【発明の詳細な説明】〔産業上の利用分野〕本発明は高密度実装用の多に1配線基板に係り、特に、
多層化のための配線膜構造に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a wiring board for high-density packaging, and in particular,
This article relates to a wiring film structure for multilayering.
(従来の技術〕半導体用集積回路は高密度集積化の方向にあり、これに
、対応すべく実装用の基板も高密度化が要求されつつあ
り、LSI搭載用の基板はセラミックスパッケージとし
て、薄膜多層配線化に進んでいる。すなわち、セラミッ
クス基板上に導体配線膜と形成し、この上に層間絶縁膜
を載せ、これを、順次、重ねて多層構造とし、各導体の
接続は各層に孔設したスルーホール配線によるものであ
る。(Prior art) Semiconductor integrated circuits are moving toward higher density integration, and to meet this trend, mounting substrates are also required to have higher density. Multilayer wiring is progressing.In other words, a conductor wiring film is formed on a ceramic substrate, an interlayer insulating film is placed on top of this, and these are successively stacked to form a multilayer structure, and each conductor is connected by making holes in each layer. This is due to the through-hole wiring.
このような多層配線構造では1層間絶縁膜としてポリイ
ミド(PI)を用い、導体配線をCuを用いたものは特
開昭59−167096汗や特開昭59−198795
号公報などで公知である。また、特公昭61−9559
6号公報では上記の多層膜で層間絶縁膜は硼硅酸ガラス
とし、導体配線をT i / Cu / T iとし、
Tiの膜厚を特定することによって絶縁膜と配線膜の接
着強度を上げ、しかも、高温処理プロセスでも導体配線
の電気抵抗の増大を抑えようとした。In such a multilayer wiring structure, polyimide (PI) is used as the interlayer insulating film and Cu is used for the conductor wiring, as disclosed in Japanese Patent Application Laid-Open No. 59-167096 and Japanese Patent Application Laid-open No. 59-198795.
It is publicly known from the publication No. Also, special public service No. 61-9559
In Publication No. 6, in the above multilayer film, the interlayer insulating film is borosilicate glass, the conductor wiring is Ti / Cu / Ti,
By specifying the Ti film thickness, we attempted to increase the adhesive strength between the insulating film and the wiring film, and also to suppress the increase in electrical resistance of the conductor wiring even during high-temperature treatment processes.
〔発明が解決しようとするi[l]本発明の問題は、とくに層間絶縁膜をFI系とし、導体
配線にCuを用いた場合に生じる熱膨張特性の差によっ
て生じる膜剥がれを解消することと接着性の向上を図る
ことにある。[I[l] The problem of the present invention is to solve the problem of film peeling caused by the difference in thermal expansion characteristics that occurs when the interlayer insulating film is FI-based and Cu is used for the conductor wiring. The purpose is to improve adhesion.
すなわち、通常のFI膜は、熱膨張係数が約5XIO”
”であり、Cu配線膜が1.68 X 10−”である
ため、微細配線パターンになると熱膨張差によって配線
が切れたり、剥れて浮いてしまうなどの問題がある。こ
の膜剥がれは水分の浸入の原因ともなって、配線腐食が
著しく進行してしまう。In other words, a normal FI membrane has a thermal expansion coefficient of approximately 5XIO"
", and the Cu wiring film is 1.68 x 10-", so when it comes to a fine wiring pattern, there are problems such as the wiring breaks or peels off due to the difference in thermal expansion. This peeling of the film also causes the infiltration of moisture, which significantly progresses wiring corrosion.
本発明は、このような熱膨張係数の差による種種の問題
点を解消するために、基板、もしくは。The present invention aims to solve various problems caused by such differences in thermal expansion coefficients.
Cu配線膜の熱膨張係数が同等な、すなわち、低熱膨張
性ポリイミド膜を層間絶縁暎として用いることを中心に
、上述のような不都合を無くした多層配線基板を提供す
ることにある。The object of the present invention is to provide a multilayer wiring board that eliminates the above-mentioned disadvantages, mainly by using a polyimide film with a thermal expansion coefficient equivalent to that of a Cu wiring film, that is, a low thermal expansion film, as an interlayer insulation layer.
最も問題になる接着性の向上を図るために、本発明では
、低熱膨張性ポリイミドの表層を、導体配線膜が接着さ
れやすいように表面改質化を図ることが狙いである。す
なわち、低熱膨張性ポリイミドは一般のPIと異なり、
分子構造が直鎖状となっているために、接着性に寄りす
る官能、Iルが少ない。そのため、イオン結合、共有結
合、あるいは、金属結合等が困難である。本発明では、
基本的には、第1図に示すように、低熱膨張性ポリイミ
ドの表層に親和力の強い′r″iを打込み、導体配線膜
であるCuやAQ膜との間に金属結合を持たせようとす
ることである。なお、本発明は有機基体の表面近くに親
和力の高い金属元素を打ち込むことにあり、とくに、そ
の有機基体が低熱膨張性ポリイミドであることに限定す
ることが特徴である。このようなTiの他にCrも同じ
ように効果があり、次いでS ] l T a + Z
r・も比較的良い傾向を示す。In order to improve adhesion, which is the most important issue, the present invention aims to modify the surface of the low thermal expansion polyimide so that the conductor wiring film can be easily adhered to it. In other words, low thermal expansion polyimide is different from general PI,
Since the molecular structure is linear, there are few functionalities and compounds that contribute to adhesive properties. Therefore, it is difficult to form ionic bonds, covalent bonds, metallic bonds, etc. In the present invention,
Basically, as shown in Figure 1, 'r''i, which has a strong affinity, is implanted into the surface layer of low thermal expansion polyimide to create a metallic bond with the Cu or AQ film that is the conductor wiring film. The present invention is characterized by implanting a metal element with high affinity near the surface of an organic substrate, and is particularly characterized in that the organic substrate is made of polyimide with low thermal expansion. In addition to Ti, Cr is also effective, followed by S ] l Ta + Z
r. also shows a relatively good tendency.
本発明のTi打込みは、具体的には、300〜500W
のマイクロ波によってArfj囲気でプラズマを発生さ
せ、塩化’I” i (T i CQa)液をノズル
により導入し、それを分解、イオン化し、更に、制御用
磁界コイルによって加速しながら所定址のTiを低熱膨
張ポリイミド表面に打込むという方法である。打込量は
複数ケの磁界コイルをコントロールすることによって制
御でき、その厚さは約百人程度で導体配線膜との接着性
は数倍向上する。Specifically, the Ti implantation of the present invention is performed at a power of 300 to 500W.
Plasma is generated in an Arfj atmosphere using microwaves, a chloride 'I'' i (T i CQa) liquid is introduced through a nozzle, it is decomposed and ionized, and further, while being accelerated by a control magnetic field coil, it is This is a method in which the implant is implanted into the surface of a low thermal expansion polyimide.The amount of implantation can be controlled by controlling multiple magnetic field coils, and the thickness is approximately 100 mm, and the adhesion to the conductor wiring film is improved several times. .
更に、LSI搭載用の実装基板(パッケージ)として、
なおも信頼性を上げるためには、低熱膨張性ポリイミド
の表層をTiリッチにするだけでなく、一連の実験によ
ればその上に引き続きTiの堆積層を設け、次いで、C
u配線膜を載せると、より一層接着性が改善される。具
体的には、低熱膨張性ポリイミドとCu配線膜の剥離強
度比が、無処理の場合の百ないし二百五十倍に向上する
という効果が得られている。ただし、Ti膜の合計厚さ
が1000人を越えてしまうと、配線膜の電気抵抗が増
し、実装用基板としては問題が出る。Furthermore, as a mounting board (package) for mounting LSI,
In order to further increase reliability, it is necessary not only to make the surface layer of the low thermal expansion polyimide rich in Ti, but also to provide a deposited layer of Ti on top of it, and then to make the surface layer rich in Ti.
When a u-wiring film is placed, the adhesion is further improved. Specifically, the peel strength ratio between the low thermal expansion polyimide and the Cu wiring film is improved by 100 to 250 times compared to the case without treatment. However, if the total thickness of the Ti film exceeds 1,000 layers, the electrical resistance of the wiring film will increase, causing problems as a mounting board.
以ド、本発明の実施例を示す。式(1)は低熱膨張性ポ
リイミドの基本構造、式(2)は一般のPIの構造例で
ある。Examples of the present invention will now be described. Formula (1) is the basic structure of a low thermal expansion polyimide, and Formula (2) is an example of the structure of a general PI.
・・・(+)(1)(2)式を比較すると、一般のFI Iには接着
性に寄与する官能基として−C−N=などが存在するが
、低熱膨張性ポリイミドは単純な直鎖構造をもっている
。このため、接着性が悪い。...(+) Comparing formulas (1) and (2), it is found that general FI I has functional groups such as -C-N= that contribute to adhesion, but low thermal expansion polyimide has a simple linear It has a chain structure. For this reason, adhesiveness is poor.
〈実施例1〉先ず、熱酸化処理した4インチサイズのSiウェハ法抜
板5AQキレ−1〜処理し、低熱膨張性ポリイミドをス
ピンコードにより約5μm厚さ塗布し、100℃プリベ
ークを経た後に、350℃の硬化処理を施した。<Example 1> First, a 4-inch size Si wafer punched by the thermal oxidation process was treated with a 5AQ clean-1 process, and a low thermal expansion polyimide was applied to a thickness of about 5 μm using a spin cord, and after prebaking at 100°C, A curing treatment was performed at 350°C.
第2図に示すように、この低熱膨張ポリイミド膜付Si
基板を試料室10に設置し、減圧後にAトガスを導入し
、この雰囲気中でマイクロ波導入管によりプラズマを生
成させた。次いで、’TicQ4液をノズル14より4
〜6cc/分導入し。As shown in Figure 2, this low thermal expansion polyimide film coated Si
The substrate was placed in the sample chamber 10, and after the pressure was reduced, A gas was introduced, and plasma was generated in this atmosphere using a microwave introduction tube. Next, apply the 'TicQ4 liquid through the nozzle 14.
Introduced ~6cc/min.
ここで分解されたTiイオンを磁界コイル16゜17に
より加速しながら、低熱膨張ポリイミド膜11の表面に
打込んだ。打込壮は、制御用磁界コイル16.17を個
々に制御し、電子サイクルトロン共鳴領域でTiを加速
、打込んだ。The decomposed Ti ions were implanted into the surface of the low thermal expansion polyimide film 11 while being accelerated by magnetic field coils 16 and 17. For implantation, the control magnetic field coils 16 and 17 were individually controlled to accelerate and implant Ti in the electron cycletron resonance region.
本発明では、このような方法で100〜1000人厚さ
のTiを打込んだ低熱膨張性ポリイミドとCu蒸着膜(
5μm厚さ)との間の膜の剥離強度試験、及び、120
℃、2気圧の高温・高湿試験後の外ldLチエツク、お
よび、剥離試験を実施してみた。第1艮は各種Ti打込
み膜厚と剥離強度比を表わす。In the present invention, a low thermal expansion polyimide implanted with Ti to a thickness of 100 to 1000 layers and a Cu vapor deposited film (
Peel strength test of membranes between 5 μm thick) and 120
After a high temperature/high humidity test at 2 atm at 0.degree. C., an external ldL check and a peel test were conducted. The first bar represents various Ti implant film thicknesses and peel strength ratios.
なお、強度比は、無処理の低熱膨張性ポリイミド(LP
I)(57zm厚さ)とCu蒸着膜(5μIn厚さ)の
剥離強度を1とし、Ti打込厚さを変えたものとの相対
強度を示した。更に、()内は1000h高温(85°
C)、高湿(85%1120 )下に放置した後の強度
比を示している。これらの結果から明らかなように、T
iを500〜1ooo人打込んだもので約五〜十五倍強
度が向」ニし、また、高温・高湿試験後でも、おおよそ
半分程度強度比を保っていることが分かる。The strength ratio is that of untreated low thermal expansion polyimide (LP).
The peel strength of I) (57 zm thickness) and the Cu vapor deposited film (5 μIn thickness) was set as 1, and the relative strength of the Ti implanted thickness was shown. Furthermore, the values in parentheses are high temperatures for 1000 hours (85°
C) shows the strength ratio after being left under high humidity (85% 1120). As is clear from these results, T
It can be seen that the strength is about 5 to 15 times higher when 500 to 100 i is implanted, and the strength ratio is maintained by about half even after the high temperature and high humidity test.
〈実施例2〉実施例1に示した方法によりTiを約200人イオン打
込みし、更に、その」二にTiti−電子ビーム蒸着法
により約500人堆積させ、引き続きCu膜を約5μm
蒸着した。第2表はこれらの暎の接着強度比を示す。<Example 2> Approximately 200 Ti ions were implanted using the method shown in Example 1, and then approximately 500 Ti ions were deposited using the Ti-electron beam evaporation method, and then a Cu film was deposited to a thickness of approximately 5 μm.
Deposited. Table 2 shows the adhesive strength ratios of these resins.
実施例1に比べ、大幅に強度が向上し、無処理のものに
対して約四倍の強度になることが分かった。なお、これ
らは、高温・高湿試験後の強度も殆んど変化がみられな
い。なお、Cu膜が5μmjゾさは、通常の実装基板と
しての配線膜厚さに相当するイ直である。It was found that the strength was significantly improved compared to Example 1, and was approximately four times as strong as that of the untreated specimen. In addition, there is almost no change in strength after the high temperature/high humidity test. Note that the thickness of the Cu film of 5 μm corresponds to the thickness of the wiring film as a normal mounting board.
〈実施例3〉実施例2と同様に、Ti打込厚さ200人、゛1゛i堆
積厚さ500人とし、Cu配線用蒸着暎を5μmI5.
さとした基板を作製し、次いで実装配線をフオi・エツ
チング法を用いて、パターニングし、線幅50μm、線
間50μmの配線パターンを形成させた。更に、この後
に保護膜として低熱膨張性ポリイミド膜を約20μmス
ピンコードし、硬化処理を施した。この基板を120°
C,2気圧の高温・高湿下に約五百時間放置し、配線膜
れや、腐食状況を調べた。その結果、従来の無処理のも
のでは、この試験を数時間施しただけで剥れたり、激し
い配線腐食が進行していたものが、本発明のような密着
性の良い膜構造とすることにより、このような問題が解
消されることが判明した。<Example 3> As in Example 2, the Ti implantation thickness was 200, the deposition thickness was 500, and the Cu wiring evaporation depth was 5 μm I5.
A smooth substrate was prepared, and then the mounting wiring was patterned using a photo-etching method to form a wiring pattern with a line width of 50 μm and a line spacing of 50 μm. Furthermore, after this, a low thermal expansion polyimide film was spin-coded to a thickness of about 20 μm as a protective film, and a hardening treatment was performed. This board is 120°
C. It was left in a high temperature and high humidity environment of 2 atm for approximately 500 hours, and the wiring film was inspected for damage and corrosion. As a result, with the conventional untreated film, it peeled off after just a few hours of this test, and the wiring was severely corroded, but with the film structure of the present invention, which has good adhesion, It turns out that this kind of problem can be solved.
本発明によれば、従来から導体配線膜と同等の熱膨張係
数をもつ低熱膨張性ポリイミド膜を層間絶縁膜として用
いるための接着性を大幅に改揶てき、同時に配線腐食を
防止できる。According to the present invention, the adhesiveness of a conventional low thermal expansion polyimide film having a coefficient of thermal expansion equivalent to that of a conductor wiring film for use as an interlayer insulating film has been significantly improved, and at the same time, wiring corrosion can be prevented.
第1図は本発明の一実施例の配線構造体の製造−に程を
示す断面し1、第2図は本発明のTi打込の第1図;3′シ2Lイ1FIG. 1 is a cross-sectional view showing the manufacturing process of a wiring structure according to an embodiment of the present invention, and FIG. 2 is a first view of Ti implantation according to the present invention;
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP36189AJPH02181496A (en) | 1989-01-06 | 1989-01-06 | Multilayered interconnection board |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP36189AJPH02181496A (en) | 1989-01-06 | 1989-01-06 | Multilayered interconnection board |
| Publication Number | Publication Date |
|---|---|
| JPH02181496Atrue JPH02181496A (en) | 1990-07-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP36189APendingJPH02181496A (en) | 1989-01-06 | 1989-01-06 | Multilayered interconnection board |
| Country | Link |
|---|---|
| JP (1) | JPH02181496A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008545251A (en)* | 2005-06-28 | 2008-12-11 | インテル・コーポレーション | Method and apparatus for forming a through-silicon via with a stress buffer collar |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008545251A (en)* | 2005-06-28 | 2008-12-11 | インテル・コーポレーション | Method and apparatus for forming a through-silicon via with a stress buffer collar |
| Publication | Publication Date | Title |
|---|---|---|
| US4720401A (en) | Enhanced adhesion between metals and polymers | |
| JP2982851B2 (en) | Method of manufacturing electronic component including organic polymer substrate coated with copper, and electronic component including the organic polymer substrate | |
| CN102292798A (en) | Surface treatment for a fluorocarbon film | |
| CN109845415B (en) | Method for manufacturing a printed circuit board | |
| US4068022A (en) | Methods of strengthening bonds | |
| EP0187706B1 (en) | A method of coating an organic substrate with a metal | |
| TWI876948B (en) | Method of increasing adhesion of metal-organic interfaces by silane vapor treatment | |
| JPH0247257A (en) | Method for coating a substrate with a metal layer | |
| JPH02181496A (en) | Multilayered interconnection board | |
| US20020090831A1 (en) | Thin-film circuit substrate and method of producing same | |
| US6908561B1 (en) | Polymide-to-substrate adhesion promotion in HDI | |
| JP2003218516A (en) | Manufacturing method for wiring board | |
| KR20050019033A (en) | Semiconductor device and production method therefor | |
| KR20070037494A (en) | Copper, Whisker generation suppression method, printed wiring boards and semiconductor devices | |
| JP2003031580A (en) | Method for manufacturing semiconductor device | |
| JPH07249867A (en) | Method of surface treating insulating film | |
| JPH04267597A (en) | Manufacturing method of flexible printed wiring board | |
| JP2015076610A (en) | Surface-treated copper foil and copper-clad laminate plate including the same, printed circuit board using the same, and method for manufacturing the same | |
| JPS61290740A (en) | Manufacture of semiconductor device | |
| JP2804208B2 (en) | Manufacturing method of wiring board | |
| JPH0786736A (en) | Thin film multilayer circuit board | |
| JPH01124282A (en) | Wiring structure and its formation method | |
| TW202506282A (en) | Method of improving adhesion of metal-organic interface in electronic device and electronic device | |
| JPH0443654A (en) | Preparation of copper film laminated alumina wafer | |
| JPH025551A (en) | Semiconductor device |