【発明の詳細な説明】〔産業上の利用分野〕本発明は、半導体デバイス等の微細構造物の製作工程中
に存するプラズマCVDあるいはプラズマエツチング等
の処理を行うドライプロセス装置において、半導体ウェ
ーハ等の被処理物をプラズマ励起用高周波印加電極上に
載置し、この電極をヒータにより加熱し、被処理物を加
熱してドライプロセス処理を行うための高周波印加電極
のヒータ加熱装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is applicable to dry process equipment that performs processing such as plasma CVD or plasma etching during the manufacturing process of microstructures such as semiconductor devices. The present invention relates to a heater heating device for a high frequency application electrode for placing a workpiece on a high frequency application electrode for plasma excitation, heating the electrode with a heater, and heating the workpiece to perform a dry process.
第1図を参照して従来装置の一例を説明すると、従来装
置は反応室3内に接地電極2と高周波印加電極5を対向
して配設し、反応ガスの流通下で、高周波印加電極5を
ヒータ7により加熱しながら接地電極2に対し高周波印
加電極5に高周波電源17により高周波電力を印加する
ことにより高周波印加電極5上のウェーハ4をプロセス
処理する構成になっている。An example of a conventional device will be described with reference to FIG. 1. In the conventional device, a ground electrode 2 and a high-frequency application electrode 5 are disposed facing each other in a reaction chamber 3, and the high-frequency application electrode 5 is The wafer 4 on the high frequency application electrode 5 is processed by applying high frequency power from the high frequency power supply 17 to the high frequency application electrode 5 with respect to the ground electrode 2 while heating the wafer 4 with the heater 7 .
しかしながら、上記従来装置にあっては、接地電極2に
対し高周波印加電極5に高周波電力を印加して画電極2
,5の間でプラズマ放電している時にヒータ7により高
周波印加電極5の加熱を行うと、高周波ノイズがヒータ
回路に流れる電流に重畳し、高周波ノイズによりヒータ
7あるいはヒータ電源26が破壊するおそれがあると共
に高周波ノイズが外部装置に悪影響を及ぼすおそれがあ
るばかりでなく、高周波印加電極5を効率よく加熱する
ことが困難であるという課題があった。However, in the above-mentioned conventional device, high frequency power is applied to the high frequency application electrode 5 with respect to the ground electrode 2, and the picture electrode 2
, 5, if the heater 7 heats the high-frequency application electrode 5 during plasma discharge, the high-frequency noise will be superimposed on the current flowing through the heater circuit, and there is a risk that the heater 7 or the heater power supply 26 will be destroyed by the high-frequency noise. In addition, there is a problem that not only is there a possibility that the high-frequency noise may have an adverse effect on external devices, but also that it is difficult to heat the high-frequency application electrode 5 efficiently.
また、高周波印加電極5に高周波電力を印加した状態で
、ヒータ7により高周波印加電極5の加熱を行う場合、
高周波ノイズによるヒータ7またはヒータ電源26の破
壊のおそれがあること、高周波印加電極5の加熱温度を
熱電対9により高精度に測定することが高周波ノイズの
混入により難しいこと、高周波ノイズにより熱電対9が
破損するおそれがあることから高周波ノイズの混入によ
りヒータ温度制御部22による高周波印加電極5の加熱
温度の自動制御が困難になるという課題もあった。Further, when heating the high frequency application electrode 5 with the heater 7 while applying high frequency power to the high frequency application electrode 5,
There is a risk of damage to the heater 7 or the heater power supply 26 due to high frequency noise, it is difficult to accurately measure the heating temperature of the high frequency application electrode 5 with the thermocouple 9 due to the incorporation of high frequency noise, and the thermocouple 9 is difficult to measure with high accuracy due to high frequency noise. There is also a problem that automatic control of the heating temperature of the high-frequency application electrode 5 by the heater temperature control section 22 becomes difficult due to the incorporation of high-frequency noise, since there is a risk that the high-frequency noise may be damaged.
本発明の第1装置は上記の課題を解決するため、第1図
示のように反応室3内に接地電極2と高周波印加電極5
を対抗して配設し、反応ガスの流通下で、高周波印加電
極5をヒータ7により加熱しながら接地電極2に対し高
周波印加電極5に高周波電力を印加することにより、高
周波印加電極5上の被処理物4をプロセス処゛理するド
ライプロセス装置において、高周波印加電極5中に、と
−タ7を埋設したヒータシース6を挿設し、このヒータ
7に通電するヒータ燃線11をトロイダルコア12に巻
回してインダクタンス18を形成せしめ、このインダク
タンス18にフィルタエ9を接続してノイズ除去回路2
3を構成すると共に、このノイズ除去回路23をシール
ドケース24に収めてなる構成としたものである。In order to solve the above problems, the first device of the present invention has a ground electrode 2 and a high frequency application electrode 5 in the reaction chamber 3 as shown in the first diagram.
are arranged opposite to each other, and while the high-frequency applying electrode 5 is heated by the heater 7 under the flow of the reaction gas, high-frequency power is applied to the high-frequency applying electrode 5 with respect to the grounded electrode 2. In a dry process apparatus for processing a workpiece 4, a heater sheath 6 in which a heater 7 is embedded is inserted into a high frequency application electrode 5, and a heater wire 11 that energizes the heater 7 is connected to a toroidal core 12. is wound to form an inductance 18, and a filter element 9 is connected to this inductance 18 to form a noise removal circuit 2.
3, and this noise removal circuit 23 is housed in a shield case 24.
本発明の第2装置は上記の課題を解決するため、第1装
置において高周波印加電極5中に、感温素子9を埋設し
た感温素子シース8を挿設し、この感温素子9に接続し
たノイズ対策用感温素子引出部13をシールドケース2
4に収め、このノイズ対策用惑星素子引出部13より得
られる電極温度検出信号をヒータ温度制御部22に入力
してヒータ7への通電量を調整し、高周波印加電極5の
加熱温度を自動制御するように構成したものである。In order to solve the above-mentioned problems, the second device of the present invention has a temperature-sensitive element sheath 8 in which a temperature-sensitive element 9 is embedded in the high-frequency application electrode 5 in the first device, and is connected to the temperature-sensitive element 9. The shield case 2
4, and inputs the electrode temperature detection signal obtained from the noise countermeasure planetary element drawer 13 to the heater temperature control unit 22 to adjust the amount of current to the heater 7 and automatically control the heating temperature of the high frequency application electrode 5. It is configured to do so.
第1装置において反応ガスの流通下で、高周波印加電極
5をヒータ7により加熱しながら接地電極2に対し高周
波印加電極5に高周波電力を印加すると、画電極2.5
間にプラズマ放電が発生し、このプラズマ放電により高
周波印加電極5上の被処理物4がプロセス処理される。In the first device, under the flow of reaction gas, when high frequency power is applied to the high frequency applying electrode 5 with respect to the ground electrode 2 while heating the high frequency applying electrode 5 with the heater 7, the image electrode 2.5
During this time, a plasma discharge is generated, and the object 4 on the high frequency application electrode 5 is processed by this plasma discharge.
この場合、高周波印加電極5中に、ヒータ7を埋設した
ヒータシース6が挿設されているので、ヒータ7はヒー
タシース6を介して高周波印加電極5に接しており、こ
の電極5と当該電極5上の被処理物4の加熱は効率よく
行えることになる。In this case, since the heater sheath 6 in which the heater 7 is embedded is inserted into the high-frequency application electrode 5, the heater 7 is in contact with the high-frequency application electrode 5 through the heater sheath 6, and the heater 7 is in contact with the high-frequency application electrode 5 through the heater sheath 6. This means that the object to be processed 4 can be heated efficiently.
また、高周波電源17により発生する高周波ノイズはヒ
ータ回路中のインダクタンス18と、フィルタ19によ
るノイズ除去回路23により除去されることになり、ヒ
ータ7またはヒータ電源26が高周波ノイズによって破
壊されることがないばかりでなく、ノイズ除去回路23
はシールドケース24に収められているので、高周波ノ
イズが外部装置に悪影響を及ぼすこともない。Furthermore, the high frequency noise generated by the high frequency power source 17 is removed by the inductance 18 in the heater circuit and the noise removal circuit 23 including the filter 19, so that the heater 7 or the heater power source 26 will not be destroyed by the high frequency noise. Not only that, but also the noise removal circuit 23
Since it is housed in the shield case 24, high frequency noise will not have an adverse effect on external devices.
第2装置においては上記第1装置と同様の作用効果を奏
するだけでなく、高周波印加電極5中に、感温素子9を
埋設した感温素子シース8が埋設されているので、感温
素子9は感温素子シース8を介して高周波印加電極5に
接しており、この電極5及び当該電極5上の被処理物4
の加熱温度は比較的高精度で検出できる。The second device not only has the same effect as the first device, but also has a temperature sensing element sheath 8 embedded in the high frequency application electrode 5, so that the temperature sensing element 9 is embedded in the temperature sensing element 9. is in contact with the high frequency application electrode 5 via the temperature sensing element sheath 8, and this electrode 5 and the object to be treated 4 on the electrode 5
The heating temperature of can be detected with relatively high accuracy.
また高周波ノイズによるヒータまたはヒータ電源26の
破壊のおそれがないこと、高周波ノイズが感温素子9の
電極温度検出信号に混入しないため、感温素子9が破損
することはなく、高周波印加電極5の加熱温度を感温素
子9により高精度に測定することができることがらヒー
タ温度制御部22による高周波印加電極5の加熱温度の
自動制御が容易になるものである。In addition, there is no risk of damage to the heater or heater power supply 26 due to high frequency noise, and since high frequency noise does not mix into the electrode temperature detection signal of the temperature sensing element 9, the temperature sensing element 9 will not be damaged and the high frequency application electrode 5 will not be damaged. Since the heating temperature can be measured with high precision by the temperature sensing element 9, automatic control of the heating temperature of the high frequency application electrode 5 by the heater temperature control section 22 becomes easy.
以下図面に基づいて本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.
第1図は本発明装置の一実施例の構成を示す簡略断面図
、第2図は本発明におけるインダクタンスの一例を示す
斜視図である。FIG. 1 is a simplified sectional view showing the configuration of an embodiment of the device of the present invention, and FIG. 2 is a perspective view showing an example of the inductance in the present invention.
第1図において3は反応室(真空容器)で、ガス導入口
27と排気口28を有する。2,5はそれぞれ反応室3
内に対向して配設した接地電極(上部電極)と高周波印
加電極(下部電極)である。反応室3と接地電極2はア
ース1に接続されている。In FIG. 1, reference numeral 3 denotes a reaction chamber (vacuum container), which has a gas inlet 27 and an exhaust port 28. 2 and 5 are reaction chambers 3, respectively.
A ground electrode (upper electrode) and a high frequency application electrode (lower electrode) are arranged to face each other inside. The reaction chamber 3 and the ground electrode 2 are connected to the earth 1.
高周波印加電極5上にはウェーハ4がセットされており
、当該電極5中にはヒータ7を埋設したヒータシース6
が挿設されている。A wafer 4 is set on the high frequency application electrode 5, and a heater sheath 6 in which a heater 7 is embedded is placed in the electrode 5.
is inserted.
高周波印加電極5はフィーダ10により高周波マツチン
グユニット部15に接続され、このユニット部15に同
軸ケーブル16により高周波電源17が接続されており
、高周波電源17はアース1に接続されている。従って
高周波印加電極5には接地電極2に対し高周波電源17
により高周波電力が高周波マツチングユニット部15を
介して印加される構成となっている。The high frequency applying electrode 5 is connected to a high frequency matching unit section 15 by a feeder 10, a high frequency power source 17 is connected to this unit section 15 via a coaxial cable 16, and the high frequency power source 17 is connected to the ground 1. Therefore, the high frequency power source 17 is connected to the high frequency applying electrode 5 with respect to the ground electrode 2.
The configuration is such that high frequency power is applied via the high frequency matching unit section 15.
ヒータ7に接続した2本のテトラフルオロエチレン被覆
線等のヒータ線を撚り合せたヒータ燃線11をトロイダ
ルコア12に巻回してインダクタンス18が形成されて
いる。例えば第2図示のように2個のトロイダルコア1
2を合わせ、これにヒータ燃線11を約20回巻きして
なる。このインダクタンス18に貫通形フィルタ19
(C、Lのπ型で構成される)を接続してノイズ除去回
路23が構成され、フィーダ10の部分及びこのノイズ
除去回路23がシールドケース24に収められている。An inductance 18 is formed by winding a heater wire 11, which is made by twisting two heater wires such as tetrafluoroethylene coated wires connected to the heater 7, around a toroidal core 12. For example, as shown in the second diagram, two toroidal cores 1
2, and the heater fuel wire 11 is wound approximately 20 times around this. A through-type filter 19 is connected to this inductance 18.
A noise removal circuit 23 is constructed by connecting the noise removal circuits 23 (consisting of C and L π type), and the feeder 10 and this noise removal circuit 23 are housed in a shield case 24.
シールドケース24の外面には高周波マツチングユニッ
ト部15が取付けられており、貫通形フィルタ19はシ
ールドケース24に貫通状態で取付けられている。A high frequency matching unit section 15 is attached to the outer surface of the shield case 24, and a through-type filter 19 is attached to the shield case 24 in a penetrating state.
高周波印加電極5中には熱電対9を埋設した熱電対シー
ス8が挿設され、この熱電対9は熱電対素線14により
ノイズ対策用熱電対引出部13に接続されている。この
ノイズ対策用熱電対引出部13はシールドケース24に
収められ、貫通した状態で取付けられている。この引出
部13に接続した熱電対素線20とフィルタ19に接続
したヒータケーブル21はヒータ温度制御部22に接続
され、このヒータ温度制御部22にヒータ電源26が接
続されている。A thermocouple sheath 8 in which a thermocouple 9 is embedded is inserted into the high-frequency application electrode 5 , and the thermocouple 9 is connected to a noise countermeasure thermocouple extraction part 13 by a thermocouple wire 14 . This noise countermeasure thermocouple draw-out section 13 is housed in a shield case 24 and is attached in a penetrating state. The thermocouple wire 20 connected to the lead-out section 13 and the heater cable 21 connected to the filter 19 are connected to a heater temperature control section 22, and a heater power source 26 is connected to the heater temperature control section 22.
ヒータ温度制御部22は、熱電対9により高周波印加電
極5の加熱温度を検出し、この電極温度検出信号をノイ
ズ対策用熱電対引出部13を通して入力し、当該電極温
度検出信号に応じてヒータケーブル21.ノイズ除去回
路23を介してヒータ7に通電される通電量を調整し、
高周波印加電極5の加熱温度を自動制御するものである
。The heater temperature control section 22 detects the heating temperature of the high frequency application electrode 5 using the thermocouple 9, inputs this electrode temperature detection signal through the noise countermeasure thermocouple drawer section 13, and adjusts the temperature of the heater cable according to the electrode temperature detection signal. 21. Adjusting the amount of electricity supplied to the heater 7 via the noise removal circuit 23,
The heating temperature of the high frequency application electrode 5 is automatically controlled.
25はフィーダ10.ヒータシース6及び熱電対シース
8の反応室3より引出部に設けられた電気的絶縁兼真空
シール保持部である。25 is the feeder 10. This is an electrically insulating/vacuum seal holding part provided at a drawer part of the heater sheath 6 and thermocouple sheath 8 from the reaction chamber 3.
上記の構成においてガス導入口27より反応室3内に反
応ガスを導入し、排気口28より排気する。In the above configuration, a reaction gas is introduced into the reaction chamber 3 through the gas inlet 27 and exhausted through the exhaust port 28.
この反応ガスの流通下で、ヒータ電源26によりヒータ
温度制御部22.ヒータケーブル21及びノイズ除去回
路23を通してヒータ7に通電し、高周波印加電極5を
加熱する。この場合、高周波印加電極5中に、ヒータ7
を埋設したヒータシース6が挿設されているので、ヒー
タ7はヒータシース6を介して高周波印加電極5に接し
ており、この電極5と当該電極5上のウェーハ4の加熱
は効率よく行えることになる。Under the flow of this reaction gas, the heater temperature control unit 22. Electricity is supplied to the heater 7 through the heater cable 21 and the noise removal circuit 23 to heat the high frequency application electrode 5. In this case, the heater 7 is placed in the high frequency application electrode 5.
Since the heater sheath 6 embedded therein is inserted, the heater 7 is in contact with the high frequency application electrode 5 via the heater sheath 6, and this electrode 5 and the wafer 4 on the electrode 5 can be heated efficiently. .
高周波印加電極5の加熱温度は熱電対9により検出され
る。高周波印加電極5中に、熱電対9を埋設した熱電対
シース8が挿設されているので、熱電対9は熱電対シー
ス8を介して高周波印加電極5に接しており、この電極
5及び当該電極5上のウェーハ4の加熱温度は比較的高
精度で検出できる。この電極温度検出信号は熱電対素線
14.ノイズ対策熱電対引出部13及び熱電対案vA2
0を通してヒータ温度制御部22に入力され、この電極
温度検出信号に応じてヒータケーブル21.ノイズ除去
回路23を通してヒータ7に通電される通電量が調整さ
れ、高周波印加電極5及び当該電極5上のつ工−ハ4の
加熱温度が自動制御されることになる。The heating temperature of the high frequency application electrode 5 is detected by a thermocouple 9. Since a thermocouple sheath 8 in which a thermocouple 9 is embedded is inserted into the high frequency application electrode 5, the thermocouple 9 is in contact with the high frequency application electrode 5 via the thermocouple sheath 8, and this electrode 5 and the corresponding The heating temperature of the wafer 4 on the electrode 5 can be detected with relatively high accuracy. This electrode temperature detection signal is transmitted to the thermocouple wire 14. Noise countermeasure thermocouple drawer part 13 and thermocouple plan vA2
0 to the heater temperature control unit 22, and the electrode temperature detection signal is input to the heater cable 21. The amount of electricity supplied to the heater 7 through the noise removal circuit 23 is adjusted, and the heating temperature of the high frequency application electrode 5 and the tool 4 on the electrode 5 is automatically controlled.
このように高周波印加電極5及びウェーハ4が自動温度
制御されている場合に接地電極2に対し高周波印加電極
5に高周波電源17により同軸ケーブル16.高周波マ
ツチングユニット部15及びフィーダ10を通して高周
波電力を印加すると、画電極2.5間にプラズマ放電が
発生し、このプラズマ放電により高周波印加電極5上の
ウェーハ4がプロセス処理されることになる。かくして
プラズマ放電と高周波印加電極5の加熱制御を同時に行
うことができる。When the high frequency application electrode 5 and the wafer 4 are subjected to automatic temperature control in this way, the coaxial cable 16. When high frequency power is applied through the high frequency matching unit section 15 and the feeder 10, plasma discharge is generated between the picture electrodes 2.5, and the wafer 4 on the high frequency application electrode 5 is processed by this plasma discharge. In this way, plasma discharge and heating control of the high frequency application electrode 5 can be performed simultaneously.
放電中に温度制御を行う際に問題となるのが高周波電源
17により発生する高周波ノイズである。A problem when performing temperature control during discharge is high frequency noise generated by the high frequency power supply 17.
この高周波電源17により発生する高周波ノイズはヒー
タ回路中のインダクタンス18と、フィルタ19による
ノイズ除去回路23により除去されることになり、ヒー
タ7またはヒータ電源26が高周波ノイズによって破壊
されることがないばかりでなく、ノイズ除去回路23は
シールドケース24に収められているので、高周波ノイ
ズが外部装置に悪影響を及ぼすこともない。The high frequency noise generated by this high frequency power source 17 is removed by the inductance 18 in the heater circuit and the noise removal circuit 23 including the filter 19, so that the heater 7 or the heater power source 26 will not be destroyed by the high frequency noise. Instead, the noise removal circuit 23 is housed in the shield case 24, so that high frequency noise does not have an adverse effect on external devices.
また、熱電対回路にはノイズ対策用熱電対引出部13が
設けられているので、高周波ノイズが熱電対9の電極温
度検出信号に混入しないため、熱電対9が高周波ノイズ
により破損されることはなく、高周波印加電極5の加熱
温度を熱電対9により高精度に測定することができるこ
と、高周波ノイズによる熱電対9またはヒータ7あるい
はヒータ電源26の破壊のおそれがないことがらヒータ
温度制御部22による高周波印加電極5の加熱温度の自
動制御が容易になるものである。Furthermore, since the thermocouple circuit is provided with a thermocouple draw-out section 13 for noise countermeasures, high frequency noise will not be mixed into the electrode temperature detection signal of the thermocouple 9, so the thermocouple 9 will not be damaged by high frequency noise. The heating temperature of the high-frequency application electrode 5 can be measured with high precision by the thermocouple 9, and there is no risk of damage to the thermocouple 9, heater 7, or heater power source 26 due to high-frequency noise. This facilitates automatic control of the heating temperature of the high frequency application electrode 5.
ヒータ電流が流れるヒータ線を撚り合せ、このヒータ燃
線11をトロイダルコア12に巻き付けてインダクタン
スI8を形成することによりヒータ電流(数アンペア)
によるトロイダルコア12の磁気飽和が防止できると共
にヒータ回路に重畳する高周波ノイズをlL滅すること
ができる。インダクタンス18とフィルタ19によりロ
ーパスフィルタを構成しているので、高周波電源17に
より発生した高周波ノイズが除去され、シールドケース
24でシールドしているため、外部に漏れることはない
。The heater current (several amperes) is adjusted by twisting the heater wires through which the heater current flows, and winding the heater wire 11 around the toroidal core 12 to form an inductance I8.
It is possible to prevent the magnetic saturation of the toroidal core 12 caused by this, and also to eliminate high frequency noise superimposed on the heater circuit. Since the inductance 18 and the filter 19 constitute a low-pass filter, high frequency noise generated by the high frequency power supply 17 is removed, and since it is shielded by the shield case 24, it does not leak to the outside.
トロイダルコア12を用いることによりインダクタンス
1Bを小形にでき、このインダクタンス18とフィルタ
19により形成されるノイズ除去回路23も小形にでき
る。By using the toroidal core 12, the inductance 1B can be made small, and the noise removal circuit 23 formed by this inductance 18 and the filter 19 can also be made small.
本実施例においては、ヒータパワーは少なくともsoo
wまで安定して供給できる。ヒータ7はヒータシース
6を介して高周波印加電極5に接触しているので熱伝導
がよく、約400℃まで昇温できる。In this embodiment, the heater power is at least so
It is possible to stably supply up to w. Since the heater 7 is in contact with the high frequency application electrode 5 via the heater sheath 6, heat conduction is good and the temperature can be raised to about 400°C.
上述のように本発明の第1装置は、反応室3内に接地電
極2と高周波印加電極5を対抗して配設し、反応ガスの
流通下で、高周波印加電極5をヒータ7により加熱しな
がら接地電極2に対し高周波印加電極5に高周波電力を
印加することにより、高周波印加電極5上の被処理物4
をプロセス処理するドライプロセス装置において、高周
波印加電極5中に、ヒータ7を埋設したヒータシース6
を挿設し、このヒータ7に通電するヒータ燃線11をト
ロイダルコア12に巻回してインダクタンス18を形成
せしめ、このインダクタンス18にフィルタ19を接続
してノイズ除去回路23を構成すると共に、このノイズ
除去回路23をシールドケース24に収めてなるので、
ヒータ7はヒータシース6を介して高周波印加電極5に
接しており、熱伝導が良好となるため、高周波印加電極
5と当該電極5上の被処理物4の加熱を効率よく行うこ
とができる。また、高周波電源17により発生する高周
波ノイズはヒータ回路中のインダクタンス18とフィル
タ19によるノイズ除去回路23により除去されるので
、ヒータ7またはヒータ電源26を高周波ノイズにより
破壊するおそれがないばかりでなく、ノイズ除去回路2
3はシールドケース24に収められているので、高周波
ノイズが外部装置に悪影響を及ぼすことはない。As described above, in the first device of the present invention, the ground electrode 2 and the high-frequency application electrode 5 are disposed facing each other in the reaction chamber 3, and the high-frequency application electrode 5 is heated by the heater 7 while the reaction gas is flowing. By applying high frequency power to the high frequency applying electrode 5 with respect to the grounding electrode 2, the object to be processed 4 on the high frequency applying electrode 5 is
In a dry process device that processes
A heater wire 11 that energizes the heater 7 is wound around the toroidal core 12 to form an inductance 18, and a filter 19 is connected to the inductance 18 to form a noise removal circuit 23. Since the removal circuit 23 is housed in the shield case 24,
The heater 7 is in contact with the high-frequency application electrode 5 via the heater sheath 6, and the heat conduction is good, so that the high-frequency application electrode 5 and the object 4 on the electrode 5 can be efficiently heated. Further, since the high frequency noise generated by the high frequency power supply 17 is removed by the noise removal circuit 23 including the inductance 18 and the filter 19 in the heater circuit, there is not only no risk of damaging the heater 7 or the heater power supply 26 due to high frequency noise. Noise removal circuit 2
3 is housed in a shield case 24, so high frequency noise will not have a negative effect on external devices.
トロイダルコア12にヒータ燃線11を巻回して形成さ
れる小形のインダクタンス18と、小形のフィルタ19
を用いることによりノイズ除去回路23を小形にでき、
部品点数も少なく、安価に実施できる。A small inductance 18 formed by winding the heater wire 11 around the toroidal core 12 and a small filter 19
By using , the noise removal circuit 23 can be made smaller,
The number of parts is small and it can be implemented at low cost.
また第2装置は第1装置において高周波印加電極5中に
、感温素子9を埋設した感温素子シース8を挿設し、こ
の感温素子9に接続したノイズ対策用感温素子引出部1
3をシールドケース24に収め、このノイズ対策用感温
素子引出部13より得られる電極温度検出信号をヒータ
温度制御部22に入力してヒータ7への通電量を調整し
、高周波印加電極5の加熱温度を自動制御するように構
成したので、第1装置と同様の作用効果を奏するだけで
なく、感温素子9は感温素子シース8を介して高周波印
加電極5に接しており、熱伝導が良好となるため、高周
波印加電極5及び当該電極5上の被処理物4の加熱温度
を比較的高精度で検出できる。Further, in the second device, a temperature sensing element sheath 8 in which a temperature sensing element 9 is embedded is inserted into the high frequency application electrode 5 of the first device, and a temperature sensing element drawer part 1 for noise countermeasures is connected to the temperature sensing element 9.
3 is housed in a shield case 24, and the electrode temperature detection signal obtained from the noise countermeasure temperature sensing element drawer 13 is inputted to the heater temperature control section 22 to adjust the amount of current to the heater 7. Since it is configured to automatically control the heating temperature, it not only has the same effect as the first device, but also the temperature sensing element 9 is in contact with the high frequency application electrode 5 via the temperature sensing element sheath 8, and heat conduction is improved. As a result, the heating temperature of the high frequency application electrode 5 and the object to be processed 4 on the electrode 5 can be detected with relatively high accuracy.
また高周波ノイズによるヒータまたはヒータ電源26の
破壊のおそれがないこと、高周波ノイズが感温素子9の
電極温度検出信号に混入しないため、感温素子9が破損
することはなく、高周波印加電極5の加熱温度を感温素
子9により高精度に測定することができることがらヒー
タ温度制御部22による高周波印加電極5の加熱温度の
自動制御が容易になるという効果を奏する。In addition, there is no risk of damage to the heater or heater power supply 26 due to high frequency noise, and since high frequency noise does not mix into the electrode temperature detection signal of the temperature sensing element 9, the temperature sensing element 9 will not be damaged and the high frequency application electrode 5 will not be damaged. Since the heating temperature can be measured with high precision by the temperature sensing element 9, the automatic control of the heating temperature of the high frequency application electrode 5 by the heater temperature control section 22 is facilitated.
第1図は本発明装置の一実施例の構成を示す筒路断面図
、第2図は本発明におけるインダクタンスの一例を示す
斜視図である。2・・・・・・接地電極、3・・・・・・反応室、4・
・・・・・被処理物(ウェーハ)、5・・・・・・高周
波印加電極、6・・・・・・ヒータシース、7・・・・
・・ヒータ、8・・・・・・感温素子(熱電対)シース
、9・・・・・・感温素子(熱電対)、10・・・・・
・フィーダ、11・・・・・・ヒータ燃線、12・・・
・・・トロイダルコア、13・・・・・・ノイズ対策用
感温素子(熱電対)引出部、14・・・・・・感温素子
(熱電対)素線、15・・・・・・高周波マツチングユ
ニット部、16・・・・・・同軸ケーブル、17・・・
・・・高周波電源、18・旧・・インダクタンス、19
・・・・・・(1通形)フィルタ、20・・・・・・感
温素子(熱電対)素線、21・・・・・・ヒータケーブ
ル、22・・・・・・ヒータ温度制御部、23・・・・
・・ノイズ除去回路、24・・・・・・シールドケース
、26・・・・・・ヒータtR127・・・−・・ガス
導入口、28・・・・・・排気口。FIG. 1 is a cross-sectional view of a tube showing the structure of an embodiment of the device of the present invention, and FIG. 2 is a perspective view of an example of the inductance of the present invention. 2... Ground electrode, 3... Reaction chamber, 4...
...Processed object (wafer), 5 ...High frequency application electrode, 6 ... Heater sheath, 7 ...
... Heater, 8 ... Temperature sensing element (thermocouple) sheath, 9 ... Temperature sensing element (thermocouple), 10 ...
・Feeder, 11...Heater combustion wire, 12...
... Toroidal core, 13 ... Temperature sensing element (thermocouple) extraction part for noise countermeasure, 14 ... Temperature sensing element (thermocouple) strand, 15 ... High frequency matching unit section, 16... Coaxial cable, 17...
...High frequency power supply, 18. Old...Inductance, 19
...... (single type) filter, 20... Temperature sensing element (thermocouple) wire, 21... Heater cable, 22... Heater temperature control Part, 23...
... Noise removal circuit, 24 ... Shield case, 26 ... Heater tR127 ... Gas inlet, 28 ... Exhaust port.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63281783AJP2656326B2 (en) | 1988-11-07 | 1988-11-07 | Heating device for high frequency application electrode in dry process equipment |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63281783AJP2656326B2 (en) | 1988-11-07 | 1988-11-07 | Heating device for high frequency application electrode in dry process equipment |
| Publication Number | Publication Date |
|---|---|
| JPH02129373Atrue JPH02129373A (en) | 1990-05-17 |
| JP2656326B2 JP2656326B2 (en) | 1997-09-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63281783AExpired - Fee RelatedJP2656326B2 (en) | 1988-11-07 | 1988-11-07 | Heating device for high frequency application electrode in dry process equipment |
| Country | Link |
|---|---|
| JP (1) | JP2656326B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008034812A (en)* | 2006-06-13 | 2008-02-14 | Applied Materials Inc | AC-RF separation filter with high AC current and high RF power for heating electrostatic chuck of plasma reactor |
| JP2008198902A (en)* | 2007-02-15 | 2008-08-28 | Tokyo Electron Ltd | Plasma processing equipment |
| JP2013543252A (en)* | 2010-08-06 | 2013-11-28 | ラム リサーチ コーポレーション | Radio frequency (RF) power filter and plasma processing system comprising an RF power filter |
| JP2013243135A (en)* | 2013-06-20 | 2013-12-05 | Tokyo Electron Ltd | Plasma processing apparatus |
| WO2014041792A1 (en)* | 2012-09-12 | 2014-03-20 | 東京エレクトロン株式会社 | Plasma processing device and filter unit |
| JP2015084350A (en)* | 2013-10-25 | 2015-04-30 | 東京エレクトロン株式会社 | Temperature control mechanism, temperature control method and substrate processing apparatus |
| CN108376635A (en)* | 2017-01-30 | 2018-08-07 | 日本碍子株式会社 | Wafer supporting station |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008034812A (en)* | 2006-06-13 | 2008-02-14 | Applied Materials Inc | AC-RF separation filter with high AC current and high RF power for heating electrostatic chuck of plasma reactor |
| JP2008198902A (en)* | 2007-02-15 | 2008-08-28 | Tokyo Electron Ltd | Plasma processing equipment |
| JP2013543252A (en)* | 2010-08-06 | 2013-11-28 | ラム リサーチ コーポレーション | Radio frequency (RF) power filter and plasma processing system comprising an RF power filter |
| KR20150054767A (en)* | 2012-09-12 | 2015-05-20 | 도쿄엘렉트론가부시키가이샤 | Plasma processing device and filter unit |
| WO2014041792A1 (en)* | 2012-09-12 | 2014-03-20 | 東京エレクトロン株式会社 | Plasma processing device and filter unit |
| JP2014056706A (en)* | 2012-09-12 | 2014-03-27 | Tokyo Electron Ltd | Plasma processing device and filter unit |
| US10074519B2 (en) | 2012-09-12 | 2018-09-11 | Tokyo Electron Limited | Plasma processing apparatus and filter unit |
| JP2013243135A (en)* | 2013-06-20 | 2013-12-05 | Tokyo Electron Ltd | Plasma processing apparatus |
| JP2015084350A (en)* | 2013-10-25 | 2015-04-30 | 東京エレクトロン株式会社 | Temperature control mechanism, temperature control method and substrate processing apparatus |
| WO2015060185A1 (en)* | 2013-10-25 | 2015-04-30 | 東京エレクトロン株式会社 | Temperature control mechanism, temperature control method, and substrate processing apparatus |
| US10199246B2 (en) | 2013-10-25 | 2019-02-05 | Tokyo Electron Limited | Temperature control mechanism, temperature control method and substrate processing apparatus |
| CN108376635A (en)* | 2017-01-30 | 2018-08-07 | 日本碍子株式会社 | Wafer supporting station |
| KR20200067241A (en)* | 2017-01-30 | 2020-06-12 | 엔지케이 인슐레이터 엘티디 | Wafer support table |
| US10861680B2 (en) | 2017-01-30 | 2020-12-08 | Ngk Insulators, Ltd. | Wafer support |
| CN108376635B (en)* | 2017-01-30 | 2021-09-03 | 日本碍子株式会社 | Wafer supporting table |
| TWI749161B (en)* | 2017-01-30 | 2021-12-11 | 日商日本碍子股份有限公司 | Wafer support table |
| Publication number | Publication date |
|---|---|
| JP2656326B2 (en) | 1997-09-24 |
| Publication | Publication Date | Title |
|---|---|---|
| US5806980A (en) | Methods and apparatus for measuring temperatures at high potential | |
| JP7108623B2 (en) | Voltage-current probe for measuring high frequency power in high temperature environments and method for calibrating voltage-current probe | |
| US6297165B1 (en) | Etching and cleaning methods | |
| TWI873500B (en) | Filter device, substrate processing device and plasma processing device | |
| DE69528290T2 (en) | WITH REDUCED PARTICLE CONTAMINATION PLASMA SPUTTER ETCHING DEVICE | |
| US20090178764A1 (en) | Plasma processing apparatus including electrostatic chuck with built-in heater | |
| EP0467391B1 (en) | Plasma apparatus, and method and system for extracting electrical signal of member to which high-frequency-wave is applied | |
| KR20140104380A (en) | Plasma processing apparatus and plasma processing method | |
| JP2004047696A (en) | Plasma doping method and apparatus, matching circuit | |
| JP7592757B2 (en) | Method and apparatus for processing a substrate - Patents.com | |
| JPH02129373A (en) | Heating device for high frequency application electrode in dry process equipment | |
| JP3923323B2 (en) | Plasma processing apparatus and plasma processing method | |
| KR102175086B1 (en) | Apparatus for treating substrate and method for treating apparatus | |
| CN104637838B (en) | A kind of semiconductor processing device | |
| US6528949B2 (en) | Apparatus for elimination of plasma lighting inside a gas line in a strong RF field | |
| JPH06112167A (en) | Plasma apparatus | |
| JP2004079929A (en) | Plasma leak monitoring method, and method and device for plasma treatment | |
| JPH07302696A (en) | Earth line monitoring method and plasma processing apparatus using the same | |
| JP3010683B2 (en) | Plasma processing method | |
| JPH02213482A (en) | Plasma treating device | |
| JPH03232224A (en) | plasma processing equipment | |
| JPH03158472A (en) | Gas phase reactor | |
| JPH11307514A (en) | Plasma processing apparatus and method | |
| JP2000003903A (en) | Plasma treatment apparatus | |
| JP2000208485A (en) | Plasma processing method and apparatus |
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |