Movatterモバイル変換


[0]ホーム

URL:


JPH02190748A - Implement for measuring oxygen concentration - Google Patents

Implement for measuring oxygen concentration

Info

Publication number
JPH02190748A
JPH02190748AJP1071889AJP1071889AJPH02190748AJP H02190748 AJPH02190748 AJP H02190748AJP 1071889 AJP1071889 AJP 1071889AJP 1071889 AJP1071889 AJP 1071889AJP H02190748 AJPH02190748 AJP H02190748A
Authority
JP
Japan
Prior art keywords
oxygen concentration
light
polymer matrix
reagent layer
phosphorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1071889A
Other languages
Japanese (ja)
Other versions
JPH0713597B2 (en
Inventor
Hideki Nakamura
英樹 中村
Masao Kaneko
正夫 金子
Hiroshi Sugise
杉瀬 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
RIKEN
Original Assignee
Terumo Corp
RIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, RIKENfiledCriticalTerumo Corp
Priority to JP1071889ApriorityCriticalpatent/JPH0713597B2/en
Publication of JPH02190748ApublicationCriticalpatent/JPH02190748A/en
Publication of JPH0713597B2publicationCriticalpatent/JPH0713597B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To measure the oxygen concn. in a liquid to be tested stably over a long period of time with good reproducibility by forming the implement so as to have a reagent layer in which a luminous body is chemically combined with a hydrophilic high-polymer matrix. CONSTITUTION:The reagent layer 101 consisting of the hydrophilic high-polymer matrix chemically combined with the luminous body is adhered to the front end of an optical fiber 208 or the like to constitute a sensor part 209. The sensor part 209 fixed with the reagent layer 101 consisting of the hydrophilic high-polymer matrix chemically combined with a ruthenium complex, for example, the sensor part 209 of the optical fiber 208 is immersed into the liquid 210 to be tested, such as blood, and stimulating light 104 formed by spectrally dividing the light from a light source 202 to the wavelength region of stimulating spectra is guided from another end and is guided up to the sensor part 209. The ruthenium complex generates red orange emitted light 105 at this time. The emitted light 105 generated therefrom advances in the optical fiber 208, is divided to the stimulating light component by an optical filter 213 and a suitable spectroscope. This light component is converted to an electric signal in a photodetector 214. The emission intensity is then measured and the oxygen concn. is calculated.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕本発明は、水あるいは血液などの被験液中の酸素濃度を
光学的に測定する酸素濃度測定用具及びそれ!ご使用す
るセンサーに関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides an oxygen concentration measuring tool for optically measuring oxygen concentration in a test liquid such as water or blood, and the same! Regarding the sensor you are using.

〔従来の技術〕[Conventional technology]

従来、水媒体中の酸素濃度測定には、酸素電極を用いた
いわゆる電気化学的手法が主であったが、例えば人工肺
使用時の体外循環する血液中の酸素分圧監視など、リア
ルタイムの計測にはこのような電気化学的手法では応答
速度が遅く、外部からの1i磁気的な雑音の影響を受は
易く、また、例えばカテーテルなど血管内に挿入して血
液中の酸素濃度を測定することに用いるには微小化が困
難など多くの技術的障害があった。そこで、蛍光、燐光
などの発光を酸素が消光する現象を利用した酸素濃度測
定用具が種々考案されてきた。
Conventionally, the main method for measuring oxygen concentration in aqueous media has been so-called electrochemical methods using oxygen electrodes. However, such electrochemical methods have a slow response speed and are easily affected by external magnetic noise, and it is difficult to measure the oxygen concentration in the blood by inserting a catheter into a blood vessel, for example. There were many technical obstacles, such as difficulty in miniaturization, for use in this field. Therefore, various oxygen concentration measuring tools have been devised that utilize the phenomenon that oxygen quenches luminescence such as fluorescence and phosphorescence.

例えば、ピレン酪酸を発光体としてこれをジメチルホル
ムアミドに溶解し気体透過膜で覆う考案(アメリカ合衆
国特許第4.003.707号)、シリコーンなどの疎
水性高分子膜中に、ピレン酪酸を運ぶポリアクリルアミ
ドなどの親水性高分子のビーズを多数分散させる考案(
アメリカ合衆国特許第4,557.900号)、シリコ
ーン系ボグマーをマトリックス:ご用いて、これに発光
体を混合する考案(特公昭59−24379号、特開昭
59−10.8958号)などがある。これらの考案で
は、発光体はマトリックスに化学的に結合されていない
ため、水媒体中で長時間溶出することなしに使用するこ
とは困難であったばかりか、気体透過膜が何らかの外的
要因によって一部が破壊した場合には直ちに発光体が被
験液中に溶出する危険性すらあった。特に、可塑剤を含
有させたポリマーをマトリックスに使用する考案(特開
昭59−108957号、欧州特許公開公報第0190
829A2号)では、被験液に血液を用いた場合では可
塑剤が血液中に溶出しやすく、その際に発光体も同時に
溶出し感度の低下を招き易く、体内で用いた場合には危
険が伴うという問題があった。
For example, there is the idea of using pyrenebutyric acid as a luminescent material and dissolving it in dimethylformamide and covering it with a gas-permeable membrane (U.S. Patent No. 4.003.707), and polyacrylamide that carries pyrenebutyric acid in a hydrophobic polymer membrane such as silicone. An idea to disperse a large number of hydrophilic polymer beads such as (
U.S. Pat. No. 4,557.900), and a method of using a silicone-based bogmer as a matrix and mixing a luminescent material with it (Japanese Patent Publication No. 59-24379, JP-A No. 59-10.8958), etc. . In these devices, since the luminescent material was not chemically bonded to the matrix, it was difficult to use it in an aqueous medium without elution for a long time. If the part were to break, there was even a risk that the luminescent material would be immediately eluted into the test solution. In particular, the idea of using a polymer containing a plasticizer as a matrix (JP-A-59-108957, European Patent Publication No. 0190)
829A2), when blood is used as the test solution, the plasticizer tends to elute into the blood, and at that time, the luminescent material also elutes at the same time, which tends to cause a decrease in sensitivity, which is dangerous when used inside the body. There was a problem.

また、多孔性ポリマーやシリカゲルなどの担体に発光体
を吸着固定する考案(特開昭57−500896号)で
は、作製方法が複雑で水不透過性の外包を用いるなど構
成が複雑で、微小化に不適であった。
In addition, the idea of adsorbing and fixing a luminescent material on a carrier such as a porous polymer or silica gel (Japanese Patent Application Laid-open No. 57-500896) requires a complicated manufacturing method and requires a complicated structure such as using a water-impermeable outer envelope, and it also requires miniaturization. was unsuitable for

一方、安全性を考慮し、発光体をマ) リックスに共有
結合によって固定する提案(アメリカ合衆国特許第4,
712.865号)も出されているが、マトリックスは
シリコーンに限るれ、発光体は芳香族炭化水素に限定さ
れており、そのため励起光に紫外線を使用する必要があ
り、したがって光ファイバー等のいわゆる導光手段に紫
外線透過性(例えば、石英製)のものを用いなければな
らないなどの制約があった。
On the other hand, considering safety, a proposal was made to fix the luminescent material to the matrix by covalent bonds (U.S. Patent No. 4,
712.865), but the matrix is limited to silicone and the luminescent material is limited to aromatic hydrocarbons, and therefore it is necessary to use ultraviolet rays for excitation light, so it is difficult to use so-called guides such as optical fibers. There were restrictions such as the need to use ultraviolet-transparent light means (for example, made of quartz).

ルテニウム錯体を発光体として用いた考案としては、ベ
ーコンらが、トリス(4,7−ジフェニル−1,10−
フェナンスロリン)ルテニウム(II)錯体過塩素酸塩
をシリコーンゴム中に固定したフィルムを用いて気体中
の酸素濃度の測定を試みている(アナリチカル・ケミス
トリー、第59巻、第23号、2780頁〜2785頁
、1987年)が、マトリックスであるシリコーンを発
光体の溶液に浸漬して発光体を固定しただけであるので
、発光体の溶出を完全には防止できないという欠点があ
った。
As an idea using a ruthenium complex as a luminescent material, Bacon et al.
Attempting to measure oxygen concentration in gas using a film in which ruthenium (II) complex perchlorate (phenanthroline) is fixed in silicone rubber (Analytical Chemistry, Vol. 59, No. 23, p. 2780) 2785, 1987), the silicone matrix was simply immersed in a solution of the luminescent material to immobilize the luminescent material, which had the disadvantage that elution of the luminescent material could not be completely prevented.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、水浸漬に対して発光体の溶出が著しく
小さく、従って応答が長時間に渡って安定であり、血液
に使用しても安全性の高い、上述のような公知技術の問
題点を解決した酸素濃度測定用センサー及びこれを用い
た酸素濃度測定用具を提供することにある。
The object of the present invention is to solve the problems of the known techniques as described above, such that the elution of the luminescent substance is extremely small when immersed in water, and therefore the response is stable over a long period of time, and it is highly safe even when used in blood. An object of the present invention is to provide an oxygen concentration measuring sensor that solves the above problems and an oxygen concentration measuring tool using the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の酸素濃度測定用具は、酸素濃度に対応して発光
強度が変化する蛍光または燐光を発する物質(以下「発
光体」)と親水性高分子マトリックスとを含有する層(
以下「試薬層」)からなるセンサー部、該発光体を光励
起するための励起光を得るための光源と該励起光を該セ
ンサー部に導光する手段、該センサー部からの蛍光また
は燐光を含む光を導光する手段、及び該蛍光または燐光
の強度を検出する計測部によって構成される、水または
血液などの体液(以下「被験液」)中の酸素濃度を測定
する用具において、前記発光体が前記親水性高分子マト
リックスに化学的に結合されていることを特徴とするも
のである。
The oxygen concentration measuring device of the present invention comprises a layer (hereinafter referred to as a "luminescent material") containing a substance that emits fluorescence or phosphorescence whose emission intensity changes depending on the oxygen concentration and a hydrophilic polymer matrix.
A sensor section consisting of a "reagent layer" (hereinafter referred to as "reagent layer"), a light source for obtaining excitation light for optically exciting the light emitting body, a means for guiding the excitation light to the sensor section, and fluorescence or phosphorescence from the sensor section. A device for measuring oxygen concentration in a body fluid such as water or blood (hereinafter referred to as "test fluid"), which is configured by a means for guiding light and a measuring section for detecting the intensity of the fluorescence or phosphorescence, wherein the luminescent material is chemically bonded to the hydrophilic polymer matrix.

発光体がトリス(2,2’−ビピリジン)ルテニウム(
II)錯体、トリス(1,10−フェナンスロリン)ル
テニウム(n)錯体、及びこれら錯体のピリジン環内の
炭素に直接結合した水素の少な(とも一つが他の原子団
によって着換されたものから成る群から選ばれることに
より、感度良く酸素濃度の測定を行えると同時に、可視
光での励起が可能となり、従って導光する手段として紫
外線不透過性のより安価な材料からできているもの(例
えば、プラスチック光ファイバーなど)も使用できる。
The luminescent material is tris(2,2'-bipyridine)ruthenium (
II) Complexes, tris(1,10-phenanthroline)ruthenium(n) complexes, and complexes with a small number of hydrogens directly bonded to the carbon in the pyridine ring of these complexes (one of which has been replaced by another atomic group) By selecting from the group consisting of ( For example, plastic optical fibers, etc.) can also be used.

その他使用可能な発光体としてはピレン、ピレン酪酸、
1−アミノピレン、ペリレン、/<IJレンジブチレー
ト、2.7−ジクロロフルオレセインなどが挙げられる
Other usable luminescent materials include pyrene, pyrenebutyric acid,
Examples include 1-aminopyrene, perylene, /<IJ dibutyrate, 2,7-dichlorofluorescein, and the like.

〔作 用〕[For production]

酸素分子02は、蛍光あるいは燐光など光励起によって
生ずる発光に対して消光作用を持つことは広く知られて
いるユここで、消光作用とは、酸素が存在すると存在し
ないときに比べ、発光強度が低下する現象を生ずること
を言う。通常、発光強度と酸素濃度との間には、次のよ
うな式(これをシュテルンーフォルマーの式と呼ぶ)が
成り立つ。
It is widely known that oxygen molecules 02 have a quenching effect on light emitted by light excitation, such as fluorescence or phosphorescence.The quenching effect means that the intensity of the emitted light decreases when oxygen is present compared to when it is absent. It means to cause a phenomenon to occur. Usually, the following equation (this is called the Stern-Volmer equation) holds between the luminescence intensity and the oxygen concentration.

1o /I= z−に、−τa [02]−・・−・(
t)ここで、Ioは酸素分子が実質上存在しないときの
発光強度、■は酸素濃度が〔02〕の時の発光強度、k
qは消光反応速度定数、τ0は酸素分子が実質上存在し
ないときの発光寿命である。
1o /I=z-, -τa [02]-...-(
t) Here, Io is the emission intensity when oxygen molecules are substantially absent, ■ is the emission intensity when the oxygen concentration is [02], and k
q is the quenching reaction rate constant, and τ0 is the luminescence lifetime when oxygen molecules are substantially absent.

k、・τ。の項は酸素濃度に対して一定と考えられるか
ら、一般には、この項と■。を少なくとも2つ以上の既
知の酸素濃度での発光強度■を測定することによって予
め求めておき、その後、■の測定により未知の酸素濃度
を求めることができる。
k,・τ. Since the term is considered to be constant with respect to oxygen concentration, generally this term and ■. can be determined in advance by measuring the luminescence intensity (2) at at least two or more known oxygen concentrations, and then the unknown oxygen concentration can be determined by measuring (2).

しかるに、発光体を固定して酸素濃度を測定するに際し
ては、励起状態の発光体と酸素が消光反応しやすいよう
に、発光体を含有する試薬層は高い酸素拡散係数と酸素
の溶解度を必要とされ、発光寿命が長い発光体が特に選
ばれる。
However, when measuring oxygen concentration with a luminescent material fixed, the reagent layer containing the luminescent material needs to have a high oxygen diffusion coefficient and oxygen solubility so that the excited luminescent material and oxygen easily undergo a quenching reaction. A luminescent material with a long luminous lifetime is particularly selected.

ルテニウム錯体などの水溶性の発光体は、水の存在下で
酸素による消光が著しい。本発明者らは、鋭意検討の結
果、これらの発光体を親水性の高分子マトリックスに化
学的に結合させることにより非溶出性を高め、更に安定
な、より感度の高い酸素に対する応答が得られることを
見いだした。
Water-soluble luminescent materials such as ruthenium complexes are significantly quenched by oxygen in the presence of water. As a result of extensive research, the present inventors have found that by chemically bonding these luminescent materials to a hydrophilic polymer matrix, they can improve their non-elution properties and obtain a more stable and more sensitive response to oxygen. I found out.

即ち、親水性高分子マトリックスは含水することによっ
て、酸素の拡散係数と溶解度が大きくなる。ルテニウム
錯体はその多(が水溶解性が高いので、単にルテニウム
錯体を親水性高分子マトリックス中に分散、吸着しただ
けでは、これを水媒体中に浸漬するとルテニウム錯体は
容易に水に溶解してしまう。仮に、トリス(4,7−ジ
フェニル−1,10−フェナンスロリン)ルテニウム(
It)錯体過塩素酸塩などのような水難溶性の発光体を
用いた場合でも、血液などには脂溶性のものも溶解する
とされており、これも溶解する危険性が高い。この溶出
を防ぐ方法として、このような発光体を含む試薬層と被
験液の間に気体透過性の膜(例えば、シリコーン)を介
在させる方法が考えられるが、その様な方法で作製した
センサー部では、試薬層に水が透過しある一定の発光体
濃度になるまでは少なくとも数日はかかり、使用前に十
分に水に浸漬しておく必要がある。また、気体透過性の
膜が破れたり、これに細孔が開いた場合には、発光体が
漏出してしまう。
That is, when the hydrophilic polymer matrix contains water, the diffusion coefficient and solubility of oxygen increase. Since most ruthenium complexes have high water solubility, simply dispersing and adsorbing the ruthenium complex in a hydrophilic polymer matrix does not allow the ruthenium complex to easily dissolve in water when immersed in an aqueous medium. If tris(4,7-diphenyl-1,10-phenanthroline)ruthenium (
It) Even when a poorly water-soluble luminescent material such as a complex perchlorate is used, it is said that fat-soluble luminescent substances are also dissolved in blood, and there is a high risk that this will also dissolve. One possible method to prevent this elution is to interpose a gas-permeable membrane (e.g., silicone) between the reagent layer containing the luminescent material and the test liquid; In this case, it takes at least several days for water to permeate through the reagent layer and reach a certain concentration of luminescent material, so it is necessary to soak the material thoroughly in water before use. Furthermore, if the gas-permeable membrane is torn or has pores opened, the luminous material will leak out.

本発明のセンサーは、発光体が親水性高分子マトリック
スに化学的に結合しているため、水媒体に直接曝しても
溶解してしまう危険性はなく、上述のような気体透過性
の膜は必ずしも必要ではなく、また予めセンサーを水中
に浸漬しておく必要もない。
Since the sensor of the present invention has a luminescent material chemically bonded to a hydrophilic polymer matrix, there is no risk of dissolution even if it is directly exposed to an aqueous medium, and the gas permeable membrane as described above is It is not necessary, and there is no need to immerse the sensor in water beforehand.

発光体であるルテニウム錯体を親水性高分子マトリック
スに化学的に結合せしめる方法は、重合可能な配位子(
例えば、4−メチル−4°−ビ二ルー2,2′−ビピリ
ジン)と親水性基を持つ重合可能なモノマー(例えば、
ヒドロキシエチルメタクリル酸、アクリル酸、メタクリ
ル酸など)または重合反応後に親水性基に置換可能な官
能基を持つモノマー(例えば、酢酸ビニル、アクリロニ
トリル)とを共重合し、後に、共重合した配位子に対し
ルテニウムを錯結合させる方法がある。親水性基を持つ
ポリマー(例えば、ポリビニルアルコール)に結合可能
な官能基を持つ配位子(例えば、4−クロロメチル−4
°−メチル−2,2”−ビピリジン)を反応させた後、
ルテニウムを錯体結合させる方法なども使用できる。必
要とあらば、重合体の構成単位として、疎水性のモノマ
ー単位または/および架橋反応を起こすための官能基を
有するモノマー単位を、親水性を失わない範囲の濃度で
共重合しても構わない。
A method for chemically bonding a ruthenium complex, which is a luminescent material, to a hydrophilic polymer matrix is to use a polymerizable ligand (
For example, 4-methyl-4°-vinyl-2,2'-bipyridine) and polymerizable monomers with hydrophilic groups (e.g.
Ligands that are copolymerized with hydroxyethyl methacrylic acid, acrylic acid, methacrylic acid, etc.) or monomers with functional groups that can be substituted with hydrophilic groups after the polymerization reaction (e.g., vinyl acetate, acrylonitrile). There is a method of complex bonding ruthenium. Ligands with functional groups that can bind to polymers with hydrophilic groups (e.g., polyvinyl alcohol) (e.g., 4-chloromethyl-4
°-methyl-2,2”-bipyridine),
A method in which ruthenium is bonded to a complex can also be used. If necessary, a hydrophobic monomer unit or/and a monomer unit having a functional group for causing a crosslinking reaction may be copolymerized as a constituent unit of the polymer at a concentration within a range that does not lose hydrophilicity. .

また、前記親水性高分子マトリックスは、架橋している
ことが望ましい。親水性高分子マトリックスを架橋させ
ることによって、水媒体への不溶性を更に高め、吸水力
を増加させ、より安定な酸素濃度測定を可能とすること
ができる。架橋は、一般に使用される架橋剤等による化
学的架橋、放射線による架橋、加熱による架橋、ポリア
クリル酸ナトリウムにみられるような自己架橋、ビニル
アルコール/アクリル酸ナトリウム共重合体に見られる
ようなポリビニルアルコール鎖の結晶形成などによって
行われる。
Further, it is desirable that the hydrophilic polymer matrix is crosslinked. By crosslinking the hydrophilic polymer matrix, it is possible to further improve the insolubility in aqueous media, increase the water absorption capacity, and enable more stable oxygen concentration measurement. Crosslinking can be achieved by chemical crosslinking using commonly used crosslinking agents, crosslinking by radiation, crosslinking by heating, self-crosslinking as seen in sodium polyacrylate, and polyvinyl crosslinking as seen in vinyl alcohol/sodium acrylate copolymers. This is done by crystal formation of alcohol chains.

第1図及び第2図に示すように、このように発光体を化
学的に結合した親水性高分子マ) IJフックスらなる
試薬層101を、光ファイバー208などの先端に接着
し、センサー部209を構成する。更に望ましくは、試
薬層101と被験液との間に親水性多孔質膜(図には示
されていない)を介在させることによって、試薬層10
1が光ファイバーなどの先端面から脱着するのを防止す
ると同時に、被験液中の妨害成分などが試薬層101内
に侵入して測定誤差を生じさせることを防ぐ。
As shown in FIGS. 1 and 2, a reagent layer 101 made of IJ Fuchs (hydrophilic polymeric polymer) with a light emitter chemically bonded thereto is adhered to the tip of an optical fiber 208, etc. Configure. More preferably, by interposing a hydrophilic porous membrane (not shown in the figure) between the reagent layer 101 and the test liquid, the reagent layer 10
At the same time, it prevents interfering components in the test liquid from entering the reagent layer 101 and causing measurement errors.

ルテニウム錯体を化学的に結合した親水性高分子マトリ
ックスからなる試薬層101を固定したセンサー120
9、例えば光ファイバー208のセンサー部209を血
液のような被験液210中に浸漬し、もう一方の端部か
ら、一般的な光学的手法により、適当な光源202(例
えば、キセノンランプ、超高圧水銀灯、レーザー)かご
の光を励起スペクトルの波長域(通常は、500nm以
下)に分光した光(励起光)104を導光し、該センサ
ーB209まで導光する。このとき、ルテニウム錯体は
赤橙色の発光105を生ずる。生じた発光105は光フ
アイバー208内を進み、光学フィルター213、回折
格子などの適当な分光器で励起光成分と分けられ、受光
素子(光電子増倍管など)214において電気信号に変
換され発光強度が測定されるのである。一般には、セン
サー部209が浸漬されている被験液210の酸素濃度
と発光強度との関係から前述の各係数を求めておき、後
に未知の酸素濃度を算出する。この場合、励起光は時間
的に連続光であってもパルス光であってもよく、また、
発光を導(光ファイバーは励起光を導く光ファイバーと
同一でも、異なるものでもよい。
A sensor 120 on which a reagent layer 101 made of a hydrophilic polymer matrix chemically bonded with a ruthenium complex is fixed.
9. For example, the sensor section 209 of the optical fiber 208 is immersed in the test liquid 210 such as blood, and from the other end, a suitable light source 202 (for example, a xenon lamp, an ultra-high pressure mercury lamp) is , laser) basket light into a wavelength range of the excitation spectrum (usually 500 nm or less), light (excitation light) 104 is guided and guided to the sensor B209. At this time, the ruthenium complex emits red-orange light 105. The generated light 105 travels through the optical fiber 208, is separated from the excitation light component by an appropriate spectrometer such as an optical filter 213 or a diffraction grating, and is converted into an electrical signal by a light receiving element (such as a photomultiplier tube) 214 to determine the emission intensity. is measured. Generally, each of the above-mentioned coefficients is obtained from the relationship between the oxygen concentration and the luminescence intensity of the test liquid 210 in which the sensor section 209 is immersed, and then the unknown oxygen concentration is calculated. In this case, the excitation light may be temporally continuous light or pulsed light, and
(The optical fiber may be the same as or different from the optical fiber that guides the excitation light.)

以下に、実施例をもって本発明の具体例を示す。Specific examples of the present invention will be illustrated below with examples.

実施例14−メチル−4°−ビニル−2,2′−ビピリジンを既
存の方法(、P、 K、  ゴーシニ池:ジャーナル・
オブ・ケミカル・ソサエティ(J、 Am、Chem。
Example 1 4-Methyl-4°-vinyl-2,2'-bipyridine was prepared by an existing method (P., K., Goshinyike: Journal;
of Chemical Society (J, Am, Chem.

Soc、) 、第102巻、5543頁、1980年)
で合成・精製した。メタクリル酸2−ヒドロキシエチル
を高真空蒸留によって精製した。脱気した1、  4−
ジオキサン40mj!中でα、α゛−アゾビスイソブチ
ロニトリル0.0138gの存在下で、4−メチル−4
°−ビニル−2,2°−ビピリジン(0,392g)と
メタクリル酸2−ヒドロキシエチル(5,28g)を共
重合した。
Soc, ), vol. 102, p. 5543, 1980)
It was synthesized and purified. 2-Hydroxyethyl methacrylate was purified by high vacuum distillation. Degassed 1, 4-
Dioxane 40mj! In the presence of 0.0138 g of α,α゛-azobisisobutyronitrile, 4-methyl-4
°-Vinyl-2,2°-bipyridine (0,392 g) and 2-hydroxyethyl methacrylate (5,28 g) were copolymerized.

得られた共重合体1.73 gと、既存の方法(G。1.73 g of the obtained copolymer and the existing method (G.

スプリントシ5ニク他:J、^m、Che+n、 So
c、、第99巻、4947頁、1977年)により合成
・精製したシス−ジクロロビス(ビピリジン)ルテニウ
ム錯体0.213gとを1−ブタノール765rnl中
で還流下で反応させた。生成物を蒸発乾固し、クロロホ
ルムで抽出し、再び蒸発乾固し、最終生成物A0.71
gを得た。Aは元素分析の結果から、次のような構造を
持つ共重合体であることが分かクラツド径がQ、 5 
mmのプラスチック光ファイバー(長さ2m)の片端面
にA(2mg)のジメチルホルムアミド1mj!溶液を
塗布し、乾燥によってAの薄い層を得た。Aとプラスチ
ック光ファイバーは完全に接着した。
Sprint Shiniku and others: J, ^m, Che+n, So
C., Vol. 99, p. 4947, 1977) was reacted with 0.213 g of the cis-dichlorobis(bipyridine)ruthenium complex synthesized and purified by the method (C., Vol. 99, p. 4947, 1977) in 765 rnl of 1-butanol under reflux. The product was evaporated to dryness, extracted with chloroform and evaporated again to dryness, final product A0.71
I got g. From the results of elemental analysis, A is found to be a copolymer with the following structure, and the cladding diameter is Q, 5.
1 mj of A (2 mg) dimethylformamide on one end of a mm plastic optical fiber (2 m long)! A thin layer of A was obtained by applying the solution and drying. A and the plastic optical fiber were completely bonded.

第2図の光学装置にこの光ファイバーのもう一方の端部
を結合し、励起光として波長4400m付近の単色光を
導入しセンサー部まで導き、生じた発光と、励起光の散
乱光を同光ファイバーによって導き、同光学装置におい
て発光波長成分のみを分別し発光は光電子増倍管によっ
て電気信号に変換した後、演算装置に人力した。センサ
ー部は牛血液中に浸漬されており、牛血液は人工肺を含
む循環回路において任意の酸素濃度に調節された。
The other end of this optical fiber is connected to the optical device shown in Figure 2, and monochromatic light with a wavelength of around 4400 m is introduced as excitation light and guided to the sensor section, and the generated light and the scattered light of the excitation light are transmitted through the same optical fiber. The same optical device separated only the wavelength components of the emitted light, and the emitted light was converted into electrical signals by a photomultiplier tube, which was then manually input to a calculation device. The sensor part was immersed in bovine blood, and the bovine blood was adjusted to an arbitrary oxygen concentration in a circulation circuit that included an artificial lung.

得られた発光強度(IO/I)と酸素濃度〔02〕(分
圧で表示)とはシュテルンーフォルマーの式で表される
良好な直線関係を示し、酸素濃度測定用具として優れて
いることがわかった。
The obtained luminescence intensity (IO/I) and oxygen concentration [02] (expressed as partial pressure) showed a good linear relationship expressed by the Stern-Volmer equation, and it was found to be an excellent device for measuring oxygen concentration. Understood.

実施例2既存の方法(C,G、  ピット他、ジャーナル・オブ
・ポリマー・サイエンス:ポリマー・レターズ・エデイ
ジョン、第24巻、13頁、1986年)によって、4
−クロロメチル−4′−メチル−2,2’−とピリジン
を合成・精製し、ポリビニルアルコール(平均分子量2
5.000> 0.5 gがジメチルフォルムアミド5
0mj!に溶解され、水素化ナトリウム167mgが添
加された溶液に、その1.70 gをジメチルフォルム
アミド20−に溶解した溶液を添加して、2時間加温反
応させた。
Example 2 By an existing method (C.G. Pitt et al., Journal of Polymer Science: Polymer Letters Edition, Vol. 24, p. 13, 1986), 4
-Chloromethyl-4'-methyl-2,2'- and pyridine were synthesized and purified, and polyvinyl alcohol (average molecular weight 2.
5.000 > 0.5 g of dimethylformamide 5
0mj! To a solution in which 167 mg of sodium hydride was added was added a solution in which 1.70 g of sodium hydride was dissolved in 20-dimethylformamide, and the mixture was heated and reacted for 2 hours.

反応混合物を50%エタノール中で透析・精製した。The reaction mixture was dialyzed and purified in 50% ethanol.

この共重合体は、元素分析の結果、4moA%のビピリ
ジン基を持つことが確認された。実施例1と同様にして
ビピリジン基2個につき1分子の割合でシス−ジクロロ
ビス(ビピリジン)ルテニウム錯体を反応させ、透析、
精製後、最終生成物を得た。これを150℃、20分間
処理し、水不溶性のポリマーBを得た。
As a result of elemental analysis, this copolymer was confirmed to have 4 moA% of bipyridine groups. In the same manner as in Example 1, cis-dichlorobis(bipyridine)ruthenium complex was reacted at a ratio of one molecule for every two bipyridine groups, followed by dialysis,
After purification, the final product was obtained. This was treated at 150°C for 20 minutes to obtain water-insoluble polymer B.

これを、実施例1と同様にして光ファイバーに固定して
、牛血液に浸漬し、酸素濃度測定を行った。
This was fixed to an optical fiber in the same manner as in Example 1, immersed in bovine blood, and oxygen concentration was measured.

発光強度(■。/I)と酸素分圧とはシュテルンーフォルマーの式に示される良好な直線関係を示し
た。
Emission intensity (■./I) and oxygen partial pressure showed a good linear relationship as shown by the Stern-Volmer equation.

x  :  y  :  z  =  (1,02: 
 (J、(12:(1,り(i〔発明の効果]以上、詳述したように、本発明は、親水性高分子マトリ
ックスに発光体が化学的に結合されている試薬層を有す
ることを特徴とするものであるため、長時間安定に再現
性よく、かつ安全に被験液中の酸素濃度を測定すること
ができるという効果がある。
x : y : z = (1,02:
(J, (12:(1,ri(i) [Effects of the Invention] As detailed above, the present invention has a reagent layer in which a luminescent material is chemically bonded to a hydrophilic polymer matrix. This feature has the effect of being able to measure the oxygen concentration in the test solution stably, reproducibly, and safely over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセンサー部の一実施例を示す断面図で
あり、第2図は本発明の実施例1及び実施例2において
用いた光学装置の概略図である。101・・・・試薬層、102・・・・光ファイバーのコア、103・・・・光ファイバーのクラッド、104・・・
・励起光、105・・・・発光、201・・・・光源用電源装置、202・・・・光源(キセノンランプ)、203・・・
・非球面レンズ、204・・・・干渉フィルター(440nm)  、5
、211及び212・・・・凸レンズ(焦点距離)、6
・・・・二色性鏡、7・・・・対物レンズ(X20)、8・・・・プラスチック光ファイバー9・・・・センサー部、0・・・・血液、3・・・・干渉フィルター(610nm)  、4・・
・・光電子増倍管、5・・・・光電子増倍管用高圧電源、6・・・・プリアンプ、7・・・・A/Dコンバータ、8・・・・演算装置(コンピュータ)、9・・・・表示
装置(CRT)。
FIG. 1 is a cross-sectional view showing one embodiment of the sensor section of the present invention, and FIG. 2 is a schematic diagram of an optical device used in the first and second embodiments of the present invention. 101... Reagent layer, 102... Optical fiber core, 103... Optical fiber cladding, 104...
- Excitation light, 105... Light emission, 201... Light source power supply device, 202... Light source (xenon lamp), 203...
・Aspherical lens, 204...Interference filter (440nm), 5
, 211 and 212...convex lens (focal length), 6
...Dichroic mirror, 7..Objective lens (X20), 8..Plastic optical fiber 9..Sensor part, 0..Blood, 3..Interference filter ( 610nm), 4...
...Photomultiplier tube, 5..High voltage power supply for photomultiplier tube, 6..Preamplifier, 7..A/D converter, 8.. Arithmetic device (computer), 9.. ...Display device (CRT).

Claims (4)

Translated fromJapanese
【特許請求の範囲】[Claims](1)酸素濃度に対応して発光強度が変化する蛍光また
は燐光を発する物質(以下「発光体」)と親水性高分子
マトリックスとを含有する層(以下「試薬層」)からな
るセンサー部、該発光体を光励起するための励起光を得
るための光源、該励起光を該センサー部に導光する手段
、該センサー部からの蛍光または燐光を含む光を導光す
る手段、及び該蛍光または燐光の強度を分別し検出する
計測部によって構成される、被験液中の酸素濃度を測定
する用具において、前記発光体が前記親水性高分子マト
リックスに化学的に結合されていることを特徴とする酸
素濃度測定用具。
(1) A sensor section consisting of a layer (hereinafter referred to as "reagent layer") containing a substance that emits fluorescence or phosphorescence (hereinafter referred to as "luminescent substance") and a hydrophilic polymer matrix whose emission intensity changes depending on the oxygen concentration; A light source for obtaining excitation light for optically exciting the luminescent material, means for guiding the excitation light to the sensor section, means for guiding light containing fluorescence or phosphorescence from the sensor section, and a means for guiding light containing fluorescence or phosphorescence from the sensor section; A device for measuring oxygen concentration in a test liquid, comprising a measurement unit that separates and detects the intensity of phosphorescence, characterized in that the luminescent material is chemically bonded to the hydrophilic polymer matrix. Oxygen concentration measurement equipment.
(2)前記マトリックスが、架橋している請求項(1)
記載の酸素濃度測定用具。
(2) Claim (1) wherein the matrix is crosslinked.
The oxygen concentration measuring device described.
(3)発光体が、トリス(2,2′−ビピリジン)ルテ
ニウム(II)錯体、トリス(1,10−フェナンスロリ
ン)ルテニウム(II)錯体、及びこれら錯体のピリジン
環内の炭素に直接結合した水素の少なくとも一つが他の
原子団によって置換されたものから成る群から選ばれる
請求項(1)記載の酸素濃度測定用具。
(3) The luminescent substance is directly bonded to the tris(2,2'-bipyridine)ruthenium(II) complex, the tris(1,10-phenanthroline)ruthenium(II) complex, and the carbon in the pyridine ring of these complexes. The oxygen concentration measuring device according to claim 1, wherein at least one of the hydrogen atoms is substituted with another atomic group.
(4)酸素濃度に対応して発光強度が変化する蛍光また
は燐光を発する物質(発光体)と親水性高分子マトリッ
クスとを含有する試薬層を有する酸素濃度測定用センサ
ーにおいて、発光体が親水性高分子マトリックスに化学
的に結合していることを特徴とする酸素濃度測定用セン
サー。
(4) In a sensor for measuring oxygen concentration that has a reagent layer containing a substance that emits fluorescence or phosphorescence (luminescent substance) whose emission intensity changes depending on the oxygen concentration and a hydrophilic polymer matrix, the luminescent substance is hydrophilic. A sensor for measuring oxygen concentration characterized by being chemically bonded to a polymer matrix.
JP1071889A1989-01-191989-01-19 Oxygen concentration measuring toolExpired - LifetimeJPH0713597B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP1071889AJPH0713597B2 (en)1989-01-191989-01-19 Oxygen concentration measuring tool

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP1071889AJPH0713597B2 (en)1989-01-191989-01-19 Oxygen concentration measuring tool

Publications (2)

Publication NumberPublication Date
JPH02190748Atrue JPH02190748A (en)1990-07-26
JPH0713597B2 JPH0713597B2 (en)1995-02-15

Family

ID=11758078

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP1071889AExpired - LifetimeJPH0713597B2 (en)1989-01-191989-01-19 Oxygen concentration measuring tool

Country Status (1)

CountryLink
JP (1)JPH0713597B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5580527A (en)*1992-05-181996-12-03Moltech CorporationPolymeric luminophores for sensing of oxygen
EP1546686A4 (en)*2002-09-302006-05-03Univ Hong Kong SENSITIVE SINGLE LAYER DETECTION DEVICE OF LUMINESCENT INDICATOR FIXED BY COVALENCE ON A VITREOUS SURFACE FOR MEASURING THE CONCENTRATION OF ANALYTES
JP2008505324A (en)*2004-07-022008-02-21バイエル・ヘルスケア・エルエルシー Photoconductor inspection sensor used for determining an analyte in a fluid sample, and method for manufacturing the same
KR100845425B1 (en)*2007-01-052008-07-10전남대학교산학협력단 Optical sensor probe and detection method using the same
JP2008196940A (en)*2007-02-132008-08-28Hamamatsu Univ School Of Medicine Biosensor type imaging fiber device
KR100940513B1 (en)*2008-04-302010-02-10전남대학교산학협력단 Optical Sensor Membrane, Apparatus and Method for Simultaneous Detection of Two or More Variables of Dissolved Oxygen, pH and Temperature
JP2010535331A (en)*2007-08-022010-11-18メトラー−トレド アクチェンゲゼルシャフト Photochemical sensor element
WO2012090919A1 (en)*2010-12-272012-07-05ローム株式会社Chip for light sensor, light sensor, measurement system, and measurement method using same
CN115931726A (en)*2022-01-062023-04-07上海前瞻创新研究院有限公司 An optical oxygen sensing diaphragm and its preparation method and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8636923B2 (en)2010-10-292014-01-28Enerkem, Inc.Production of synthesis gas by heating oxidized biomass with a hot gas obtained from oxidation of residual products
JP6161348B2 (en)2013-03-212017-07-12株式会社ジオ技術研究所 Stereoscopic image data generation device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5580527A (en)*1992-05-181996-12-03Moltech CorporationPolymeric luminophores for sensing of oxygen
EP1546686A4 (en)*2002-09-302006-05-03Univ Hong Kong SENSITIVE SINGLE LAYER DETECTION DEVICE OF LUMINESCENT INDICATOR FIXED BY COVALENCE ON A VITREOUS SURFACE FOR MEASURING THE CONCENTRATION OF ANALYTES
JP2008505324A (en)*2004-07-022008-02-21バイエル・ヘルスケア・エルエルシー Photoconductor inspection sensor used for determining an analyte in a fluid sample, and method for manufacturing the same
JP2012145583A (en)*2004-07-022012-08-02Bayer Healthcare LlcLight guide inspection sensor to be used for determining test body in fluid sample, and method for manufacturing the same
US8940237B2 (en)2004-07-022015-01-27Bayer Healthcare LlcLight guide test sensor
KR100845425B1 (en)*2007-01-052008-07-10전남대학교산학협력단 Optical sensor probe and detection method using the same
JP2008196940A (en)*2007-02-132008-08-28Hamamatsu Univ School Of Medicine Biosensor type imaging fiber device
JP2010535331A (en)*2007-08-022010-11-18メトラー−トレド アクチェンゲゼルシャフト Photochemical sensor element
EP2174126B1 (en)2007-08-022015-09-02Mettler-Toledo AGOpto-chemical Sensor
KR100940513B1 (en)*2008-04-302010-02-10전남대학교산학협력단 Optical Sensor Membrane, Apparatus and Method for Simultaneous Detection of Two or More Variables of Dissolved Oxygen, pH and Temperature
WO2012090919A1 (en)*2010-12-272012-07-05ローム株式会社Chip for light sensor, light sensor, measurement system, and measurement method using same
CN115931726A (en)*2022-01-062023-04-07上海前瞻创新研究院有限公司 An optical oxygen sensing diaphragm and its preparation method and application

Also Published As

Publication numberPublication date
JPH0713597B2 (en)1995-02-15

Similar Documents

PublicationPublication DateTitle
Munkholm et al.Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement
PapkovskyLuminescent porphyrins as probes for optical (bio) sensors
EP0313655B1 (en)Oxygen concentration probe
US4861727A (en)Luminescent oxygen sensor based on a lanthanide complex
Park et al.Ratiometric fiber optic sensors for the detection of inter-and intra-cellular dissolved oxygen
JP2000501499A (en) Method of manufacturing optical fiber sensor and novel sensor provided thereby
US5190729A (en)Luminescent oxygen sensor based on a lanthanide complex
FR2650076A1 (en) FIBER OPTIC ACTIVE CHEMICAL SENSOR AND PROCESS FOR PRODUCING THE SAME
US20030171666A1 (en)Internal biochemical sensing device
EP2635624B1 (en)Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence
US5266271A (en)Microsensor copolymer and method of manufacture
JPH02190748A (en)Implement for measuring oxygen concentration
EP0344313B1 (en)Probe for measuring concentration of dissolved gas
Koronczi et al.Development of a submicron optochemical potassium sensor with enhanced stability due to internal reference
CN112945922B (en) A PDMS Sensing Detector and Sensing Application Based on Spiropyran Doping
JPS61178646A (en)Oxygen monitor element and manufacture thereof
EP0916091B1 (en)Light-sensitive compositions for oxygen optrodes
Yang et al.Picric acid sensitive optode based on a fluorescence carrier covalently bound to membrane
Charlesworth et al.A fibre-optic fluorescing sensor for amine vapours
GeddesA halide sensor based on the quenching of fluorescence of an immobilised indolium salt
Sloan et al.A fibre‐optic calcium ion sensor using a calcein derivative
Parker et al.Mass transfer of oxygen in poly (2‐hydroxyethyl methacrylate)
CA2079987A1 (en)Sensors and methods for sensing
EP0539042A1 (en)Method of purifying covalently bonded polymer-dye compounds
JPH06180287A (en) Sensor element for measuring the amount of dissolved oxygen in the test sample

[8]ページ先頭

©2009-2025 Movatter.jp