132016-09-22オリンパス株式会社Optical bend measurement device and tubular insertion body
US10663325B2 (en)2017-09-192020-05-26Analog Devices, Inc.Fiber Bragg grating interrogation and sensing system and methods comprising a first photodetector for measuring filtered light and a second photodetector for measuring unfiltered light
KR20200110087A (en)*2019-03-152020-09-23한국전력공사Fiber-optic temperature sensor and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6174080B1 (en)*1998-08-062001-01-16Applied Materials, Inc.Apparatus and methods for measuring substrate temperature
KR100335366B1 (en)*1999-08-022002-05-06오영환Signal processing appatatus of optical fiber temperature sensor
US8727610B2 (en)*2002-06-182014-05-20Hamamatsu Photonics K.K.Laser processing apparatus,laser processing temperature measuring apparatus,laser processing method,and laser processing temperature measuring method
US8277119B2 (en)*2006-12-192012-10-02Vibrosystm, Inc.Fiber optic temperature sensor
JP2015038487A (en)*2009-10-262015-02-26ザ・ボーイング・カンパニーTheBoeing CompanyOptical sensor interrogation system
WO2016147261A1 (en)*2015-03-132016-09-22オリンパス株式会社Optical bend measurement device and tubular insertion body
JPWO2016147261A1 (en)*2015-03-132018-03-08オリンパス株式会社 Optical bending measuring device and tubular insert
US10401140B2 (en)2015-03-132019-09-03Olympus CorporationBending detecting system, light guide body, tubular apparatus, light detecting apparatus, light detecting method, and optical bending measuring apparatus
US10663325B2 (en)2017-09-192020-05-26Analog Devices, Inc.Fiber Bragg grating interrogation and sensing system and methods comprising a first photodetector for measuring filtered light and a second photodetector for measuring unfiltered light
KR20200110087A (en)*2019-03-152020-09-23한국전력공사Fiber-optic temperature sensor and method for manufacturing the same

Similar Documents

PublicationPublication DateTitle
US5677769A (en)Optical sensor utilizing rare-earth-doped integrated-optic lasers
US4238856A (en)Fiber-optic acoustic sensor
US6016197A (en)Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
US5345519A (en)Temperature-compensated fiber optic external cavity strain sensors and an intensity-based fiber optic sensor system
Chaudhari et al.Multi-wavelength optical fiber liquid refractometry based on intensity modulation
CN108844919A (en)The reflection type inclined fiber grating index sensor of covering and production, measurement method
JP5451649B2 (en) Modal metric fiber sensor
US4647203A (en)Fiber optic sensor
KR101109093B1 (en)Optical fiber sensor and measuring device using the same
CN108680275A (en)Optical-fiber probe type temperature and strain gauge based on single dislocation welding
JPH0219730A (en) fiber optic temperature sensor
CN111537445A (en)Ring resonant cavity enhanced liquid component and concentration sensor based on evanescent wave
US5189299A (en)Method and apparatus for sensing strain in a waveguide
US5171981A (en)Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection
CN1049977C (en) Method and device for determining the refractive index of different media
CN118243254A (en) D-type cavity optical fiber seawater temperature sensor based on parallel vernier and its manufacturing method
Rong et al.Reflective refractometer based on a thin-core fiber tailored multimode fiber Bragg grating
Ding et al.Sapphire fiber Bragg grating coupled with graded-index fiber lens
JPH09257696A (en)Surface plasmon resonance sensor
Meltz et al.Multi-wavelength twin-core fiber optic sensors
JPS62159027A (en) Oil deterioration level detection device
JPH0756041A (en) Dual core optical fiber and temperature measuring device using the same
Chen et al.Research and fabrication of integrated optical chip of hybrid-integrated optical acceleration seismic geophone
JPH02157620A (en) fiber optic sensor
Nath et al.Fiber optic refractometers: A brief qualitative review

[8]ページ先頭

©2009-2025 Movatter.jp