【発明の詳細な説明】 本発明は医用材料、特に生体の骨腫瘍その他に
よつて生ずる骨欠損部及び空〓部に充てんし、当
該個所の新生骨の形成を促進し、損傷個所の治癒
後に於て、生体の骨組織と一体化する無機質材料
からなる骨欠損部及び空隙部充てん材に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is a medical material that can be used to fill bone defects and voids caused by bone tumors and other causes in living organisms, to promote the formation of new bone in the areas, and to provide medical materials after the damaged areas have healed. The present invention relates to a bone defect and void filling material made of an inorganic material that integrates with the bone tissue of a living body.
高度な粉砕骨折や骨腫瘍の切除などに伴い、骨
に欠損あるいは空隙を生じ、当該個所の補綴を必
要とするケースが外科あるいは整形外科の分野に
おいてしばしば遭遇する。従来、かかる場合にお
いては、患者本人の腸骨などから、海綿状の自家
骨を採取して、骨欠損個所等にこれを充てんし、
骨組織の回復治癒を早める手法が採用されてきて
いるが、損傷個所以外の骨組織を切除することか
ら、患者の苦痛は大きく、また手術に当つて多大
の労力を必要としている。さらに、広範な骨欠損
部等を充てんするに十分な量の自家骨を採取でき
るとは限らず、不足分については何らかの代用物
をもつてこれに充当する必要が生じてくる。自家
骨以外の骨を充てんする方法としては同種骨移植
と異種骨移植がある。同種骨の移植については、
冷凍保存骨、脱灰骨などの採用が研究されている
がなお実用の段階に至つておらず、また異種骨で
ある牛骨の蛋白を除去したキールボーンと称され
ている材料を使用することなどもあるが、いずれ
も拒絶反応を伴うなどの問題点があり、術後の経
過は必ずしも良好とは言えない。 BACKGROUND OF THE INVENTION Cases are often encountered in the fields of surgery and orthopedics where a defect or void is created in the bone due to a highly comminuted fracture or the removal of a bone tumor, and a prosthesis is required for that location. Conventionally, in such cases, cancellous autologous bone was collected from the patient's own iliac bone and filled into the bone defect site, etc.
Techniques have been adopted to speed up recovery and healing of bone tissue, but since bone tissue other than the damaged area is removed, the patient is in great pain and the surgery requires a great deal of effort. Furthermore, it is not always possible to harvest a sufficient amount of autologous bone to fill a wide range of bone defects, and it becomes necessary to use some kind of substitute to cover the shortage. Methods for filling with bone other than autologous bone include allogeneic bone grafting and xenogeneic bone grafting. For allogeneic bone grafting,
Research has been conducted into the use of cryopreserved bone, demineralized bone, etc., but this has not yet reached the stage of practical use.Also, it is recommended to use a material called keel bone, which is made by removing protein from bovine bone, which is a foreign bone. However, they all have problems such as rejection, and the postoperative course is not necessarily good.
このようなことから、骨欠損部及び空隙部に充
てんした場合生体適合性に優れ、当該欠損個所並
びにその周辺部における造骨作用を促進し、骨組
織欠損個所の構造機能を修復及び回復せしめる人
工材料の開発が望まれている。 For this reason, when filled into bone defects and voids, it has excellent biocompatibility, promotes bone formation in the defect site and its surrounding area, and is an artificial prosthesis that repairs and restores the structural function of the bone tissue defect site. Development of materials is desired.
従来、生体の硬組織代替物質としては、各種金
属合金及び有機物等が用いられてきたが、これら
は生体内におけるきびしい環境下で溶解や劣化な
どの変化を生じ、毒性や異物反応を伴うことなど
から、現在では生体との親和性に優れ、かつ上記
の欠点のないセラミツクス系材料が用いられつつ
ある。このセラミツクス系材料の中でも生体適合
性に優れたアルミナ、カーボン、リン酸三カルシ
ウム(Ca3(PO4)2)あるいはヒドロキシアパタイ
ト(Ca5(PO4)3OH)の焼結体若しくは単結晶か
らなる人工骨、人工歯根などが開発され注目を集
めている。 Conventionally, various metal alloys and organic substances have been used as hard tissue substitutes for living organisms, but these may undergo changes such as dissolution or deterioration in the harsh environment of living organisms, and may be accompanied by toxicity or foreign body reactions. Therefore, ceramic materials are now being used, which have excellent compatibility with living organisms and do not have the above-mentioned drawbacks. Among these ceramic materials, sintered bodies or single crystals of alumina, carbon, tricalcium phosphate (Ca3 (PO4 )2 ) or hydroxyapatite (Ca5 (PO4 )3 OH) have excellent biocompatibility. Artificial bones and artificial tooth roots have been developed and are attracting attention.
これらの焼結体若しくは単結晶を骨欠損部及び
空隙部に充てんする試みもなされているが、実際
治療を必要とする骨欠損部の形状は一定でなく、
かつ、複雑な形状をしており、その形状に適合す
るようこれらの焼結体若しくは単結晶を加工する
ことは困難であり、さらにこれら焼結体若しくは
単結晶を充てんしたとしても、充てんした周囲の
骨組織よりも著しく硬いため充てん材周辺でその
刺激による骨吸収がおこり、リーズニングなどの
問題が生じ、いまだ実用の域には達していない。 Attempts have been made to fill bone defects and voids with these sintered bodies or single crystals, but the shape of the bone defect that actually requires treatment is not constant;
Moreover, they have a complicated shape, and it is difficult to process these sintered bodies or single crystals to fit the shape. Furthermore, even if these sintered bodies or single crystals are filled, the surrounding area Because it is significantly harder than the bone tissue of the filling material, bone resorption occurs around the filling material due to stimulation, causing problems such as reasonableness, and it has not yet reached the level of practical use.
一方、焼結体を機械的方法により、若しくは粉
末に可燃性フアイバーを成型時に加えて成型しこ
れを焼結する方法などにより多孔体とし、これを
骨欠損部及び空隙部の充てん材として使用する方
法も考えられるが、これらの方法により作製され
る多孔体の気孔率は、例えば、セラミツクス焼結
体を機械的に加工して多孔体化しようとする場合
には、その加工性が悪く、しかももろくて破損し
やすいところから多量に気孔導入は不可能であ
り、またさらにセラミツクス原料粉末に可燃性フ
アイバーを加え成型ののち焼結せしめて多孔体を
得る場合においても粉末に多量に可燃性フアイバ
ーを入れ成型することは困難であることなどから
高気孔率のものは得られない。このため新生骨の
生成に必要な生体の骨形成成分の充てん材中への
進入が十分でなく充てん材と骨組織が一体化する
までに長期間を必要とするなどの欠点がある。 On the other hand, the sintered body is made into a porous body by a mechanical method or by adding flammable fiber to the powder at the time of molding, molding, and sintering it, and this is used as a filling material for bone defects and voids. Although other methods can be considered, the porosity of the porous bodies produced by these methods is such that, for example, when attempting to mechanically process a ceramic sintered body to make it into a porous body, the processability is poor and the porosity is low. It is impossible to introduce a large amount of pores because the ceramic material is brittle and easily damaged, and when a porous body is obtained by adding flammable fiber to ceramic raw material powder and sintering it after molding, it is necessary to add a large amount of flammable fiber to the powder. High porosity cannot be obtained because it is difficult to mold. For this reason, there are drawbacks such as insufficient infiltration of biological osteogenic components necessary for the generation of new bone into the filler, and a long period of time required for the filler and bone tissue to become integrated.
従つて、本発明の一つの目的は生体適合性にす
ぐれ、しかも異物反応を伴わず特に短期間に骨組
織を形成し、充てん材自体が生体に吸収置換され
る骨欠損部及び空隙部充てん材を提供することに
ある。 Therefore, one object of the present invention is to provide a filling material for bone defects and voids that has excellent biocompatibility, forms bone tissue in a particularly short period of time without any foreign body reaction, and allows the filling material itself to be absorbed and replaced by the living body. Our goal is to provide the following.
本発明の他の目的は充てん部における造骨作用
を促進し、骨組織欠損個所の構造及び機能を特に
速やかに修復及び回復せしめる骨欠損部及び空隙
部充てん材を提供することにある。 Another object of the present invention is to provide a filling material for bone defects and voids that promotes bone formation in the filled portion and particularly quickly repairs and restores the structure and function of the bone tissue defect.
本発明の更に別の目的は新生骨の生成が特に速
やかに行われる骨欠損部及び空隙部充てん材を提
供することにある。 Still another object of the present invention is to provide a filling material for bone defects and voids in which new bone is generated particularly quickly.
本発明の更に別の目的は充てん個所の形状に適
合した形状に成形しやすい骨欠損部及び空隙部充
てん材を提供することにある。 Still another object of the present invention is to provide a filling material for bone defects and voids that can be easily molded into a shape that matches the shape of the filling site.
本発明の上記及びその他の目的は以下の記載か
ら更に明白となる。 The above and other objects of the present invention will become more apparent from the following description.
本発明によれば、空孔を有するリン酸カルシウ
ム化合物から成り、骨欠損部及び空〓部の形状に
合わせて加工成形し、充填するための多孔体であ
つて、前記穿孔内表面には、凸部を起点とし、骨
芽細胞が付着して新生骨が生成しやすい凹凸部を
形成せしめ、更に前記空孔のチヤンネルに沿つて
各孔径が異なる寸度を有しており、前記孔径の最
大寸度が3.00mmであり、且つ、最小寸度が0.05mm
の範囲であつて生体の骨形成成分が侵入しやすい
形状寸度とし、実質上連続的に前記空孔が連鎖し
て実質的に三次元の網状構造を有し、前記多孔体
の気孔率が40%から97%であつて、前記多孔体は
実質的に三次元の網状構造を有する有機質連続多
孔体にスラリー状のリン酸カルシウム化合物を含
浸させたのち、加熱して該有機質連続多孔体を除
去することにより製造されたものであることを特
徴とする骨欠損部及び空〓部充てん材が提供され
る。 According to the present invention, the porous body is made of a calcium phosphate compound having pores and is processed and formed to fit the shape of bone defects and cavities to fill them, and the inner surface of the perforation has a convex portion. The pores form irregularities in which osteoblasts can easily attach and generate new bone, and each pore has a different diameter along the channel of the pores, and the maximum dimension of the pore diameter is is 3.00mm, and the minimum dimension is 0.05mm
The porous body has a shape and size that is within the range of 0.05 to 1.00 and has a shape and size that allows the osteogenic components of the living body to easily penetrate, and the pores are substantially continuously linked to form a substantially three-dimensional network structure, and the porosity of the porous body is 40% to 97%, and the porous body has a substantially three-dimensional network structure, and is impregnated with a slurry of calcium phosphate compound, and then heated to remove the organic continuous porous body. A filling material for bone defects and cavities is provided, which is characterized in that it is manufactured by.
以下本発明を更に詳述する。 The present invention will be explained in more detail below.
本発明者らは、リン酸カルシウム化合物を骨欠
損部及び空隙部に充てんすると新生骨が当該個所
に生成することから、リン酸カルシウム化合物の
骨形成能力を利用することにまず着目した。本発
明に使用し得るリン酸カルシウム化合物としては
CaHPO4・2H2O若しくはCaHPO4、Ca3(PO4)2、
Ca5(PO4)3OH、Ca4O(PO4)2、CaP4O11、Ca
(PO3)2、Ca2P2O7、Ca(H2PO4)2・H2O等をあげ
ることができ、単独若しくは2種以上の混合物と
して用いることができる。これらの化合物のう
ち、リン酸三カルシウム〔Ca3(PO4)2〕、ヒドロ
キシアパタイト〔Ca5(PO4)3OH〕、リン酸四カル
シウム〔Ca4O(PO4)2〕を用いた場合に特に新生
骨の生成が早く、好ましい化合物であるといえ
る。最も好ましい化合物はこれらの中でも特に新
生骨の生成が早いヒドロキシアパタイトであり、
中でも500℃以上、特に好ましくは700〜1250℃で
熱処理して得たヒドロキシアパタイトが特に新生
骨の生成が早く好ましい。熱処理の上限温度につ
いては特に限定されるものではないが、ヒドロキ
シアパタイトが分解を開始するので、分解温度以
下とすべきである。また本発明にて使用し得るリ
ン酸カルシウム化合物は公知の製造方法により、
人工的に合成されたものであつても又、骨などか
ら得られる天然のものを用いてもよい。 The present inventors first focused on utilizing the osteogenic ability of calcium phosphate compounds, since when a calcium phosphate compound is filled into bone defects and voids, new bone is generated in the areas. Calcium phosphate compounds that can be used in the present invention include
CaHPO4.2H2O orCaHPO4 ,Ca3 (PO4)2 ,
Ca5 (PO4 )3OH ,Ca4O(PO4 )2 ,CaP4O11 , Ca
(PO3 )2 , Ca2 P2 O7 , Ca(H2 PO4 )2 ·H2 O, etc., and can be used alone or as a mixture of two or more. Among these compounds, tricalcium phosphate [Ca3 (PO4 )2 ], hydroxyapatite [Ca5 (PO4 )3 OH], and tetracalcium phosphate [Ca4 O(PO4 )2 ] were used. It can be said that it is a preferable compound because new bone formation is particularly rapid in this case. Among these, the most preferred compound is hydroxyapatite, which generates new bone particularly quickly.
Among these, hydroxyapatite obtained by heat treatment at 500° C. or higher, particularly preferably 700 to 1250° C., is preferred because new bone formation is particularly rapid. The upper limit temperature of the heat treatment is not particularly limited, but since hydroxyapatite starts to decompose, it should be lower than the decomposition temperature. Further, the calcium phosphate compound that can be used in the present invention can be produced by a known manufacturing method.
Even if it is an artificially synthesized material, a natural material obtained from bones or the like may be used.
本発明ではリン酸カルシウム化合物を多孔体と
して用い、多孔体の空孔のチヤンネルに沿つて各
孔径が異なる寸度とした空孔を有する多孔体とす
る。かような構造とすることにより、空孔の内表
面積が大となり、本発明の充てん材を充てんした
際に新生骨の形成に必要な条件の一つであるカル
シウムイオン、リン酸イオンが多孔体中において
より多量に溶解する。故に、空孔中に進入してき
たコラーゲン等の生体の骨形成成分の表面に速か
に新生骨の生成が開始される。また多孔体の空孔
のチヤンネルに沿つて各孔径が異なる寸度を有す
るため、空孔の内表面には凹凸部が形成され、特
に凸部の周囲において骨基質が骨芽細胞を伴つて
附着しやすく、該凸部から新生骨が速かに生成を
開始しこれを起点として生長することが今般明ら
かとなつた。しかも、本発明では多孔体の空孔を
実質上連続的に連鎖させて多孔体が実質的に三次
元の網状構造を形成するようにする。したがつて
生体の骨形成成分は多孔体の空孔に入り、網状に
連鎖する空孔全体に進入することができる。な
お、上記「実質上」若しくは「実質的」なる語は
一部空孔が閉塞する部分が必然的にできてしまう
こともあるが、全体として空孔が連鎖し網状の立
体構造が形成されることを意味する。 In the present invention, a calcium phosphate compound is used as a porous body, and the porous body has pores having different pore diameters along the channel of the pores of the porous body. With such a structure, the inner surface area of the pores becomes large, and when the filling material of the present invention is filled, calcium ions and phosphate ions, which are one of the conditions necessary for the formation of new bone, are absorbed into the porous material. It dissolves in a larger amount in the inside. Therefore, the generation of new bone quickly begins on the surface of the bone-forming components of the living body, such as collagen, that have entered the pores. In addition, since each pore diameter has a different size along the channel of the pores of the porous body, uneven parts are formed on the inner surface of the pores, and especially around the protrusions, bone matrix is attached with osteoblasts. It has recently become clear that new bone quickly starts to form from the convex portion and grows from this as a starting point. Moreover, in the present invention, the pores of the porous body are substantially continuously linked so that the porous body forms a substantially three-dimensional network structure. Therefore, the bone-forming components of the living body can enter the pores of the porous body and enter the entire network of pores. Note that the above words "substantially" or "substantially" mean that some portions of pores are necessarily blocked, but as a whole, pores are linked to form a network-like three-dimensional structure. It means that.
多孔体の空孔の最大寸度は3.00mmであり、且つ
最小寸度は0.05mmの範囲でなければならない。最
大寸度が3.00mmを越える場合には空孔内での自家
骨の生長充満に長期間を要してしまう。一方、最
小寸度が0.05mm未満の場合には孔径が小さすぎて
コラーゲン等の生体の骨形成成分の空孔内への進
入がさまたげられ、最小寸度の孔径の部分を越え
て内部に骨形成成分が進入できなくなり、従つて
新生骨が生成し得ない部分ができてしまう。 The maximum size of the pores in the porous body should be 3.00 mm, and the minimum size should be in the range of 0.05 mm. If the maximum dimension exceeds 3.00 mm, it will take a long time for autologous bone to grow and fill the pores. On the other hand, if the minimum size is less than 0.05 mm, the pore size is too small and the entry of biological bone-forming components such as collagen into the pores is hindered, and the bone may enter the pores beyond the minimum pore size. Formative components are no longer able to enter, resulting in areas where new bone cannot form.
本発明の充てん材の気孔率は40%から97%の範
囲とする。気孔率が40%未満では充てん後骨組織
と充てん材が一体化するまでの時間が長くなり、
また充てん材を加工して骨欠損部及び空隙部の形
状に適合せんとする場合には加工性が著しく悪く
なり使用できない。一方、97%を越える場合には
充てん材の量が不足するため新生骨の生成量が不
十分となり、十分な治療効果が期待できない。 The porosity of the filler of the present invention is in the range of 40% to 97%. If the porosity is less than 40%, it will take a long time for the bone tissue and filling material to integrate after filling.
Furthermore, when the filler is processed to fit the shape of the bone defect and the cavity, the processability becomes extremely poor and it cannot be used. On the other hand, if it exceeds 97%, the amount of filler material will be insufficient, resulting in an insufficient amount of new bone formation, and a sufficient therapeutic effect cannot be expected.
本発明の充てん材として使用する多孔体の製造
方法としては空孔が連続しており、かつ実質的に
三次元の網状構造を有する有機質連続多孔体にス
ラリー状のリン酸カルシウム化合物を含浸させた
のち、乾燥し、該有機質連続多孔体を除去するた
め加熱して作ることができる。 The method for producing the porous body used as the filler of the present invention is to impregnate an organic continuous porous body with continuous pores and a substantially three-dimensional network structure with a calcium phosphate compound in the form of a slurry; It can be produced by drying and heating to remove the organic continuous porous material.
本発明の充てん材を骨欠損部及び空隙部に充て
んするとコラーゲン、体液などの生体の骨形成成
分が多孔体の網状構造の空孔全体に進入し、異物
反応などの副作用は全く生じずに、新生骨が速か
に生成する。しかも充てん材自体は生体に吸収さ
れ、自家骨で順次置換される。 When the filling material of the present invention is filled into bone defects and voids, biological bone-forming components such as collagen and body fluids enter the entire pores of the network structure of the porous body, without causing any side effects such as foreign body reactions. New bone is generated quickly. Moreover, the filling material itself is absorbed by the living body and gradually replaced with autologous bone.
本発明に係る充てん材は単に外科及び整形外科
用としての用途のみでなく、歯科における虫歯抜
歯窩の充てん材若しくは歯槽膿漏等における骨欠
損部へ使用も可能である。 The filling material according to the present invention can be used not only for surgical and orthopedic applications, but also for filling cavities in dental cavities, or for bone defects caused by alveolar pyorrhea.
以下、本発明を実施例によりさらに具体的に説
明する。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例 1 乾式法で合成したリン酸三カルシウム及びリン
酸四カルシウムを40時間ポツトミルクにて湿式粉
砕し、スラリー状としたもの及び湿式合成により
作製したヒドロキシアパタイトスラリーを連続気
孔を有する有機多孔体に付着させ、乾燥し、1000
℃で3時間焼成することにより各種リン酸カルシ
ウム化合物の多孔体を作製した。このようにして
作製した多孔体内の空孔のチヤンネル内の孔径の
最大寸度は各5、3、0.5、0.07、0.01mmであり、
かつそれぞれの最小寸度は3、1.5、0.2、0.05、
0.007mmであり、気孔率はいずれも68〜73%の間
にあつた。Example 1 Tricalcium phosphate and tetracalcium phosphate synthesized by a dry method were wet-pulverized in pot milk for 40 hours to form a slurry, and a hydroxyapatite slurry prepared by wet synthesis was made into an organic porous body with continuous pores. Adhere, dry, 1000
Porous bodies of various calcium phosphate compounds were prepared by firing at ℃ for 3 hours. The maximum dimensions of the pore diameters in the channel of the pores in the porous body produced in this way were 5, 3, 0.5, 0.07, and 0.01 mm, respectively.
And the minimum dimensions of each are 3, 1.5, 0.2, 0.05,
The porosity was 0.007 mm, and the porosity was between 68 and 73%.
この多孔体を犬の大腿骨に人為的に作製した骨
欠損部(約6mmφ×5mmL)に充てんし、以後の
経過を観察した。その結果多孔体内の空孔のチヤ
ンネル内の孔径の最大寸度が0.01mm、最小寸度が
0.007mmのものを除き、充てん後三週間で多孔体
内に新生骨の生成が見られた。しかしながら多孔
体内の空孔のチヤンネル内の孔径の最大寸度が
0.01mm、最小寸度が0.007mmのものでは充てん材
内部の空孔中にはほとんど新生骨は観察されなか
つた。充てん後三カ月経過した後の観察からは空
孔中の新生骨の生成量の多いものは、多孔体中の
空孔のチヤンネル内の孔径の最大寸度が各々3、
0.5、0.7mmであり、かつそれぞれの最小寸度が
1.5、0.2、0.05mmのものであり、これらは充てん
材と生体の骨組織の置換が進みほぼ一体化してい
た。多孔体中の空孔のチヤンネル内の孔径の最大
寸度が各5及び0.01mm且つそれぞれ最小寸度が3
及び0.007mmの場合には充てんした多孔体中に空
隙が散在していた。 This porous material was filled into a bone defect (approximately 6 mmφ x 5 mmL) artificially created in the femur of a dog, and the subsequent progress was observed. As a result, the maximum dimension of the pore diameter in the channel of the pores in the porous body was 0.01 mm, and the minimum dimension was
Except for the 0.007 mm porous material, new bone formation was observed within the porous material three weeks after filling. However, the maximum size of the pore diameter in the channel of the pores in the porous body is
In the case of 0.01 mm and the minimum dimension of 0.007 mm, almost no new bone was observed in the pores inside the filler. Observations made three months after filling revealed that in porous materials with a large amount of new bone formed in the pores, the maximum size of the pore diameter in the channel of the pores in the porous material was 3, 3, and 3, respectively.
0.5, 0.7mm, and each minimum dimension is
They were 1.5, 0.2, and 0.05 mm, and the filling material and living bone tissue had been replaced and were almost integrated. The maximum dimension of the pore diameter in the channel of the pores in the porous body is 5 and 0.01 mm, respectively, and the minimum dimension is 3, respectively.
In the case of 0.007 mm, voids were scattered in the filled porous body.
実施例 2 湿式法にて合成したヒドロキシアパタイトを用
い、実施例1と同様の方法にて作製した多孔体
(気化率20、40、70、97%、それぞれ空孔内のチ
ヤンネルの孔径の最大寸度2〜1mm、最小寸度
0.8〜0.1mm)を用い、犬の大腿骨に人為的に作製
した骨欠損部(4mmφ×5mmL)に充てんし、以
後の経過を観察した。Example 2 A porous body was prepared using hydroxyapatite synthesized by a wet method in the same manner as in Example 1 (vaporization rate: 20, 40, 70, 97%, maximum channel diameter within the pores). degree 2~1mm, minimum size
0.8 to 0.1 mm) was used to fill a bone defect (4 mmφ x 5 mm L) artificially created in the femur of a dog, and the subsequent progress was observed.
この場合、多孔体の気孔率が99%のものについ
ても作製したが骨欠損部に充てんするため加工す
る段階で、自形を保つことができず崩壊した。ま
た気孔率が20%のものについては充てんの形状に
適合させるための加工時加工が困難であつた。気
孔率20〜97%の多孔体を充てんした後三ケ月経過
後の骨欠損部の観察によれば気孔率が20%の多孔
体を充てんした場合を除き本来の骨組織と一体化
していた。気孔率が20%の場合には充てん材と周
囲の骨組織の接している部分のみで一体化がみら
れたが充てん材内部においては一体化していなか
つた。 In this case, a porous body with a porosity of 99% was also produced, but it collapsed during processing to fill the bone defect because it could not maintain its own shape. In addition, for those with a porosity of 20%, it was difficult to process them to match the shape of the filling. Observation of the bone defect three months after filling with a porous material with a porosity of 20 to 97% revealed that it had integrated with the original bone tissue, except in the case where the defect was filled with a porous material with a porosity of 20%. When the porosity was 20%, integration was observed only in the area where the filler and surrounding bone tissue were in contact, but not within the filler.
実施例 3 湿式法にて合成したヒドロキシアパタイトスラ
リーを実施例1と同様の方法にて目づまりしない
ように含浸させ、その後乾燥し、有桟多孔体を除
去するために焼成し(焼成温度300゜、500゜、700゜、
1000゜、1250゜、1350゜、焼成時間各1時間)多孔体
を作製した。この方法で作られた多孔体中の空孔
のチヤンネルに沿つた最大寸度は0.5〜0.4mm、最
小寸度は0.3〜0.2mmの範囲のものであつた。この
多孔体を犬の大腿骨に人為的に作成した骨欠損部
(4mmφ×5mmL)に充てんし、以後の経過を観
察した。Example 3 A hydroxyapatite slurry synthesized by a wet method was impregnated in the same manner as in Example 1 to prevent clogging, and then dried and fired to remove the barbed porous material (firing temperature 300°). , 500°, 700°,
Porous bodies were prepared at 1000°, 1250°, and 1350° for 1 hour each. The maximum dimension of the pores along the channel in the porous body produced by this method was in the range of 0.5 to 0.4 mm, and the minimum dimension was in the range of 0.3 to 0.2 mm. This porous body was filled into a bone defect (4 mmφ x 5 mmL) artificially created in the femur of a dog, and the subsequent progress was observed.
その結果、充てんののち三週間経過後、いずれ
の場合においても多孔体の空孔内に新生骨の生成
が見られた。しかし500℃以上で焼成した多孔体
を充てんした場合に新生骨の生成がより多くさら
に700〜1250℃で焼成した多孔体を充てんした場
合特に新生骨の生成が著しかつた。 As a result, three weeks after filling, new bone formation was observed within the pores of the porous material in all cases. However, when the porous body was filled with a porous body fired at 500°C or higher, new bone was formed more, and when the porous body was filled with a porous body fired at 700 to 1250°C, the formation of new bone was particularly significant.
比較例 湿式法で合成したヒドロキシアパタイトの100
℃乾燥粉末を用い、149μ以下に整粒し、これに
カーボンフアイバーを加え、成形し、これを1100
℃で3時間焼成を行いカーボンフアイバーを焼尽
し直円管状の空孔を有する多孔体を作製した。こ
のようにして作製した多孔体の気孔率は25%であ
り、多孔体中の空孔のチヤンネル径は0.2mmであ
つた。この多孔体を犬の大腿骨に人為的に作成し
た骨欠損部(5mm×4mmφ)に充てんし、以後の
経過を観察した。Comparative example Hydroxyapatite 100 synthesized by wet method
℃ dried powder, sized to 149μ or less, added carbon fiber to it, molded it, and sized it to 1100μ
Firing was carried out at 30° C. for 3 hours to burn out the carbon fibers and produce a porous body having holes in the shape of a right circular tube. The porous body thus produced had a porosity of 25% and a channel diameter of pores in the porous body of 0.2 mm. This porous material was filled into a bone defect (5 mm x 4 mmφ) artificially created in the femur of a dog, and the subsequent progress was observed.
その結果、6カ月経過後において若干の新生骨
が生成していたが、充てん材と骨組織が一体化す
るには到つていなかつた。 As a result, after 6 months, some new bone had been formed, but the filling material and bone tissue had not yet become integrated.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7006080AJPS56166843A (en) | 1980-05-28 | 1980-05-28 | Filler for bone broken section and void section |
| NLAANVRAGE8102354,ANL182774C (en) | 1980-05-28 | 1981-05-13 | METHOD FOR PREPARING A BONE REPLACEMENT |
| GB8115770AGB2078696B (en) | 1980-05-28 | 1981-05-22 | Filler for implanting in defects or hollow portions of bones |
| DE3121182ADE3121182C2 (en) | 1980-05-28 | 1981-05-27 | Filling material for filling defects or cavities in bones |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7006080AJPS56166843A (en) | 1980-05-28 | 1980-05-28 | Filler for bone broken section and void section |
| Publication Number | Publication Date |
|---|---|
| JPS56166843A JPS56166843A (en) | 1981-12-22 |
| JPH0156777B2true JPH0156777B2 (en) | 1989-12-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7006080AGrantedJPS56166843A (en) | 1980-05-28 | 1980-05-28 | Filler for bone broken section and void section |
| Country | Link |
|---|---|
| JP (1) | JPS56166843A (en) |
| DE (1) | DE3121182C2 (en) |
| GB (1) | GB2078696B (en) |
| NL (1) | NL182774C (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109133907A (en)* | 2018-08-16 | 2019-01-04 | 迈海新型材料科技(固安)有限公司 | A kind of artificial bone and preparation method thereof comprising hydroxyapatite crystal whisker and biphase calcium phosphor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57119745A (en)* | 1981-01-17 | 1982-07-26 | Kyoto Ceramic | Bone prosthetic member |
| CA1247960A (en) | 1983-03-24 | 1989-01-03 | Hideki Aoki | Transcutaneously implantable element |
| JPS6014860A (en)* | 1983-07-06 | 1985-01-25 | 三菱鉱業セメント株式会社 | Inorganic implant material |
| DE3325111A1 (en)* | 1983-07-12 | 1985-01-24 | Merck Patent Gmbh, 6100 Darmstadt | IMPLANTATION MATERIALS |
| US4654314A (en)* | 1983-07-09 | 1987-03-31 | Sumitomo Cement Co., Ltd. | Porous ceramic material and processes for preparing same |
| JPS6021763A (en)* | 1983-07-15 | 1985-02-04 | ティーディーケイ株式会社 | Artificial bone material |
| DE3375073D1 (en)* | 1983-10-20 | 1988-02-11 | Oscobal Ag | Bone substitute material based on natural bone |
| JPS6171059A (en)* | 1984-09-13 | 1986-04-11 | 名神株式会社 | Composition for filling bone and tooth and its production |
| JPS6171060A (en)* | 1984-09-13 | 1986-04-11 | 名神株式会社 | Alpha-calcium triphosphate composition for filling bone and tooth and its production |
| JPS6179462A (en)* | 1984-09-25 | 1986-04-23 | ティーディーケイ株式会社 | Porous artificial bone material |
| US4629464A (en)* | 1984-09-25 | 1986-12-16 | Tdk Corporation | Porous hydroxyapatite material for artificial bone substitute |
| JPS62501132A (en)* | 1984-12-14 | 1987-05-07 | ドレナ−ト・クラウス | bone substitute material |
| JPS61170471A (en)* | 1985-01-25 | 1986-08-01 | 住友大阪セメント株式会社 | Bone prosthetic molded body |
| JPS62295666A (en)* | 1986-06-16 | 1987-12-23 | 呉羽化学工業株式会社 | Continuous two-dimensional porous implant material and its production |
| JPS63125259A (en)* | 1986-11-14 | 1988-05-28 | 旭光学工業株式会社 | Calcium phosphate porous bone substitute material |
| US4861733A (en)* | 1987-02-13 | 1989-08-29 | Interpore International | Calcium phosphate bone substitute materials |
| JPS63317158A (en)* | 1987-06-22 | 1988-12-26 | Sangi:Kk | Bonesetting and healing promoting material |
| JPS6418949A (en)* | 1987-07-10 | 1989-01-23 | Asahi Optical Co Ltd | Production of powder agent for calcium phosphate based hardened body |
| JPS6456056A (en)* | 1987-08-26 | 1989-03-02 | Dental Chem Co Ltd | Hydroxyapatite bone filling material |
| JPH021285A (en)* | 1988-01-11 | 1990-01-05 | Asahi Optical Co Ltd | Granular bone filling material for dental and medical use that can be fixed, its fixing method, and bone filling material |
| DE3903695A1 (en)* | 1989-02-08 | 1990-08-09 | Merck Patent Gmbh | RESORBABLE BONE CERAMICS BASED ON TRICALCIUMPHOSPHATE |
| JPH03116824U (en)* | 1990-03-13 | 1991-12-03 | ||
| GB2354518B (en)* | 1996-10-04 | 2001-06-13 | Dytech Corp Ltd | A porous ceramic body composed of bonded particles |
| AU4636297A (en)* | 1996-10-15 | 1998-05-11 | University College Dublin | Bone replacement materials with interconnecting pore system |
| DE19825419C2 (en)* | 1998-06-06 | 2002-09-19 | Gerber Thomas | Process for the production of a highly porous bone substitute material and its use |
| GB9821663D0 (en) | 1998-10-05 | 1998-11-25 | Abonetics Ltd | Foamed ceramics |
| JP3400740B2 (en)* | 1999-04-13 | 2003-04-28 | 東芝セラミックス株式会社 | Calcium phosphate porous sintered body and method for producing the same |
| WO2001044141A2 (en)* | 1999-12-16 | 2001-06-21 | Isotis N.V. | Porous ceramic body |
| US20020022885A1 (en)* | 2000-05-19 | 2002-02-21 | Takahiro Ochi | Biomaterial |
| GB0013870D0 (en)* | 2000-06-07 | 2000-08-02 | Univ London | Foamed ceramics |
| US6713420B2 (en)* | 2000-10-13 | 2004-03-30 | Toshiba Ceramics Co., Ltd. | Porous ceramics body for in vivo or in vitro use |
| JP4070951B2 (en)* | 2000-12-07 | 2008-04-02 | ペンタックス株式会社 | Method for producing porous calcium phosphate ceramic sintered body |
| US6949251B2 (en) | 2001-03-02 | 2005-09-27 | Stryker Corporation | Porous β-tricalcium phosphate granules for regeneration of bone tissue |
| WO2003035576A1 (en)* | 2001-10-21 | 2003-05-01 | National Institute Of Advanced Industrial Science And Technology | Porous article of sintered calcium phosphate, process for producing the same and artificial bone and histomorphological scaffold using the same |
| AU2002361860A1 (en) | 2001-12-21 | 2003-07-15 | Richard J. Lagow | Calcium phosphate bone replacement materials and methods of use thereof |
| DE10201340A1 (en)* | 2002-01-16 | 2003-07-24 | Biovision Gmbh | Bone replacement material and process for its manufacture |
| PT103866A (en)* | 2007-10-25 | 2009-02-25 | Claudia Marina Souto Ranito | METHOD FOR THE MANUFACTURE OF POROUS CERAMIC STRUCTURES BASED ON CALCIUM, ALUMINUM OR ZIRCONIA PHOSPHATES |
| US9265857B2 (en) | 2010-05-11 | 2016-02-23 | Howmedica Osteonics Corp. | Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods |
| US8765189B2 (en) | 2011-05-13 | 2014-07-01 | Howmedica Osteonic Corp. | Organophosphorous and multivalent metal compound compositions and methods |
| BR102012032608B1 (en)* | 2012-12-18 | 2021-06-01 | Universidade Estadual De Campinas - Unicamp | PROCESS FOR OBTAINING HYDROXIAPATITE AND TRICALCUM PHOSPHATE SPONGES, SPONGES OBTAINED AND USE OF THE SAME |
| CN105561386B (en)* | 2016-01-29 | 2019-04-09 | 昆明理工大学 | A kind of preparation method of porous hydroxyapatite/calcium pyrophosphate composite bone repair material |
| CN107837419A (en)* | 2016-09-20 | 2018-03-27 | 重庆润泽医药有限公司 | A kind of porous hydroxyapatite |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2134695A1 (en)* | 1971-04-30 | 1972-12-08 | Mini En Electric | Homo-implants - made of human bone for treating parodontopathy |
| US3913229A (en)* | 1974-02-25 | 1975-10-21 | Miter Inc | Dental treatments |
| CH595293A5 (en)* | 1975-02-20 | 1978-02-15 | Battelle Memorial Institute | |
| SE414399B (en)* | 1976-03-16 | 1980-07-28 | Hans Scheicher | CERAMIC MATERIAL FOR USE IN MEDICINE, IN PARTICULAR FOR MANUFACTURE OF IMPLANTS, FOREIGN ODONTOLOGICAL IMPLANTS AND SET FOR MANUFACTURING THE MATERIAL |
| JPS54138006A (en)* | 1978-04-19 | 1979-10-26 | Kyoto Ceramic | Bone break filling ceramic member |
| DE2840064C2 (en)* | 1978-09-14 | 1989-09-21 | Hans Dr.med. Dr.med.dent. 8000 München Scheicher | Process for the production of bone contact layers |
| JPS5654841A (en)* | 1979-10-08 | 1981-05-15 | Mitsubishi Mining & Cement Co | Bone broken portion and filler for void portion and method of treating bone of animal using said filler |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109133907A (en)* | 2018-08-16 | 2019-01-04 | 迈海新型材料科技(固安)有限公司 | A kind of artificial bone and preparation method thereof comprising hydroxyapatite crystal whisker and biphase calcium phosphor |
| Publication number | Publication date |
|---|---|
| DE3121182A1 (en) | 1982-02-04 |
| GB2078696B (en) | 1983-11-30 |
| NL8102354A (en) | 1981-12-16 |
| JPS56166843A (en) | 1981-12-22 |
| DE3121182C2 (en) | 1985-10-10 |
| GB2078696A (en) | 1982-01-13 |
| NL182774C (en) | 1988-05-16 |
| Publication | Publication Date | Title |
|---|---|---|
| JPH0156777B2 (en) | ||
| de Groot | Ceramics of calcium phosphates: preparation and properties | |
| JP3035316B2 (en) | Coated biological material and method for producing the biological material | |
| KR910001352B1 (en) | Porous ceramic material and method for producing thereof | |
| JP3457675B2 (en) | Biocompatible materials and bone implants for bone repair and replacement | |
| JP5759370B2 (en) | Three-dimensional matrix of monetite with structured porosity for tissue engineering and bone regeneration, and method for preparing the three-dimensional matrix | |
| JPH0233388B2 (en) | ||
| KR900005904B1 (en) | Implant material with continuos and two-dimensional pores and process producing the same | |
| JPWO2004103422A1 (en) | Calcium phosphate-containing composite porous body and method for producing the same | |
| EP1829564A1 (en) | Osteoinductive calcium phosphate | |
| Havlik et al. | Hydroxyapatite | |
| Bayazit et al. | Evaluation of bioceramic materials in biology and medicine | |
| WO2015129972A1 (en) | High strength synthetic bone for bone replacement for increasing compressive strength and facilitating blood circulation, and manufacturing method therefor | |
| US6136030A (en) | Process for preparing porous bioceramic materials | |
| Goel et al. | Role of tricalcium phosphate implant in bridging the large osteoperiosteal gaps in rabbits | |
| Chaudhari et al. | A Systematic review on Bone grafts and Biomaterials substitutes for Bone Regeneration | |
| Garcés-Villalá et al. | Evaluation of two highly porous microcrystalline biphasic calcium phosphate-based bone grafts for bone regeneration: an experimental study in rabbits | |
| JPH0575427B2 (en) | ||
| CN104147638B (en) | A kind of three-dimensional connected porous artificial bone scaffold and its preparation method and application | |
| Devesa et al. | SiO2-based glass/bone interfacial reactions | |
| EP0994735A4 (en) | PRODUCTS OR STRUCTURES FORMED FOR MEDICAL APPLICATIONS | |
| JP4549016B2 (en) | Biomaterial | |
| JPH0414584B2 (en) | ||
| JPH047227B2 (en) | ||
| JPS63294864A (en) | Preparation of artificial bone material |