Movatterモバイル変換


[0]ホーム

URL:


JPH02196092A - Atomic layer epitaxial growth device of compound semiconductor - Google Patents

Atomic layer epitaxial growth device of compound semiconductor

Info

Publication number
JPH02196092A
JPH02196092AJP1417789AJP1417789AJPH02196092AJP H02196092 AJPH02196092 AJP H02196092AJP 1417789 AJP1417789 AJP 1417789AJP 1417789 AJP1417789 AJP 1417789AJP H02196092 AJPH02196092 AJP H02196092A
Authority
JP
Japan
Prior art keywords
raw material
atomic layer
epitaxial growth
crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1417789A
Other languages
Japanese (ja)
Other versions
JP2725340B2 (en
Inventor
Kikuo Takemoto
菊郎 竹本
Hisashi Seki
関 壽
Akinori Koketsu
明伯 纐纈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries LtdfiledCriticalSumitomo Electric Industries Ltd
Priority to JP1417789ApriorityCriticalpatent/JP2725340B2/en
Publication of JPH02196092ApublicationCriticalpatent/JPH02196092A/en
Application grantedgrantedCritical
Publication of JP2725340B2publicationCriticalpatent/JP2725340B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese
【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野)本発明は、化合物半導体、例えば、GaAs、 InG
aAlAs、 GaP、 Inl’、へIP等の1■−
V族の二元化合物半導体、InGaAs等の三元混晶半
導体あるいはInGaAsP等の四元混晶半導体、異な
る二元化合物半導体を所定の原子層数で積層させた規則
的混晶半導体を製造する原子層エビタ牛シャル成長装置
Rに関する。(従来の技術)従来、化合物半導体の原子層エピタキシャル成長技術は
、次の方法が使用されている。■基板結晶を反応管内に
固定し、第1の原料成分ガスを導入して基板結晶トに原
料成分を吸着し、その後、水素などのキャリヤガスを流
して反応管内の残留原料ガスを掃気するか、真空排気に
より残留原料ガスを排出し、次いで、第2の原料ガスを
導入して、J1板結晶に吸着する原料成分と反応させて
化合物半導体を形成し、その後、キャリヤガスによる掃
気もしくは真空排気で原料ガスを排出(て、これを繰り
返すことにより、所定のエピタキシャル成長層を得る方
法(米国特許第4058430号明細11F)、■反応
管の上流側に複数の原料成分吸着部と反応部を設け、保
持棒の先端に固定した基板結晶を下流側から該吸着部と
反応部に交互に押入して原子層エピタキシャル成長させ
る方法(Japan Journal or Appl
iedPhysics、 Vol、 25(1986)
1.212)である。(発明が解決しようとする課題)■の方法では、原料成分を変更するたびに反応管内に残
留するガスを完全に排気しなければならず、所定のエピ
タキシャル成長層を得るのに長時間を必要とする。■の
方法は、基板結晶を下流側から吸着部又は反応部に押入
する構造を採用するために、基板結晶表面における原料
成分ガスの切れが悪く、原料成分ガスを切換えて連続的
に結晶成長を行うときには、前後の原料成分ガスの混合
を避けることができず、また、前段の原寧1成分ガスを
完全に排気してから次の原料成分ガスを供給するのでは
、結晶成長に相当の時間を要することになる。本発明は、に記の欠点を解消し、基板結晶表面における
原!:1成分ガスの切れを確実にして結晶成長の制御性
を向」ニさせた化合物半導体の原子層エピタキシャル成
長装置を提供しようとするものである。(課題を解決するためのL段)本発明は、反応管の下流側を隔壁により並列的な複数の
隔室に区画し、各隔室には原料ガス導入[1を設けて原
料成分吸着部もしくは反応部となし、保持棒の先端に固
定した基板結晶を反応管の上流側から該吸着部もしくは
反応部に交互に押入する保持棒駆動手段を設け、かつ、
反応管のI−流側にキャリヤガス導入11を設けたこと
を特徴とする化合物半導体の原子層エピタキシャル成長
装置である。(作用)第1図は本発明のIj1体例であるガリウム砒素のh;
を子層エピタキシャル成長装置の概念図である。石英反
応管lの下流側に隔壁を設けて原寥゛1成分吸着部8及
び原料成分反応部9を形成し、ガリウム成分導入口6を
吸着部8に、また、砒素成分導入ロアを反応部9にそれ
ぞれ設けて、反応管の上流から水素等のキャリアガスを
導入する。なお、吸着部のガリウム成分導入口より上流
側及び反応部の砒素成分導入[−1より1−流側にキャ
リアガスの補助導入[14及び5を設けて、原料成分ガ
スの切れをより促進することが好ましい。基板結晶2は
クランク形状の石英製保持棒3の先端に取り付けられる
。保持棒3は回転及び上下移動の可能な駆動装置に接続
されている。基板結晶2は保持棒を回転し、降下するこ
とによりA点から吸着部のB点若しくは反応部の0点に
移動することができる。砒化ガリウムの原子層エピタキシャル成長は、反応管の
上流側からキャリアガスを流すとともに、それぞれの導
(Industrial Application Field) The present invention is directed to compound semiconductors, such as GaAs, InG
1■- of aAlAs, GaP, Inl', IP, etc.
Atoms used to produce a regular mixed crystal semiconductor in which a group V binary compound semiconductor, a ternary mixed crystal semiconductor such as InGaAs, or a quaternary mixed crystal semiconductor such as InGaAsP, or a regular mixed crystal semiconductor in which different binary compound semiconductors are laminated with a predetermined number of atomic layers. Concerning Layer Evita Beef Shall Growth Apparatus R. (Prior Art) Conventionally, the following method has been used as an atomic layer epitaxial growth technique for compound semiconductors. ■ Fix the substrate crystal in the reaction tube, introduce the first raw material component gas to adsorb the raw material component onto the substrate crystal, and then flow a carrier gas such as hydrogen to scavenge the remaining raw material gas in the reaction tube. , exhaust the residual raw material gas by vacuum evacuation, then introduce a second raw material gas and react with the raw material components adsorbed on the J1 plate crystal to form a compound semiconductor, and then scavenge with a carrier gas or vacuum exhaust. (U.S. Pat. No. 4,058,430 Specification 11F), (1) providing a plurality of raw material component adsorption parts and reaction parts on the upstream side of the reaction tube; A method of atomic layer epitaxial growth in which a substrate crystal fixed to the tip of a holding rod is alternately pushed into the adsorption section and the reaction section from the downstream side (Japan Journal or Appl.
iedPhysics, Vol. 25 (1986)
1.212). (Problems to be Solved by the Invention) In method (2), the gas remaining in the reaction tube must be completely exhausted every time the raw material components are changed, and it takes a long time to obtain the desired epitaxial growth layer. do. Method (2) adopts a structure in which the substrate crystal is pushed into the adsorption section or the reaction section from the downstream side, so the raw material gas is not easily cut off at the surface of the substrate crystal, and the raw material gas is switched to continuously grow the crystal. When performing this process, it is impossible to avoid mixing of the raw material component gas before and after the raw material component gas, and if the next raw material component gas is supplied after completely exhausting the first raw material component gas in the previous stage, it will take a considerable amount of time for crystal growth. It will require. The present invention eliminates the drawbacks described in the following, and eliminates the defects on the surface of the substrate crystal. : An object of the present invention is to provide an atomic layer epitaxial growth apparatus for compound semiconductors that ensures the exhaustion of one component gas and improves the controllability of crystal growth. (L stage for solving the problem) The present invention divides the downstream side of a reaction tube into a plurality of parallel compartments by partition walls, and each compartment is provided with a raw material gas introduction [1] to form a raw material component adsorption section. Alternatively, a holding rod driving means is provided for alternately pushing the substrate crystal fixed to the tip of the holding rod from the upstream side of the reaction tube into the adsorption section or the reaction section, and
This is an atomic layer epitaxial growth apparatus for compound semiconductors, characterized in that a carrier gas inlet 11 is provided on the I-flow side of the reaction tube. (Function) Figure 1 shows h of gallium arsenide, which is an example of Ij of the present invention;
FIG. 2 is a conceptual diagram of a sub-layer epitaxial growth apparatus. A partition wall is provided on the downstream side of the quartz reaction tube l to form a raw material single component adsorption section 8 and a raw material component reaction section 9, the gallium component introduction port 6 is connected to the adsorption section 8, and the arsenic component introduction lower is connected to the reaction section. 9, and a carrier gas such as hydrogen is introduced from upstream of the reaction tube. In addition, the auxiliary introduction of carrier gas [14 and 5] is provided on the upstream side of the gallium component inlet of the adsorption section and the arsenic component introduction of the reaction section [-1 to the 1-stream side] to further promote the exhaustion of the raw material component gas. It is preferable. The substrate crystal 2 is attached to the tip of a crank-shaped quartz holding rod 3. The holding rod 3 is connected to a drive device capable of rotation and vertical movement. The substrate crystal 2 can be moved from point A to point B of the adsorption section or point 0 of the reaction section by rotating the holding rod and descending. In the atomic layer epitaxial growth of gallium arsenide, a carrier gas is flowed from the upstream side of the reaction tube, and each introduction

【1よりキャリアガスにより塩化ガリウム及びアルシ
ンを流し、所定の温度分布に加熱した後、駆動装置を作
動させて基板結晶を反応管のA点から吸着部のB点に押
入し、所定期間基板結晶の表面にガリウムを吸着させた
後、−jj A点に戻し、次いで0点に押入することに
より基板結晶表面に吸着するガリウムに砒素が反応して
原子層エビタ牛シャル成長によるガリウム砒素が形成さ
れる。このような原子層エピタキシャル成長では、基板
結晶をB点から0点に移動するときに、反応管のに流側
に基板結晶を移動する構造を採用し、上流側からキャリ
アガスを流しているために、原料成分ガスをJ5板結晶
表面からすばや(除くことができる。従って、基板結晶をB点と0点との間を短時間で移動さ
せることが可能になり、結晶成長の効率が飛躍的に向1
−.シた。そして、結晶基板の移動に際して原料成分の
混合を完全に防止することができるところから、原子層
エピタキシャル成長だけを確実に実行することができ、
結晶成長の制御性が大幅に改善された。なお、吸着部及
び反応部の補助導入口からキャリアガスを導入すること
により、基板結晶の引き」−げに際して随伴する原料成
分ガスをも確実に除くことができ、結晶成長の制御性を
一層向−1ニさせることができる。混晶原子層エピタキシャル成長は、第1図のガリウム成
分導入口若しくは砒素成分導入口から、1■族元素若し
くはV族元素の原料成分の混合ガスを導入することによ
り、容易に成長させることができる。第2図は、ガリウムインジュウム砒素燐規則混晶原子層
をエピタキシャル成長させる装置の概念図である。この
装置は反応管の下流側を隔壁により4つに分割したもの
で、それぞれに原料成分ガス及びキャリアガスの導入口
を設け、基板結晶をA点とB点〜E点の間を適宜移動さ
せることが可能である。(GaAs)(+、nP)、(
In^S)構造の規則混晶をエピタキシャル成長させる
ときには、基板結晶はA点−13点−へ点−C点−A点
=E点−A点−I)点−A点−E点−A点−0点に順次
移動することになる。原料成分ガスの切れ、及び、結晶
成長の制御性については、第1は1と同様である。(実施例1)第1図の装置を用いて、ド記の条件のドでガリウム砒素
原子層エピタキシャル成長を行った。■族原料二金属ガリウムと塩化水素との反応により生成
した一塩化ガリウムを水素ガスで供給する。−塩化ガリウム系の流mは20Osccg+である。■族原料:金属砒素を420℃で昇華させた砒素蒸気を
水素ガスで供給する。砒素蒸気の流■は10scc−である。基板結晶: GaAs単結晶(100)2’OPF<1
10>成長温度:450℃原料分圧:11族、V族ともに lXl0−’ate反
応管上流側からのキャリアガス流mニア00sccm、
キャリアガス補助導入口からの流fi : 2QQl+
cc園接触時間=5秒(111族原料成分)5秒(■族原料成分)移動時間:3秒2400サイクルのエピタキシャル成長を行って0.6
8μ−のGaAs成長層を得た。1サイクル当たりの成
長mは2.83人あり、l原子層の理論値である2、 
826人とよ(一致し、1サイクル当たりl原子層の成
長がなされたことが分かる。(実施例2)第1図の装置を用いて、下記の条件の下でインジュウム
燐原子層エピタキシャル成長を行った。■族原料:金属インジュウムと塩化水素との反応により
生成した一塩化インジュウムを水素ガスで供給する。−塩化ガリウム系流11更は200sccmである。V族原料:フ寸スフィン系を流11200sccmで供
給する。基板結晶:lnl”単結晶(Ion)2°OFF<11
0)成長温度:400℃原料分圧:■1族、■族ともに lXl0−’ats反
応管上流側からのキャリアガス流ffi:600scc
簡キャリアガス浦助導入口からの流fit : 200
sccm接触時間=5秒(Ill族原料成分)5秒(■族原料成分)移動時間:3秒3400サイクルのエピタキシャル成長を行って■、0
μ−のlnP成長層を得た。1サイクル当たりの成長m
は2.94人あり、l原子層の理論値である2、 93
5人とよく一致し、1サイクル当たり】原子層の成長が
なされたことが分かる。(実施例3)第1図の装置を用いて、下記の条件の下でインジュウム
ガリウム砒素原子層エピタキシャル成長を行った。■族原料:金属インジュウム及び金属ガリウムと塩化水
素との反応により生成した一塩化インジュウム及び−塩化ガリウムの4i合ガスを水素ガスで供給する。−塩化インジコウム系の流量は100gcc鵬、−塩化ガリウム系の流量は10100
5cである。V族原料:アルシン系流用10hacmで供給する。基板結晶: lnP中結品(100)2’OFF<11
0>成長温度=420℃原料分圧:111族、■族ともに lXl0−’aLg
e反応管上流側からのキャリアガス流m : I000sccmキャリアガス
補助導入目からの流59 : 300scc烏接触時間
:5秒(111族原料成分)5秒(V族原料成分)移動時間:3秒2400サイクルのエピタキシャル成長を行って0.7
μ−のIno、s+Gae、1sA8成長層を得た。l
サイクル当たりの成長mは2.92人あり、1原子層の
理論値である2、 930人とよく一致し、1サイクル
当たりl原子層の成長がなされたことが分かる。(実施例4)第1図の装置を用いて、下記の条件の下でガリウム砒素
燐原子層エピタキシャル成長を行った。■族原料:金属ガリウムと塩化水素との反応により生成
したー塩化ガリウムを水素ガスで供給する。−塩化ガリウム系の流mは101005cである。V族原料:420℃の金属砒素と280℃の赤燐から昇
華した砒素及び燐蒸気を流量それぞれ80s+ccs及び70scc−で供給する。基板結晶: G a A s Ill結晶(+00)2
°OFF<110>成長温度:450℃原料分圧=11!族、■族ともに lXl0−’aL−
反応管上流側からのキャリアガス流m : 80Qsccmキャリアガス補
助導入[1からの流rr1: 250scc−接触時間
=5秒(■族原料成分)5秒(V族h;i寥°1成分)移動時間:3秒1800サイクルのエピタキシャル成長を行って025
μmのGaAs。、sPo、s成長層を得た。lサイク
ル当たりの成長量は2.78人あり、l原子層の理論値
である2、 776人とよく一致し、1サイクル当たり
l原子層の成長がなされたことが分かる。(実施例5)第2図の装置を用いて、下記の条件の下で(GaAs)
 + (InP) + (InAs) +構造の規則混
晶の原子層エピタキシャル成長を行った。■族原料1:金属ガリウムと塩化水素との反応により生
成した一塩化ガリウムを水素ガスで供給する。−塩化ガリラム系の流mは101005cである。■1族原料2:金属インジュウムと塩化水素との反応に
より生成した一塩化インジュウムを水素ガスで供給する。−塩化インジュウム系の流mは、10080CIである。■族原料1:420℃の金属砒素から昇華した砒素蒸気
を流1975sccmで供給する。■練原料2 : 280℃の赤燐から昇華した燐蒸気を
流1180scc−で供給する。基板結晶: InP単結晶(100)2@OFF<10
0>成長温度=400℃原料分圧二■族、■族ともにlXl0−’ats反応管
上流側からのキャリアガス流fi :900sccmキ
ャリアガス補助導入[1からの流[1: 300sec
m接触時間:5秒(In族原料成分)5秒(■族原料I戊分)移動時間:3秒各s sooサイクル合計150Gサイクルのエピタキ
シャル成長を行って0.44tt−の(GaAs) r
 (1nP) +(InAs)、成長層を得た。lサイ
クル当たりの成長■は2.93人あり、平均1原子層の
理論値である2、 930人とよく一致し、1サイクル
当たり1原子層の成長がなされたことが分かる。また、
フォトルミネッセンス測定の結東、発光波長1.32μ
鋼が観測され[1的とした規則混晶の成長がなされたこ
とが確認された。(発明の効果)本発明は、上記の構成を採用することにより、基板結晶
を複数の原料成分吸着部若しくは反応部からキャリアガ
スを導入する反応管の上流側に引き出し、次の反応部若
しくは吸着部に押入する構造を有する。ために、基板結
晶表面における原料成分ガスの切れが良くなり、基板結
晶を高速で移動することができるようになった。このた
め成長時間の短縮及び原子層エピタキシャル成長以外の
成長を確実に防ぐことができるようになった。
[Step 1] After flowing gallium chloride and arsine with a carrier gas and heating them to a predetermined temperature distribution, the drive device is activated to push the substrate crystal from point A of the reaction tube to point B of the adsorption section, and the substrate crystal is heated for a predetermined period of time. After adsorbing gallium on the surface of -jj, return it to point A, and then push it to point 0, arsenic reacts with the gallium adsorbed on the substrate crystal surface, and gallium arsenide is formed by atomic layer growth. Ru. In this type of atomic layer epitaxial growth, when moving the substrate crystal from point B to point 0, a structure is adopted in which the substrate crystal is moved to the flow side of the reaction tube, and the carrier gas is flowed from the upstream side. , the raw material component gas can be quickly removed from the J5 plate crystal surface. Therefore, it is possible to move the substrate crystal between point B and point 0 in a short time, dramatically increasing the efficiency of crystal growth. Direction 1
−. Shita. Since mixing of raw material components can be completely prevented when moving the crystal substrate, only atomic layer epitaxial growth can be performed reliably.
Controllability of crystal growth was significantly improved. By introducing the carrier gas through the auxiliary inlets of the adsorption section and reaction section, it is possible to reliably remove the raw material component gas that accompanies the pulling of the substrate crystal, further improving the controllability of crystal growth. -1 can be made. Mixed crystal atomic layer epitaxial growth can be easily carried out by introducing a mixed gas of raw material components of group 1 elements or group V elements from the gallium component inlet or arsenic component inlet shown in FIG. FIG. 2 is a conceptual diagram of an apparatus for epitaxially growing a gallium indium arsenic phosphorus ordered mixed crystal atomic layer. In this device, the downstream side of the reaction tube is divided into four parts by a partition wall, and each part is provided with an inlet for raw material component gas and carrier gas, and the substrate crystal is moved appropriately between points A and B to E. Is possible. (GaAs) (+, nP), (
When epitaxially growing an ordered mixed crystal with In^S) structure, the substrate crystal changes from point A to point 13 to point C to point A = point E to point A to point I) to point A to point E to point A. It will sequentially move to the -0 point. The first case is the same as the first case regarding the exhaustion of the raw material component gas and the controllability of crystal growth. (Example 1) Using the apparatus shown in FIG. 1, gallium arsenide atomic layer epitaxial growth was performed under the conditions described below. Gallium monochloride produced by the reaction of group (2) dimetallic gallium and hydrogen chloride is supplied as hydrogen gas. - The flow m of the gallium chloride system is 20 Osccg+. Group (3) raw material: Arsenic vapor obtained by sublimating metal arsenic at 420°C is supplied with hydrogen gas. The flow of arsenic vapor is 10 scc. Substrate crystal: GaAs single crystal (100) 2'OPF<1
10> Growth temperature: 450°C Raw material partial pressure: For both Group 11 and Group V lXl0-'ate carrier gas flow from the upstream side of the reaction tube mnia 00 sccm,
Flow fi from carrier gas auxiliary inlet: 2QQl+
CC garden contact time = 5 seconds (group 111 raw material component) 5 seconds (group ■ raw material component) Transfer time: 3 seconds After 2400 cycles of epitaxial growth, 0.6
An 8μ-GaAs growth layer was obtained. The growth m per cycle is 2.83 people, which is the theoretical value of 1 atomic layer 2,
(Example 2) Using the apparatus shown in Fig. 1, epitaxial growth of an indium phosphorus atomic layer was performed under the following conditions. Group ■ raw material: Indium monochloride produced by the reaction between metallic indium and hydrogen chloride is supplied with hydrogen gas. - Gallium chloride system flow is 11 or 200 sccm. Group V raw material: Fusphine system is supplied at a flow rate of 11,200 sccm. Substrate crystal: lnl” single crystal (Ion) 2°OFF<11
0) Growth temperature: 400°C Raw material partial pressure: For both groups ■1 and ■, lXl0-'ats carrier gas flow ffi from the upstream side of the reaction tube: 600scc
Flow fit from simple carrier gas Urasuke inlet: 200
sccm contact time = 5 seconds (Ill group raw material component) 5 seconds (■ group raw material component) Transfer time: 3 seconds After 3400 cycles of epitaxial growth, ■, 0
A μ-lnP growth layer was obtained. Growth m per cycle
There are 2.94 people, which is the theoretical value of the l atomic layer, 2.93
It is found that the growth of [5] atomic layers was achieved per cycle. (Example 3) Using the apparatus shown in FIG. 1, indium gallium arsenide atomic layer epitaxial growth was performed under the following conditions. Group (1) raw material: A 4i gas mixture of indium monochloride and -gallium chloride produced by the reaction of metal indium and metal gallium with hydrogen chloride is supplied as hydrogen gas. -The flow rate of indium chloride system is 100gcc, -The flow rate of gallium chloride system is 10100gcc.
It is 5c. Group V raw material: Arsine-based feedstock is supplied at 10 hacm. Substrate crystal: lnP medium crystal (100) 2'OFF<11
0>Growth temperature = 420°C Raw material partial pressure: Both group 111 and group II lXl0-'aLg
e Carrier gas flow from the upstream side of the reaction tube m: I000sccm Flow from the carrier gas auxiliary introduction point 59: 300scc Contact time: 5 seconds (Group 111 raw material component) 5 seconds (Group V raw material component) Travel time: 3 seconds 2400 0.7 cycles of epitaxial growth
μ- Ino, s+Gae, 1sA8 growth layers were obtained. l
The growth m per cycle was 2.92, which is in good agreement with the theoretical value of 2,930 for 1 atomic layer, indicating that 1 atomic layer was grown per cycle. (Example 4) Using the apparatus shown in FIG. 1, gallium arsenide phosphorus atomic layer epitaxial growth was performed under the following conditions. Group ■ raw material: Gallium chloride produced by the reaction between metal gallium and hydrogen chloride is supplied with hydrogen gas. - The flow m of the gallium chloride system is 101005c. Group V raw materials: Arsenic and phosphorus vapor sublimated from metallic arsenic at 420°C and red phosphorus at 280°C are supplied at flow rates of 80s+ccs and 70scc-, respectively. Substrate crystal: Ga As Ill crystal (+00)2
°OFF<110> Growth temperature: 450°C Raw material partial pressure = 11! Both groups and ■ group lXl0-'aL-
Carrier gas flow m from the upstream side of the reaction tube: 80Qsccm Carrier gas auxiliary introduction [flow from 1 rr1: 250scc - Contact time = 5 seconds (group ■ raw material components) 5 seconds (group V h; i group 1 component) Movement Time: 3 seconds 1800 cycles of epitaxial growth
μm of GaAs. , sPo, s growth layers were obtained. The amount of growth per 1 cycle was 2.78, which agrees well with the theoretical value of 2,776 atomic layers, indicating that 1 atomic layer was grown per cycle. (Example 5) Using the apparatus shown in Figure 2, under the following conditions (GaAs)
Atomic layer epitaxial growth of an ordered mixed crystal having a + (InP) + (InAs) + structure was performed. Group (1) raw material 1: Gallium monochloride produced by the reaction between metal gallium and hydrogen chloride is supplied with hydrogen gas. - The flow m of the gallium chloride system is 101005c. ■Group 1 raw material 2: Indium monochloride produced by the reaction of metal indium and hydrogen chloride is supplied with hydrogen gas. - The flow m of the indium chloride system is 100 80 CI. Group (1) raw material 1: Arsenic vapor sublimated from metal arsenic at 420° C. is supplied at a flow rate of 1975 sccm. ■Kneading raw material 2: Phosphorus vapor sublimated from red phosphorus at 280°C is supplied in a flow of 1180scc. Substrate crystal: InP single crystal (100) 2@OFF<10
0>Growth temperature = 400°C Raw material partial pressure For both groups 2 and 2, lXl0-'ats Carrier gas flow fi from the upstream side of the reaction tube: 900 sccm Carrier gas auxiliary introduction [Flow from 1 [1: 300 sec]
m Contact time: 5 seconds (In group raw material component) 5 seconds (■ group raw material I) Transfer time: 3 seconds each Soo cycle Epitaxial growth of a total of 150 G cycles was performed to produce 0.44 tt-(GaAs) r
(1nP) + (InAs), a grown layer was obtained. The growth ■ per 1 cycle was 2.93 people, which is in good agreement with the theoretical value of 2,930 people for an average of 1 atomic layer, indicating that growth of 1 atomic layer was achieved per cycle. Also,
Yuto of photoluminescence measurement, emission wavelength 1.32μ
Steel was observed, and it was confirmed that uniformly ordered mixed crystals had grown. (Effects of the Invention) By employing the above configuration, the present invention pulls the substrate crystal from a plurality of raw material component adsorption sections or reaction sections to the upstream side of a reaction tube into which carrier gas is introduced, and transfers the substrate crystal to the next reaction section or adsorption section. It has a structure that can be pushed into the part. As a result, the raw material component gas can be easily cut off at the surface of the substrate crystal, making it possible to move the substrate crystal at high speed. Therefore, it has become possible to shorten the growth time and reliably prevent growth other than atomic layer epitaxial growth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の具体例である原子層エピタ
キシャル成長装置の概念図である。第2図水素第1図
FIGS. 1 and 2 are conceptual diagrams of an atomic layer epitaxial growth apparatus that is a specific example of the present invention. Figure 2 Hydrogen Figure 1

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims](1)反応管の下流側を隔壁により並列的な複数の隔室
に区画し、各隔室には原料ガス導入口を設けて原料成分
吸着部もしくは反応部となし、保持棒の先端に固定した
基板結晶を反応管の上流側から該吸着部もしくは反応部
に交互に押入する保持棒駆動手段を設け、かつ、反応管
の上流側にキャリヤガス導入口を設けたことを特徴とす
る化合物半導体の原子層エピタキシャル成長装置。
(1) The downstream side of the reaction tube is divided into multiple parallel compartments by partition walls, each compartment is provided with a raw material gas inlet to serve as a raw material component adsorption part or reaction part, and is fixed to the tip of a holding rod. A compound semiconductor comprising: a holding rod driving means for alternately pushing the substrate crystals into the adsorption section or the reaction section from the upstream side of the reaction tube; and a carrier gas inlet on the upstream side of the reaction tube. atomic layer epitaxial growth equipment.
(2)各隔室内で原料ガス導入口より上流側にキャリヤ
ガスの補助導入口を設けたことを特徴とする請求項(1
)記載の化合物半導体の原子層エピタキシャル成長装置
(2) Claim (1) characterized in that an auxiliary carrier gas inlet is provided upstream of the raw material gas inlet in each compartment.
) The atomic layer epitaxial growth apparatus for compound semiconductors described in ).
JP1417789A1989-01-251989-01-25 Atomic layer epitaxial growth equipment for compound semiconductorsExpired - Fee RelatedJP2725340B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP1417789AJP2725340B2 (en)1989-01-251989-01-25 Atomic layer epitaxial growth equipment for compound semiconductors

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP1417789AJP2725340B2 (en)1989-01-251989-01-25 Atomic layer epitaxial growth equipment for compound semiconductors

Publications (2)

Publication NumberPublication Date
JPH02196092Atrue JPH02196092A (en)1990-08-02
JP2725340B2 JP2725340B2 (en)1998-03-11

Family

ID=11853862

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP1417789AExpired - Fee RelatedJP2725340B2 (en)1989-01-251989-01-25 Atomic layer epitaxial growth equipment for compound semiconductors

Country Status (1)

CountryLink
JP (1)JP2725340B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6855368B1 (en)2000-06-282005-02-15Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US6878206B2 (en)2001-07-162005-04-12Applied Materials, Inc.Lid assembly for a processing system to facilitate sequential deposition techniques
US6911391B2 (en)2002-01-262005-06-28Applied Materials, Inc.Integration of titanium and titanium nitride layers
US6916398B2 (en)2001-10-262005-07-12Applied Materials, Inc.Gas delivery apparatus and method for atomic layer deposition
US6936906B2 (en)2001-09-262005-08-30Applied Materials, Inc.Integration of barrier layer and seed layer
US6951804B2 (en)2001-02-022005-10-04Applied Materials, Inc.Formation of a tantalum-nitride layer
US6998579B2 (en)2000-12-292006-02-14Applied Materials, Inc.Chamber for uniform substrate heating
US7022948B2 (en)2000-12-292006-04-04Applied Materials, Inc.Chamber for uniform substrate heating
US7085616B2 (en)2001-07-272006-08-01Applied Materials, Inc.Atomic layer deposition apparatus
US7101795B1 (en)2000-06-282006-09-05Applied Materials, Inc.Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7115499B2 (en)2002-02-262006-10-03Applied Materials, Inc.Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7201803B2 (en)2001-03-072007-04-10Applied Materials, Inc.Valve control system for atomic layer deposition chamber
US7208413B2 (en)2000-06-272007-04-24Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7211144B2 (en)2001-07-132007-05-01Applied Materials, Inc.Pulsed nucleation deposition of tungsten layers
US7262133B2 (en)2003-01-072007-08-28Applied Materials, Inc.Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7405158B2 (en)2000-06-282008-07-29Applied Materials, Inc.Methods for depositing tungsten layers employing atomic layer deposition techniques
US7439191B2 (en)2002-04-052008-10-21Applied Materials, Inc.Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US7595263B2 (en)2003-06-182009-09-29Applied Materials, Inc.Atomic layer deposition of barrier materials

Cited By (33)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7208413B2 (en)2000-06-272007-04-24Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7501343B2 (en)2000-06-272009-03-10Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7501344B2 (en)2000-06-272009-03-10Applied Materials, Inc.Formation of boride barrier layers using chemisorption techniques
US7033922B2 (en)2000-06-282006-04-25Applied Materials. Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US7101795B1 (en)2000-06-282006-09-05Applied Materials, Inc.Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7235486B2 (en)2000-06-282007-06-26Applied Materials, Inc.Method for forming tungsten materials during vapor deposition processes
US6855368B1 (en)2000-06-282005-02-15Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US7465666B2 (en)2000-06-282008-12-16Applied Materials, Inc.Method for forming tungsten materials during vapor deposition processes
US7405158B2 (en)2000-06-282008-07-29Applied Materials, Inc.Methods for depositing tungsten layers employing atomic layer deposition techniques
US7115494B2 (en)2000-06-282006-10-03Applied Materials, Inc.Method and system for controlling the presence of fluorine in refractory metal layers
US6998579B2 (en)2000-12-292006-02-14Applied Materials, Inc.Chamber for uniform substrate heating
US7022948B2 (en)2000-12-292006-04-04Applied Materials, Inc.Chamber for uniform substrate heating
US7781326B2 (en)2001-02-022010-08-24Applied Materials, Inc.Formation of a tantalum-nitride layer
US7094680B2 (en)2001-02-022006-08-22Applied Materials, Inc.Formation of a tantalum-nitride layer
US6951804B2 (en)2001-02-022005-10-04Applied Materials, Inc.Formation of a tantalum-nitride layer
US7201803B2 (en)2001-03-072007-04-10Applied Materials, Inc.Valve control system for atomic layer deposition chamber
US7211144B2 (en)2001-07-132007-05-01Applied Materials, Inc.Pulsed nucleation deposition of tungsten layers
US6878206B2 (en)2001-07-162005-04-12Applied Materials, Inc.Lid assembly for a processing system to facilitate sequential deposition techniques
US10280509B2 (en)2001-07-162019-05-07Applied Materials, Inc.Lid assembly for a processing system to facilitate sequential deposition techniques
US7085616B2 (en)2001-07-272006-08-01Applied Materials, Inc.Atomic layer deposition apparatus
US7352048B2 (en)2001-09-262008-04-01Applied Materials, Inc.Integration of barrier layer and seed layer
US7494908B2 (en)2001-09-262009-02-24Applied Materials, Inc.Apparatus for integration of barrier layer and seed layer
US6936906B2 (en)2001-09-262005-08-30Applied Materials, Inc.Integration of barrier layer and seed layer
US6916398B2 (en)2001-10-262005-07-12Applied Materials, Inc.Gas delivery apparatus and method for atomic layer deposition
US7094685B2 (en)2002-01-262006-08-22Applied Materials, Inc.Integration of titanium and titanium nitride layers
US7473638B2 (en)2002-01-262009-01-06Applied Materials, Inc.Plasma-enhanced cyclic layer deposition process for barrier layers
US6911391B2 (en)2002-01-262005-06-28Applied Materials, Inc.Integration of titanium and titanium nitride layers
US7732325B2 (en)2002-01-262010-06-08Applied Materials, Inc.Plasma-enhanced cyclic layer deposition process for barrier layers
US7429516B2 (en)2002-02-262008-09-30Applied Materials, Inc.Tungsten nitride atomic layer deposition processes
US7115499B2 (en)2002-02-262006-10-03Applied Materials, Inc.Cyclical deposition of tungsten nitride for metal oxide gate electrode
US7439191B2 (en)2002-04-052008-10-21Applied Materials, Inc.Deposition of silicon layers for active matrix liquid crystal display (AMLCD) applications
US7262133B2 (en)2003-01-072007-08-28Applied Materials, Inc.Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7595263B2 (en)2003-06-182009-09-29Applied Materials, Inc.Atomic layer deposition of barrier materials

Also Published As

Publication numberPublication date
JP2725340B2 (en)1998-03-11

Similar Documents

PublicationPublication DateTitle
JPH02196092A (en)Atomic layer epitaxial growth device of compound semiconductor
JPH0626190B2 (en) Atomic layer epitaxial growth method of ordered mixed crystal
JPH01313927A (en)Compound-semiconductor crystal growth method
Ozeki et al.Kinetic processes in atomic‐layer epitaxy of GaAs and AlAs using a pulsed vapor‐phase method
JPH0547665A (en)Vapor growth method
JPH04132681A (en)Device for epitaxial growth of compound semiconductor
CN113249793A (en)Transition metal chalcogenide single crystal and method for producing same
JP2537626B2 (en) Monoatomic layer thin film deposition system
JPH02271994A (en) Compound semiconductor vapor phase growth equipment
JPS59116192A (en) Molecular beam crystal growth method
JP2528912B2 (en) Semiconductor growth equipment
JPS62214616A (en) Metal organic vapor phase epitaxy equipment
JPS63119521A (en) Metal organic vapor phase epitaxy equipment
JPS6344988Y2 (en)
JPS5825223A (en)Vapor growth unit for 3-5 compound semiconductor
JPS6233421A (en)Formation of indium phosphide thin film
JPS63136616A (en)Epitaxial crystal growth method for compound semiconductor
JPS58161998A (en)Growth device for thin film crystal
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JPH0657635B2 (en) Vapor phase growth equipment
JPH04139096A (en) Metal-organic vapor phase epitaxy
Fuyuki et al.Atomic Level Control in Crystal Growth Utilizing Reconstruction of the Surface Superstructure
JPH0682622B2 (en) Method for forming gallium arsenide thin film
JPH04345017A (en) Manufacturing method of semiconductor device
JPS62150710A (en) Method for manufacturing superlattice semiconductors

Legal Events

DateCodeTitleDescription
LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp