【発明の詳細な説明】(産業上の利用分野)本発明は、真空中で薄膜を形成するスパッタリング装置
、特に磁性体のターゲットを用い、磁気ディスクや光磁
気ディスクの記録層の成膜、磁気ヘッドや薄膜磁気ヘッ
ドのヨークとなるセンダストやパーマロイ膜の成膜に用
いられる、大量生産用の高速低温スパッタリング装置に
関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention uses a sputtering apparatus for forming a thin film in a vacuum, in particular a magnetic target, to form a recording layer of a magnetic disk or magneto-optical disk, The present invention relates to a high-speed, low-temperature sputtering device for mass production, which is used to form sendust and permalloy films that serve as the yokes of heads and thin-film magnetic heads.
(従来の技術とその問題点)ターゲットの表面の近傍に、電場に直交する磁場を与え
、電子をこの磁場でトラップして高密度プラズマを作る
マグネトロン放電型のスパッタリング装置は、所望厚さ
の膜を高速で量産できるものとして特に開発が進んでい
る。(Prior art and its problems) Magnetron discharge sputtering equipment applies a magnetic field perpendicular to the electric field near the target surface and traps electrons in this magnetic field to create high-density plasma. Development is progressing especially as it can be mass-produced at high speed.
そして、磁場を固定してスパッタリングを行う方式のも
のは、ターゲットが局部的にエロージョン(侵食)され
て利用率が悪いので、エロージョンをターゲット表面で
均一にし、ターゲットの利用率を向上して長寿命を図る
ことを目的として、スパッタリング中に磁場を回転移動
させる方式が開発されている。In sputtering methods in which the magnetic field is fixed, the target is eroded locally and its utilization rate is poor, so the erosion is made uniform on the target surface, improving the utilization rate of the target and extending its life. With the aim of achieving this, a method has been developed in which the magnetic field is rotated during sputtering.
第10図に被処理基板20と、それに対向配置されたタ
ーゲット部10の正面断面図を例示する。FIG. 10 illustrates a front sectional view of the substrate to be processed 20 and the target section 10 disposed opposite thereto.
第6図(平面図)、第7図(正面断面図)にこのような
従来の方式のマグネトロンスパッタリング装置のターゲ
ット部の要部の図を例示する。FIG. 6 (plan view) and FIG. 7 (front sectional view) illustrate the main parts of the target portion of such a conventional magnetron sputtering apparatus.
図中81が円盤状ターゲットであり、その表面82が真
空室中でスパッタされる。ターゲット81の裏面83側
には、磁場印加装置84が設けられている。磁場印加装
置84は、回転装置85上に載置されており、軸86に
よって回転中心87の回りに回転可能となっている。磁
場印加装置84は、永久磁石841,842とヨーク8
40で構成され、その磁極の表面部の極性が、中央の8
4】と外側の842で互いに逆極性となるように構成し
ている。In the figure, 81 is a disc-shaped target, the surface of which is sputtered in a vacuum chamber. A magnetic field applying device 84 is provided on the back surface 83 side of the target 81 . The magnetic field application device 84 is placed on a rotation device 85 and is rotatable around a rotation center 87 by a shaft 86 . The magnetic field application device 84 includes permanent magnets 841 and 842 and a yoke 8.
40, and the polarity of the surface of the magnetic pole is the central 8
4] and the outside 842 are configured to have opposite polarities.
第6図に、磁場を静止させた状態でスパッタリングを行
った場合に、上記のターゲット81に生ずるエロージョ
ンの平面形状を示した。FIG. 6 shows the planar shape of erosion that occurs in the target 81 when sputtering is performed with the magnetic field stationary.
エロージョン領域(エロージョンの深さが、最大深さの
5%以上であるような全領域を指すものとする)は、斜
線を施したほぼ矩形の領域88となる。89はこのエロ
ージョン領域88のうち、最も速くエロージョンを生じ
て、エロージョンが最大深さをもつ部分であり、通常こ
れは殆ど線状となることが知られている。その位置は正
確には実験で得られるが、磁場印加装置84が作る磁場
の分布から、おおよその予測が可能である。The erosion area (referring to the entire area where the depth of erosion is 5% or more of the maximum depth) is a substantially rectangular area 88 with diagonal lines. 89 is a portion of the erosion region 88 where erosion occurs fastest and has the greatest depth, and it is known that this is usually almost linear. Although the exact position can be obtained through experiments, it can be roughly predicted from the distribution of the magnetic field created by the magnetic field application device 84.
さて、上記のような従来の装置で回転装置85を働かせ
磁場を回転移動させてスパッタリングを行った場合には
、第8図、第9図に示すように磁場の回転する通路の全
体に亙って磁場の回転中心87を中心とする2つの同心
円で囲まれたエロージョン領域98が形成されるが、エ
ロージョン速度がターゲット81表面の各部で不均一な
ところから、この場合も同心円状で囲まれた広いエロー
ジョン領域980回転中心に近い領域に、特にエロージ
ョンの激しい円形の溝99が出来る傾向が強い。このよ
うな溝99ははじめに少しでも出来るとその溝部の磁場
が他より強くなるため、その溝部がさらに他より速くエ
ロージョンされ、エロージョンの不均一が特に進行する
傾向を生む。Now, when sputtering is performed by rotating the magnetic field by operating the rotating device 85 in the conventional apparatus as described above, as shown in FIGS. 8 and 9, the magnetic field rotates over the entire path. In this case, an erosion region 98 surrounded by two concentric circles centered on the rotation center 87 of the magnetic field is formed, but since the erosion speed is uneven in each part of the surface of the target 81, the erosion region 98 is also surrounded by concentric circles in this case. In the wide erosion region 980, there is a strong tendency for circular grooves 99, where erosion is particularly severe, to be formed in the region near the center of rotation. If such a groove 99 is initially formed, the magnetic field in that groove becomes stronger than in other grooves, so that the groove erodes even faster than the other grooves, creating a tendency for non-uniform erosion to progress particularly.
この傾向は強磁性体のターゲットを使用した場合に特別
強く、この場合には磁場を回転させても部分的な円形の
溝領域99のみが強くエロージョンされて、磁場を回転
した意味がなぐり、ターゲット利用率を悪くする。また
、この場合は、被処理基板上における成膜性能(成膜速
度、膜厚分布の均一性、段差被覆率など)の低下も避け
られない。This tendency is particularly strong when a ferromagnetic target is used; in this case, even if the magnetic field is rotated, only the partial circular groove region 99 will be strongly eroded, and the meaning of rotating the magnetic field will be lost, and the target Decrease utilization rate. Furthermore, in this case, a decrease in film formation performance (film formation speed, uniformity of film thickness distribution, step coverage, etc.) on the substrate to be processed is also unavoidable.
ターゲットの利用率を向上し上記の諸問題を解決するた
め、ターゲットのエロージョン形状を均一にする様々の
工夫が従来からなされており、例えば典型的には、特開
昭62−60866号公報の発明がある。その装置は次
の理論によフて下記ように構成されろものである。In order to improve the utilization rate of the target and solve the above-mentioned problems, various efforts have been made to uniformize the erosion shape of the target. There is. The device is constructed as follows according to the following theory.
第6図で、半径rの円周上に、エロージョン速度Rrt
(A/m1n)(i=1.−n)の場所がそれぞれ角
度θr:(rad)(θ1.は、エロージョン速度Rr
iの場所の長さと回転中心からの距離の比である)だ
けあるとすると、磁場回転時には、この円周上の各部の
エロージョン速度り、は、前記各エロージョン速度の平
均値となり、D、=ΣRr iθ、、/、2π (入/
m i n )で得られる。In Fig. 6, on the circumference of radius r, erosion rate Rrt
(A/m1n) (i=1.-n) is at an angle θr: (rad) (θ1. is the erosion rate Rr
(which is the ratio of the length of location i to the distance from the center of rotation), then when rotating in a magnetic field, the erosion velocity of each part on this circumference is the average value of the respective erosion velocities, and D, = ΣRr iθ, , /, 2π (input/
m i n ).
従って・[条件AI・・・・・・もしRr iが、この円周上の
すべての点て一定値R,(その他の場所ではゼロ)をと
るとするきはり、= (R,/2π)Σθ、1 となる。この式はり
、= (R,/2π)Σ(L−1/r)とも書ける。Therefore, [Condition AI...If Rr i takes a constant value R, at all points on this circumference (zero elsewhere), = (R, /2π) Σθ, 1. This equation can also be written as = (R,/2π)Σ(L-1/r).
但し し、は、各角度θ、1の弧の長さである。However, is the length of the arc of each angle θ, 1.
一般にR,はrによって異なるが、[条件B]・・・・・・もしR1が各半径rでも一定値
Rf:とるとするときは、この式はり、= (R/2π)Σθ、1 となる。この式はり、
= (R/2π)Σ(L r + / r >とも書け
る。Generally, R differs depending on r, but [Condition B]...If R1 takes a constant value Rf for each radius r, then this formula is = (R/2π)Σθ,1 Become. This type of beam,
It can also be written as = (R/2π)Σ(L r + / r >.
前記特許公開公報の発明は、この[条件A]と[条件B
]の両者を、ターゲットの裏面に、多数の同形状の磁石
を並べることで、ターゲット表面のほぼ全表面で成立さ
せ、Σθ、i 従って、 Σ(Lrt/r)が、ターゲット
の全面で一定となるようにこれら磁石を配置し、エロー
ジョンの均一性を確保したものである。The invention disclosed in the patent publication is based on these [Condition A] and [Condition B].
] can be established over almost the entire surface of the target by arranging a large number of magnets of the same shape on the back surface of the target, and Σθ,i Therefore, Σ(Lrt/r) is constant over the entire surface of the target. These magnets are arranged to ensure uniformity of erosion.
さてこれによって、ターゲット表面のエロージョンの均
一性は確保されその利用率は高まる。As a result, the uniformity of erosion on the target surface is ensured and its utilization rate is increased.
しかし、特に、磁性体のターゲットを用い、磁気ディス
クや光磁気ディスクの広い面積の記録層の成膜、磁気ヘ
ッドや薄膜磁気ヘッドのヨークとなるセンダストやパー
マロイ膜の大量の成膜に、この装置を用いて高速低温ス
パッタリングを行なおうとすると、ターゲットの利用率
は良くなるものの、堆積膜の膜厚分布はなお不十分であ
るという欠点がある。However, this system is particularly useful for forming large-area recording layers of magnetic disks and magneto-optical disks using magnetic targets, and for forming large amounts of sendust and permalloy films that serve as yokes for magnetic heads and thin-film magnetic heads. When attempting to perform high-speed, low-temperature sputtering using a sputtering method, although the utilization rate of the target improves, there is a drawback that the thickness distribution of the deposited film is still insufficient.
第5図Aの点線の曲線は、上記従来の装置で得られた膜
の膜厚分布の一例を示したものである。The dotted curve in FIG. 5A shows an example of the film thickness distribution of the film obtained using the above-mentioned conventional apparatus.
(発明の目的)本発明は、上記の問題を解決し、広い均一な膜厚分布、
を可能にする、マグネトロンスパッタリング装置のター
ゲット部の構成を提供することを目的とする。(Objective of the invention) The present invention solves the above problems and achieves a wide uniform film thickness distribution,
It is an object of the present invention to provide a configuration of a target section of a magnetron sputtering apparatus that enables this.
(発明の構成)本発明は、平板状ターゲットと、該ターゲットの裏面の
近傍に設けた磁場印加装置と、該磁場印加装置が該ター
ゲットの表面上に作る磁場の位置を回転移動させる回転
駆動手段とを備えるマグネトロンスパッタリング装置に
おいて、該ターゲットに生じるエロージョンの深さが、エロージ
ョン領域にてその中央部より外周部に向かう程次第に深
くなるように、該磁場印加装置を構成することによって
前記目的を達成したものである。(Structure of the Invention) The present invention provides a flat target, a magnetic field applying device provided near the back surface of the target, and a rotation drive means for rotationally moving the position of the magnetic field created by the magnetic field applying device on the surface of the target. The above object is achieved by configuring the magnetic field applying device in a magnetron sputtering device comprising: the depth of erosion occurring in the target gradually becoming deeper from the central portion toward the outer circumference in the erosion region. This is what I did.
(実施例)以下、本発明の実施例を図面を参照して説明する。(Example)Embodiments of the present invention will be described below with reference to the drawings.
第1図乃至第4図は本発明の1実施例のマグネトロンス
パッタリング装置の電極部の図であり、第1図はターゲ
ットの背後の磁石の磁極の配置を示す平面図、第2図は
その断面図、第3図はその磁場静止状態における最速エ
ロージョン部の図、第4図はエロージョン形状を示す断
面図である。1 to 4 are diagrams of the electrode section of a magnetron sputtering apparatus according to an embodiment of the present invention. FIG. 1 is a plan view showing the arrangement of the magnetic poles of the magnet behind the target, and FIG. 2 is a cross section thereof. Figures 3 and 3 are diagrams of the fastest erosion part in the magnetic field stationary state, and Figure 4 is a sectional view showing the shape of the erosion.
1は強磁性体のターゲットであってその表面2側が真空
容器内でスパッタされる。裏面3の近傍に磁場印加装置
4が設けられている。Reference numeral 1 denotes a ferromagnetic target whose surface 2 side is sputtered in a vacuum chamber. A magnetic field applying device 4 is provided near the back surface 3.
磁場印加装置4は、互いに表面側磁極を異にする永久磁
石群41(411,412、・・・・・・4110)と
42(421,422、・・・・・・4220)が共通
のヨーク40の上に設置され、この全体が回転装置5の
上に載置された構成をとっており、回転軸6によフて中
心軸7の回りに回転する。In the magnetic field application device 4, permanent magnet groups 41 (411, 412, ... 4110) and 42 (421, 422, ... 4220) having different front side magnetic poles are connected to a common yoke. 40 , the entire structure is placed on a rotating device 5 , and the rotating shaft 6 rotates around a central axis 7 .
磁場印加装置4の静止状態では、ターゲット10表面に
は第3図に示すような最速エロージョン部9が形成され
るのが認められる。When the magnetic field application device 4 is in a stationary state, it is observed that the fastest erosion portion 9 as shown in FIG. 3 is formed on the surface of the target 10.
磁場印加装置4を回転させてスパッタリングを行なう時
は、第4図のようなエロージョン形状が得られ、被処理
基板上の堆積膜の膜厚分布は第5図Bの実線のように改
善された。When sputtering was performed by rotating the magnetic field application device 4, an erosion shape as shown in FIG. 4 was obtained, and the thickness distribution of the deposited film on the substrate to be processed was improved as shown by the solid line in FIG. 5B. .
本発明による本実施例は、従来の前記特許公開公報の装
置の構成上は異なり、前記条件[A、 B]をほぼ満
足しつつ、Σθ、1 従って、 Σ(L、、/r)の値
が、ターゲットの半径方向で異なるように磁石を配置し
ている。The present embodiment according to the present invention differs in configuration from the conventional device disclosed in the above-mentioned patent publication, and while substantially satisfying the conditions [A, B], the value of Σθ,1 Therefore, the value of Σ(L, , /r) However, the magnets are arranged differently in the radial direction of the target.
即ち、第3図の最速エロージョン部9の図を使うと分か
り易いか、半径r、の円周上とその近傍の円周上の、
Σθ、1 従って、 Σ(Lr l / r )の値
は、θ、 従って、L、/r、(iはただ一つだけ、即
ちn=1である)であり、また半径r2の円周上とその
近傍の円周上では、Σθ、 従って、 Σ(Lr1/r
)の値は、θ2 従って、L2/r2 (ここでもiは
ただ一つだけである)となっているが、この実施例の場
合は、θ、〉θ2に構成している。これが従来の前記特許公開公報の発明
と異なっている。That is, it may be easier to understand by using the diagram of the fastest erosion part 9 in FIG.
Σθ,1 Therefore, the value of Σ(Lr l / r ) is θ, Therefore, L, /r, (i is only one, i.e., n = 1), and on the circumference of radius r2 and on the circumference near it, Σθ, therefore, Σ(Lr1/r
) is θ2. Therefore, L2/r2 (again, there is only one i), but in this embodiment, it is configured to be θ,>θ2. This is different from the conventional invention disclosed in the above-mentioned patent publication.
こう構成したマグネトロンスパッタリング装置で、回転
装置5を回転させて磁場を回転移動させγらスパッタリ
ングを行うときは、第4図に二ローション形状を示すよ
うに、広範で無駄のないエロージョン領域を確保しつつ
、しかも、ターゲットの外周部が中央部よりもより速く
、従って、より深くエロージョンされることになる。In the magnetron sputtering apparatus configured as described above, when performing gamma sputtering by rotating the rotating device 5 and rotating the magnetic field, a wide and efficient erosion area is secured as shown in the two-lotion shape in FIG. Moreover, the outer periphery of the target will erode faster and therefore deeper than the center.
このようなエロージョン形では、ターゲットの高い利用
率を維持しつつ、被処理基板上の広い範囲に、均一な膜
厚の堆積膜を形成することができる。In such an erosion type, a deposited film having a uniform thickness can be formed over a wide range on the substrate to be processed while maintaining a high utilization rate of the target.
また、[条件A、Blを満足しないようなりeの構成も
本発明では充分可能である。In addition, the present invention is also fully capable of constructing e such that conditions A and Bl are not satisfied.
例えば、前記特許公開公報の発明と同様に、第3図の最
速エロージョン部9で1.その角度θを01=02 に
し、4個の磁石421,422,4220.4219と
、それらに対向している磁石411.412,419.
4110だけを、他のすべての磁石よりも強力にしてお
くときは、R4が、半径r1の円周上で角度(即ち場所
)によって異なり、また、半径rによってもぐ即ちr、
とr2でも)異なる値を持つことになるため、やはり
D、、>D、2 が成立し、本発明の構成の装置が得ら
れる。For example, similar to the invention disclosed in the above-mentioned patent publication, 1. The angle θ is 01=02, and the four magnets 421, 422, 4220.4219, and the magnets 411, 412, 419.
When only magnet 4110 is made stronger than all other magnets, R4 varies depending on the angle (i.e., location) on the circumference of radius r1, and also varies depending on the radius r, that is, r,
and r2) will have different values, so again
D, ,>D,2 holds true, and a device having the configuration of the present invention is obtained.
なお、第4図のエロージョン形状を点線のように、凹凸
のないものにしたいときは、第1図の磁石の配置を点線
のように変更して、第3図の最速エロージョン部が点線
9゛のようになるよう構成することで目的を達すること
が可能である。If you want to make the erosion shape in Figure 4 smooth, as shown by the dotted line, change the arrangement of the magnets in Figure 1 as shown by the dotted line, so that the fastest erosion part in Figure 3 is 9 degrees as shown by the dotted line. It is possible to achieve the purpose by configuring it as follows.
また、実施例ではターゲットを固定し磁場印加装置を回
転させるものを示したが、その逆も可能である。ざらに
また、磁場印加装置は、磁石でなく電磁石で構成しても
良い。Further, although the embodiment shows a case in which the target is fixed and the magnetic field application device is rotated, the reverse is also possible. Furthermore, the magnetic field applying device may be composed of an electromagnet instead of a magnet.
(発明の効果)本発明によれば、ターゲットの利用率を高位に保持しつ
つ、被処理基板上にく広く均一な膜を高速で成膜できる
、優れたマグネトロンスパッタリング装置を提供するこ
とが出来る。(Effects of the Invention) According to the present invention, it is possible to provide an excellent magnetron sputtering apparatus that can form a wide and uniform film on a substrate to be processed at high speed while maintaining a high target utilization rate. .
第1図は、本発明の実施例のマグネトロンスパッタリン
グ装置のターゲット裏面の磁石の配置を示す平面図。第2図はそのA−A断面図。第3図はその最速エロージョン部を示す図。第4図は第1図の実施例の磁場を回転させた場合のエロ
ージョン形状を示すA −A断面図。第5図は膜厚分布を示す図。第6図は従来のマグネトロンスパッタリング電極を示す
平面図。第7図はそのC−C断面図。第8図は第6図のマグネトロンスパッタリング電極で磁
場を回転させてスパッタリングを行なった場合のエロー
ジョン形状を示す平面図。第9図はそのC−C断面図である。第10図は、被処理基板と、それに対向配置されたター
ゲット部の正面断面図を例示する図。1・・・ターゲット、4,84・・・磁場印加装置、5
.85・・・回転装置、7,87・・・磁場の回転の中
心、9,89・・・最速エロージョン部、81・・・タ
ーゲット、88・・・エロージョン領域、98・・・エ
ロージョン、99・・・溝、100・・・磁力線。特許出願人 日電アネルバ株式会社代理人 弁理士 村上 健次FICT、8FICT。FIG、、6FIG、アFIG. 1 is a plan view showing the arrangement of magnets on the back surface of a target in a magnetron sputtering apparatus according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line A-A. FIG. 3 is a diagram showing the fastest erosion part. FIG. 4 is a sectional view taken along line A-A showing the erosion shape when the magnetic field of the embodiment shown in FIG. 1 is rotated. FIG. 5 is a diagram showing film thickness distribution. FIG. 6 is a plan view showing a conventional magnetron sputtering electrode. FIG. 7 is a sectional view taken along the line C-C. FIG. 8 is a plan view showing the erosion shape when sputtering is performed by rotating the magnetic field using the magnetron sputtering electrode shown in FIG. 6; FIG. 9 is a sectional view taken along the line CC. FIG. 10 is a diagram illustrating a front cross-sectional view of a substrate to be processed and a target section disposed opposite thereto. 1... Target, 4, 84... Magnetic field application device, 5
.. 85... Rotating device, 7,87... Center of rotation of magnetic field, 9,89... Fastest erosion part, 81... Target, 88... Erosion area, 98... Erosion, 99... ... Groove, 100... Lines of magnetic force. Patent applicant Nichiden Anelva Co., Ltd. Agent Patent attorney Kenji Murakami FICT, 8 FICT. FIG, 6 FIG, a
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63260991AJP2627651B2 (en) | 1988-10-17 | 1988-10-17 | Magnetron sputtering equipment |
| US07/420,043US5047130A (en) | 1988-10-17 | 1989-10-11 | Method and apparatus for magnetron discharge type sputtering |
| EP19890310576EP0365249A3 (en) | 1988-10-17 | 1989-10-16 | Method and apparatus for sputtering |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63260991AJP2627651B2 (en) | 1988-10-17 | 1988-10-17 | Magnetron sputtering equipment |
| Publication Number | Publication Date |
|---|---|
| JPH02107766Atrue JPH02107766A (en) | 1990-04-19 |
| JP2627651B2 JP2627651B2 (en) | 1997-07-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63260991AExpired - LifetimeJP2627651B2 (en) | 1988-10-17 | 1988-10-17 | Magnetron sputtering equipment |
| Country | Link |
|---|---|
| US (1) | US5047130A (en) |
| EP (1) | EP0365249A3 (en) |
| JP (1) | JP2627651B2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04183857A (en)* | 1990-11-16 | 1992-06-30 | Tokuda Seisakusho Ltd | Structure of magnet in planar magnetron sputter source |
| JPH05263235A (en)* | 1992-03-19 | 1993-10-12 | Shibaura Eng Works Co Ltd | Magnet Structure in Planar Magnetron Sputter Source |
| CN103668091A (en)* | 2012-09-19 | 2014-03-26 | 上海新产业光电技术有限公司 | Rotation plane magnetron sputtering target and motion for improving target material sputtering uniformity |
| CN103966567A (en)* | 2014-05-05 | 2014-08-06 | 京东方科技集团股份有限公司 | Magnetic field structure of planar target material and use method thereof |
| US9368331B2 (en) | 2013-02-28 | 2016-06-14 | Canon Anelva Corporation | Sputtering apparatus |
| JP2017226905A (en)* | 2016-06-24 | 2017-12-28 | 株式会社トヨタプロダクションエンジニアリング | Wear prediction device, wear prediction method, wear prediction program |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5409590A (en)* | 1989-04-17 | 1995-04-25 | Materials Research Corporation | Target cooling and support for magnetron sputter coating apparatus |
| US5130005A (en)* | 1990-10-31 | 1992-07-14 | Materials Research Corporation | Magnetron sputter coating method and apparatus with rotating magnet cathode |
| GB2241710A (en)* | 1990-02-16 | 1991-09-11 | Ion Tech Ltd | Magnetron sputtering of magnetic materials in which magnets are unbalanced |
| US5320728A (en)* | 1990-03-30 | 1994-06-14 | Applied Materials, Inc. | Planar magnetron sputtering source producing improved coating thickness uniformity, step coverage and step coverage uniformity |
| ES2090161T3 (en)* | 1990-03-30 | 1996-10-16 | Applied Materials Inc | IONIC BOMBING SYSTEM. |
| US5242566A (en)* | 1990-04-23 | 1993-09-07 | Applied Materials, Inc. | Planar magnetron sputtering source enabling a controlled sputtering profile out to the target perimeter |
| BR9106722A (en)* | 1990-08-01 | 1993-08-31 | Smithkline Beecham Corp | PROCESS AND INTERMEDIATE FOR THE PREPARATION OF PROPANOIC ACIDS 2-HYDROXY-3-SULFIDO-3-PHENYL |
| KR0178555B1 (en)* | 1990-10-31 | 1999-02-18 | 터그룰 야사 | Magnetron sputter coating apparatus having a rotating magnet cathode and method thereof |
| DE4039101C2 (en)* | 1990-12-07 | 1998-05-28 | Leybold Ag | Fixed magnetron sputtering cathode for vacuum coating systems |
| DE4125110C2 (en)* | 1991-07-30 | 1999-09-09 | Leybold Ag | Magnetron sputtering cathode for vacuum coating systems |
| US5194131A (en)* | 1991-08-16 | 1993-03-16 | Varian Associates, Inc. | Apparatus and method for multiple ring sputtering from a single target |
| DE4128340C2 (en)* | 1991-08-27 | 1999-09-23 | Leybold Ag | Sputtering cathode arrangement according to the magnetron principle for the coating of an annular coating surface |
| US5314597A (en)* | 1992-03-20 | 1994-05-24 | Varian Associates, Inc. | Sputtering apparatus with a magnet array having a geometry for a specified target erosion profile |
| US5374343A (en)* | 1992-05-15 | 1994-12-20 | Anelva Corporation | Magnetron cathode assembly |
| US5248402A (en)* | 1992-07-29 | 1993-09-28 | Cvc Products, Inc. | Apple-shaped magnetron for sputtering system |
| CH690805A5 (en)* | 1993-05-04 | 2001-01-15 | Unaxis Balzers Ag | Magnetic-assisted atomization and vacuum treatment system herewith. |
| JP2627861B2 (en)* | 1993-10-22 | 1997-07-09 | アネルバ株式会社 | Method and apparatus for forming Ti-TiN laminated film |
| TW278206B (en)* | 1994-03-28 | 1996-06-11 | Materials Research Corp | |
| US5628889A (en)* | 1994-09-06 | 1997-05-13 | International Business Machines Corporation | High power capacity magnetron cathode |
| JP3814764B2 (en)* | 1995-02-23 | 2006-08-30 | 東京エレクトロン株式会社 | Sputtering method |
| US6224724B1 (en) | 1995-02-23 | 2001-05-01 | Tokyo Electron Limited | Physical vapor processing of a surface with non-uniformity compensation |
| JP3732250B2 (en)* | 1995-03-30 | 2006-01-05 | キヤノンアネルバ株式会社 | In-line deposition system |
| TW399102B (en)* | 1995-11-20 | 2000-07-21 | Anelva Co Ltd | Method for depositing magnetic film on both substrate surfaces and mechanism for performing same |
| US5865970A (en)* | 1996-02-23 | 1999-02-02 | Permag Corporation | Permanent magnet strucure for use in a sputtering magnetron |
| US5830327A (en)* | 1996-10-02 | 1998-11-03 | Intevac, Inc. | Methods and apparatus for sputtering with rotating magnet sputter sources |
| US5985115A (en)* | 1997-04-11 | 1999-11-16 | Novellus Systems, Inc. | Internally cooled target assembly for magnetron sputtering |
| US5876574A (en)* | 1997-04-23 | 1999-03-02 | Applied Materials, Inc. | Magnet design for a sputtering chamber |
| US5795451A (en)* | 1997-06-12 | 1998-08-18 | Read-Rite Corporation | Sputtering apparatus with a rotating magnet array |
| RU2135634C1 (en)* | 1998-06-15 | 1999-08-27 | Санкт-Петербургский государственный технический университет | Method and device for magnetron sputtering |
| US6306265B1 (en) | 1999-02-12 | 2001-10-23 | Applied Materials, Inc. | High-density plasma for ionized metal deposition capable of exciting a plasma wave |
| US6497802B2 (en) | 1999-02-12 | 2002-12-24 | Applied Materials, Inc. | Self ionized plasma sputtering |
| US6290825B1 (en) | 1999-02-12 | 2001-09-18 | Applied Materials, Inc. | High-density plasma source for ionized metal deposition |
| US6183614B1 (en) | 1999-02-12 | 2001-02-06 | Applied Materials, Inc. | Rotating sputter magnetron assembly |
| TW552306B (en) | 1999-03-26 | 2003-09-11 | Anelva Corp | Method of removing accumulated films from the surfaces of substrate holders in film deposition apparatus, and film deposition apparatus |
| WO2001002619A1 (en)* | 1999-07-06 | 2001-01-11 | Applied Materials Inc. | Sputtering device and film forming method |
| US6258217B1 (en) | 1999-09-29 | 2001-07-10 | Plasma-Therm, Inc. | Rotating magnet array and sputter source |
| US6402903B1 (en) | 2000-02-04 | 2002-06-11 | Steag Hamatech Ag | Magnetic array for sputtering system |
| US8208238B1 (en)* | 2008-03-21 | 2012-06-26 | Seagate Technology, Llc | Apparatus for orienting soft-underlayer deposition |
| US8500962B2 (en) | 2008-07-21 | 2013-08-06 | Ascentool Inc | Deposition system and methods having improved material utilization |
| US20100012481A1 (en)* | 2008-07-21 | 2010-01-21 | Guo G X | Deposition system having improved material utilization |
| US9567668B2 (en)* | 2014-02-19 | 2017-02-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Plasma apparatus, magnetic-field controlling method, and semiconductor manufacturing method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61183467A (en)* | 1985-02-08 | 1986-08-16 | Hitachi Ltd | Sputtering electrode |
| US4746417A (en)* | 1986-06-06 | 1988-05-24 | Leybold-Heraeus Gmbh | Magnetron sputtering cathode for vacuum coating apparatus |
| JPS63140078A (en)* | 1986-11-29 | 1988-06-11 | Tokyo Electron Ltd | Film formation by sputtering |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6260866A (en)* | 1985-08-02 | 1987-03-17 | Fujitsu Ltd | Magnetron sputtering device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61183467A (en)* | 1985-02-08 | 1986-08-16 | Hitachi Ltd | Sputtering electrode |
| US4746417A (en)* | 1986-06-06 | 1988-05-24 | Leybold-Heraeus Gmbh | Magnetron sputtering cathode for vacuum coating apparatus |
| JPS63140078A (en)* | 1986-11-29 | 1988-06-11 | Tokyo Electron Ltd | Film formation by sputtering |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04183857A (en)* | 1990-11-16 | 1992-06-30 | Tokuda Seisakusho Ltd | Structure of magnet in planar magnetron sputter source |
| JPH05263235A (en)* | 1992-03-19 | 1993-10-12 | Shibaura Eng Works Co Ltd | Magnet Structure in Planar Magnetron Sputter Source |
| CN103668091A (en)* | 2012-09-19 | 2014-03-26 | 上海新产业光电技术有限公司 | Rotation plane magnetron sputtering target and motion for improving target material sputtering uniformity |
| US9368331B2 (en) | 2013-02-28 | 2016-06-14 | Canon Anelva Corporation | Sputtering apparatus |
| DE112013006746B4 (en) | 2013-02-28 | 2019-03-21 | Canon Anelva Corporation | sputtering |
| CN103966567A (en)* | 2014-05-05 | 2014-08-06 | 京东方科技集团股份有限公司 | Magnetic field structure of planar target material and use method thereof |
| JP2017226905A (en)* | 2016-06-24 | 2017-12-28 | 株式会社トヨタプロダクションエンジニアリング | Wear prediction device, wear prediction method, wear prediction program |
| Publication number | Publication date |
|---|---|
| JP2627651B2 (en) | 1997-07-09 |
| US5047130A (en) | 1991-09-10 |
| EP0365249A2 (en) | 1990-04-25 |
| EP0365249A3 (en) | 1990-10-31 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH02107766A (en) | Magnetron sputtering equipment | |
| US5685959A (en) | Cathode assembly having rotating magnetic-field shunt and method of making magnetic recording media | |
| JP3397799B2 (en) | Stationary magnetron sputtering cathodes used in vacuum coating equipment | |
| CN1181218C (en) | Magnetic tube sputtering device | |
| JP2001501257A (en) | Sputtering method and apparatus having a rotating magnet sputter source | |
| JPH05209267A (en) | Sputtering cathode unit based on magnetron principle for forming film on circular ring-shaped object to be coated | |
| JP3535305B2 (en) | Planar magnetron sputtering system | |
| US5282947A (en) | Magnet assembly for enhanced sputter target erosion | |
| JP2019094533A (en) | Sputtering device | |
| JPS63100180A (en) | Magnetron sputtering device | |
| JP3411312B2 (en) | Magnetron sputter cathode and method of adjusting film thickness distribution | |
| JPS63317671A (en) | Method and device for sputtering | |
| JP2505724B2 (en) | Magnetron sputtering equipment | |
| JPS63282263A (en) | Magnetron sputtering device | |
| JP2005048222A (en) | Magnetron sputtering equipment | |
| JPH01279752A (en) | Method and device for sputtering | |
| JP4991305B2 (en) | Rotating sputtering magnetron | |
| US8852412B2 (en) | Magnetron source and method of manufacturing | |
| JPH04371575A (en) | sputtering equipment | |
| JP2746292B2 (en) | Sputtering equipment | |
| JPS63109163A (en) | Sputtering device | |
| JPS63277758A (en) | Magnetron sputtering equipment | |
| JPS63149375A (en) | Magnetron sputtering equipment | |
| JP3343818B2 (en) | Ion etching method and apparatus | |
| JP2001207258A (en) | Rotating magnet and in-line type sputtering equipment |
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090418 Year of fee payment:12 | |
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090418 Year of fee payment:12 |