Movatterモバイル変換


[0]ホーム

URL:


JPH01288322A - Deodorization by photocatalyst - Google Patents

Deodorization by photocatalyst

Info

Publication number
JPH01288322A
JPH01288322AJP63117240AJP11724088AJPH01288322AJP H01288322 AJPH01288322 AJP H01288322AJP 63117240 AJP63117240 AJP 63117240AJP 11724088 AJP11724088 AJP 11724088AJP H01288322 AJPH01288322 AJP H01288322A
Authority
JP
Japan
Prior art keywords
oxide
metal oxides
titanium oxide
hydrogen sulfide
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63117240A
Other languages
Japanese (ja)
Other versions
JPH0759293B2 (en
Inventor
Tomoko Ikeda
知子 池田
Shuzo Tokumitsu
修三 徳満
Noboru Naruo
成尾 昇
Masao Fukunaga
政雄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co LtdfiledCriticalMatsushita Electric Industrial Co Ltd
Priority to JP63117240ApriorityCriticalpatent/JPH0759293B2/en
Publication of JPH01288322ApublicationCriticalpatent/JPH01288322A/en
Publication of JPH0759293B2publicationCriticalpatent/JPH0759293B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To deodorize hydrogen sulfide efficiently by radiating an ultraviolet ray to a metal oxides mixture in the presence of a gas contg. oxygen and an oxidizable compound with metal oxides of titanium oxide and manganese oxide. CONSTITUTION:Hydrogen sulfide is deodorized efficiently by radiating an ultraviolet ray to a metal oxides mixture in the presence of a gas contg. oxygen and an oxidizable material with a metal oxides mixture contg. titanium oxide and manganese oxide. The deodorization function is enhanced by carrying an electrically conductive inorganic compound on the metal oxides mixture. Titanium oxide with any crystal structure may be acceptable but anatase-type is the most active. Mn2O3 as manganese oxide is highly active, but other ones are also acceptable. Platinum is most efficient as a conductive inorganic material. The metal oxide mixture is used by being applied either on a light source or on a support put in the circumference of the light source.

Description

Translated fromJapanese

【発明の詳細な説明】産業上の利用分野本発明は、トイレのし尿臭、ペットの臭い、たばこの臭
い、調理臭および体臭などの家庭やオフィス等で発生す
る臭気の光触媒による脱臭方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for deodorizing odors generated in homes, offices, etc., such as toilet odors, pet odors, cigarette odors, cooking odors, and body odors, using a photocatalyst. It is.

従来の技術家庭やオフィスで発生する悪臭(調理臭、たばこ臭9体
臭、ベット及びトイレの臭いなど)の成分は、窒素化合
物(アンモニア、アミン類、インドール、スカトールな
ど)、硫黄化合物(硫化水素、メチルメルカプタン、硫
化メチル、二硫化メチル、二硫化ジメチルなど)、アル
デヒド類(ホルマリン、アセトアルデヒドなど)、ケト
ン類((アセトンなど)、アルコール類(メタノール。
Conventional technology The components of bad odors generated in homes and offices (cooking odor, cigarette odor, body odor, bed and toilet odor, etc.) are nitrogen compounds (ammonia, amines, indole, skatole, etc.), sulfur compounds (hydrogen sulfide, Methyl mercaptan, methyl sulfide, methyl disulfide, dimethyl disulfide, etc.), aldehydes (formalin, acetaldehyde, etc.), ketones ((acetone, etc.), alcohols (methanol, etc.).

エタノールなど)、脂肪酸及び芳香族化合物など、多種
多様である。
ethanol, etc.), fatty acids, and aromatic compounds.

従来、このような悪臭物質の消臭方法として薬剤との化
学反応による方法、芳香剤などによるマスキング、活性
炭を代表とする吸着材などによる脱臭法が使用されてい
た。
Conventionally, methods for deodorizing such malodorous substances include a method using a chemical reaction with a drug, masking using an aromatic agent, and a deodorizing method using an adsorbent such as activated carbon.

これらの消臭方法は、薬剤の開発、吸着剤の改良及び、
活性炭表面に薬剤添着して化学反応をおこさせると同時
に活性炭本来の消臭作用(物理及び化学吸着など)をも
同時に利用するといった、それぞれの消臭方法の組み合
せを用いるなどして、消臭の効率化を試みている。
These deodorizing methods are based on drug development, adsorbent improvement, and
Deodorization can be achieved by using a combination of deodorizing methods, such as impregnating chemicals on the surface of activated carbon to cause a chemical reaction and simultaneously utilizing activated carbon's natural deodorizing effects (physical and chemical adsorption, etc.). Attempting to improve efficiency.

しかし、従来の消臭方法の最大の難点は使用に伴い悪臭
物質と化学反応する薬剤の減少、悪臭物質による吸着剤
の飽和などにより、常に定期的に新規のものと交換しな
ければならないことである。
However, the biggest drawback of conventional deodorizing methods is that with use, the amount of chemicals that chemically react with malodorous substances decreases, and the adsorbent becomes saturated with malodorous substances, so it must be replaced regularly with a new one. be.

さらに、この交換時期は、その脱臭すべき空間に存在す
る悪臭物質の組成、濃度によっても異なり、判断が非常
に決定しにくいものであった。
Furthermore, the timing of replacement varies depending on the composition and concentration of malodorous substances present in the space to be deodorized, making it extremely difficult to determine the timing of replacement.

この消臭物質(薬剤、吸着剤など)交換の手間をはぶき
、メンテナンスフリーを目的とする消臭方法として注目
されているのが、光触媒法である。
The photocatalytic method is attracting attention as a deodorizing method that eliminates the hassle of replacing deodorizing substances (chemicals, adsorbents, etc.) and is maintenance-free.

この方法では、現在一般に酸化チタンを触媒として紫外
線を照射する方法が良く知られている。
In this method, a method in which ultraviolet rays are irradiated using titanium oxide as a catalyst is currently well known.

この光触媒法を用いると悪臭物質と反応して消臭薬剤が
減少したり、悪臭物質との吸着飽和などで消臭性能が劣
化することなく、初期の性能を長期維持することが可能
になる。
When this photocatalytic method is used, the initial performance can be maintained for a long period of time without reducing the deodorizing agent by reacting with the malodorous substance or deteriorating the deodorizing performance due to adsorption saturation with the malodorous substance.

発明が解決しようとする課題ところが、−数的な光触媒である酸化チタンに紫外線を
照射する方法で消臭を行うと、代表的な悪臭物質のひと
つである硫化水素をはじめとする硫黄化合物の酸化分解
速度が、他の悪臭物質に比較して非常に遅い。悪臭(体
臭、し尿、調理具など)である人間の生活空間にかなら
ず存在する硫黄化合物を脱臭する光触媒を見い出すこと
は、実使用の際、残された大きな課題であった。
Problem to be Solved by the Invention However, when deodorization is performed by irradiating ultraviolet rays onto titanium oxide, which is a photocatalyst, oxidation of sulfur compounds including hydrogen sulfide, one of the typical malodorous substances, occurs. The rate of decomposition is very slow compared to other malodorous substances. Finding a photocatalyst that can deodorize the sulfur compounds that cause bad odors (body odor, human waste, cooking utensils, etc.) that are always present in human living spaces was a major challenge that remained in practical use.

本発明は従来の酸化チタンを使用した光触媒法では分解
困難であった硫化水素を効率的に脱臭し、また長期その
性能を維持することを可能にした脱臭方法を提供するこ
とを目的とするものである。
The purpose of the present invention is to provide a deodorizing method that efficiently deodorizes hydrogen sulfide, which was difficult to decompose using the conventional photocatalytic method using titanium oxide, and that makes it possible to maintain its performance for a long period of time. It is.

課題を解決するための手段上記目的を達成するため、本発明の光触媒による脱臭方
法は、酸化チタンと酸化マンガンの混合金属酸化物と、
被酸化性化合物と酸素を含む気体の存在下で前記混合金
属酸化物に紫外線を照射するものである。また、混合金
属酸化物に、導電性無機物質を担持することによって、
さらに脱臭性能の良い脱臭方法を提供するものである。
Means for Solving the Problems In order to achieve the above object, the photocatalytic deodorizing method of the present invention uses a mixed metal oxide of titanium oxide and manganese oxide,
The mixed metal oxide is irradiated with ultraviolet light in the presence of an oxidizable compound and a gas containing oxygen. In addition, by supporting a conductive inorganic substance on a mixed metal oxide,
Furthermore, the present invention provides a deodorizing method with good deodorizing performance.

作用本発明者等は、以前より光触媒反応による悪臭分解、無
臭化を研究中であるが、一般に光触媒として知られてい
る酸化チタン単独使用に比較して、酸化チタンと酸化マ
ンガンが共存した場合の方が、硫黄化合物(硫化水素メ
ルカプタン類など)の分解性が極めて高Xなることを見
い出した。本発明の混合金属酸化物は紫外線照射によっ
て分解を効率良くおこすものである。
Effect The present inventors have been researching the decomposition and deodorization of bad odors through photocatalytic reactions for some time, and compared to the use of titanium oxide alone, which is generally known as a photocatalyst, the effect of the coexistence of titanium oxide and manganese oxide is It has been found that the decomposition of sulfur compounds (hydrogen sulfide mercaptans, etc.) is extremely high. The mixed metal oxide of the present invention is efficiently decomposed by ultraviolet irradiation.

酸化チタンと酸化マンガンの混合金属酸化物の作用原理
については現在詳細に研究中である。今までの結果及び
文献などにより、この混合金属酸化物に、紫外線を照射
することにより、これらの価電子帯の電子がエネルギー
を吸収して伝導帯に励起され、そこで酸素と反応して活
性の高い0ラジカル、0; が生ずる。一方、電子の励
起により価電子帯に生じた正孔は触媒表面上に吸着され
ている水分からの水酸基(OH基)と反応し、OH−ラ
ジカルが生ずると推測される。これら活性の高いラジカ
ルが被酸化性化合物を酸化分解するものと推測される。
The principle of action of mixed metal oxides of titanium oxide and manganese oxide is currently being studied in detail. According to previous results and literature, when this mixed metal oxide is irradiated with ultraviolet rays, these electrons in the valence band absorb energy and are excited to the conduction band, where they react with oxygen and become active. A high number of 0 radicals, 0;, is generated. On the other hand, it is presumed that holes generated in the valence band due to electron excitation react with hydroxyl groups (OH groups) from water adsorbed on the catalyst surface to generate OH- radicals. It is presumed that these highly active radicals oxidize and decompose the oxidizable compound.

この様な反応は酸化チタン単独でももちろん起るが、酸
化チタンと酸化マンガンが共存している触媒では、それ
ぞれで生じた電子及び正孔が相関し合い相乗効果をおこ
すと考えられる。
Such a reaction naturally occurs with titanium oxide alone, but in a catalyst where titanium oxide and manganese oxide coexist, it is thought that the electrons and holes generated by each are correlated and cause a synergistic effect.

さらにこの混合金属酸化物に、白金、パラジウム、ロジ
ウム、酸化ルテニウム、銀などの導電性無機物質を担持
すると悪臭の無臭化はさらに強力になる。中でも白金の
効果は非常に高い。
Furthermore, when a conductive inorganic substance such as platinum, palladium, rhodium, ruthenium oxide, or silver is supported on this mixed metal oxide, the odor elimination becomes even stronger. Among them, platinum is extremely effective.

本発明の脱臭方法は硫黄化合物を無臭化するのに優れて
いるだけでなく、他の悪臭物質である窒素化合物(アン
モニア、アミン類など)アルデヒド類(ホルマリン、ア
セトアルデヒド、アクロレインなど)、ケトン類、アル
コール類、脂肪酸及び芳香族も酸化分解により無臭化す
る。
The deodorizing method of the present invention is not only excellent in deodorizing sulfur compounds, but also other malodorous substances such as nitrogen compounds (ammonia, amines, etc.), aldehydes (formalin, acetaldehyde, acrolein, etc.), ketones, Alcohols, fatty acids, and aromatics are also rendered odorless by oxidative decomposition.

実施例以下、本発明の実施例について説明する。ExampleExamples of the present invention will be described below.

酸化チタンには、アナターゼ型、プルカイト型。Titanium oxide has anatase type and pulcite type.

ルチル型とがあり、本発明において使用する場合、アナ
ターゼ型が最も活性が高いがどの結晶構造のものでも良
い。
There is a rutile type, and when used in the present invention, the anatase type has the highest activity, but any crystal structure may be used.

また酸化−rンガンとしてはMnO、MnO□、 Mn
2O3゜Mn50.などがあり、それぞれがα、β、γ
、δの結晶のかたちを持つ。
In addition, as oxidized nitrogen, MnO, MnO□, Mn
2O3°Mn50. There are α, β, and γ, respectively.
, has a crystalline shape of δ.

本発明の場合にMn20.の活性が高いが、他のもので
も良い。
In the case of the present invention, Mn20. has high activity, but other substances may also be used.

導電性無機物質としては、白金が最も効果的であるがパ
ラジウム、ロジウム、銀などの貴金属や酸化ルテニウム
などを使用しても良い。
As the conductive inorganic substance, platinum is most effective, but noble metals such as palladium, rhodium, and silver, ruthenium oxide, etc. may also be used.

本発明に使用する紫外線は、高圧水銀ランプ。The ultraviolet light used in the present invention is a high-pressure mercury lamp.

超高圧水銀ランプ、低圧水銀ランプ、キセノンランプな
どを単独または併用することにより発生させる。
Generated by using ultra-high-pressure mercury lamps, low-pressure mercury lamps, xenon lamps, etc. alone or in combination.

本発明に用いる混合金属酸化物は、光源表面に塗布する
か、光源周囲に支持体を設けてそれに塗布または含浸す
るなどして使用する。
The mixed metal oxide used in the present invention is used by coating the surface of the light source, or by coating or impregnating a support provided around the light source.

次に具体的な実施例について第1表をもとに詳細に説明
する。実施例1.比較例1で使用する光触媒はまず厚さ
O,S、、、直径est+oiのアルミナ・シリカ質の
セラミックペーパにチタノアシルを含浸した後、400
〜700’Cで熱処理する。一方硫酸マンガン水溶液に
過酸化水素水及びアンモニア水を加え沸とうさせて酸化
水酸化マンガンを析出させ、その水溶液中に前述したセ
ラミックペーパを含浸させた後、減圧下250°Cで、
3日間脱水を行い触媒を作成する。
Next, specific examples will be described in detail based on Table 1. Example 1. The photocatalyst used in Comparative Example 1 was prepared by impregnating alumina-silica ceramic paper with a thickness of O, S, ..., and a diameter of est+oi with titanoacyl.
Heat treat at ~700'C. On the other hand, hydrogen peroxide and ammonia water were added to the manganese sulfate aqueous solution and boiled to precipitate manganese oxide hydroxide.The above-mentioned ceramic paper was impregnated into the aqueous solution, and then heated at 250°C under reduced pressure.
Dehydration is performed for 3 days to prepare a catalyst.

また実施例2.比較例2の白金担持は、上記金属酸化物
を付けたセラミックペーパに塩化白金酸のエタノール溶
液を含浸し、熱処理して白金微粒子として担持した。
Also, Example 2. Platinum was supported in Comparative Example 2 by impregnating a ceramic paper coated with the metal oxide with an ethanol solution of chloroplatinic acid, heat-treating the paper, and supporting the platinum in the form of fine platinum particles.

(以下余白)この触媒1をステンレスの台2にのせ第1図に示す内容
積361のアルミニウム製の反応容器3の中に、光源4
から100fi離れた位置に置いた。
(Left below) This catalyst 1 is placed on a stainless steel stand 2, and a light source 4 is placed inside an aluminum reaction vessel 3 having an internal volume of 361 as shown in FIG.
I placed it 100fi away from.

光源4は、悪臭ガスが硫化水素の場合は100Wの低圧
水銀ランプ(セン特殊光源製SUM−LWs紫外線出力
約16ワツト、光波長254ntl)  を用いた。こ
の反応器3の中に、悪臭ガスとして硫化水素(標準ガス
H2S 9900 pp!11 +バランスN2)を注
入し、ファン6で攪拌して濃度を均一にし、初期濃度を
測定した。次に紫外線ランプを点灯し、硫化水素の経時
変化をガスクロマトグラフィで測定した。同様の方法で
、硫化水素について第1表の条件で実施し、その結果を
第2図に示す0第2図の横軸は時間(分)、縦軸は36
1ボツクス内の硫化水素の濃度(ppm)を示す。
As the light source 4, when the malodorous gas was hydrogen sulfide, a 100 W low-pressure mercury lamp (SUM-LWs manufactured by Sen Special Light Source, ultraviolet output approximately 16 W, light wavelength 254 ntl) was used. Hydrogen sulfide (standard gas H2S 9900 pp!11 + balance N2) was injected into the reactor 3 as a malodorous gas, stirred with a fan 6 to make the concentration uniform, and the initial concentration was measured. Next, an ultraviolet lamp was turned on, and changes in hydrogen sulfide over time were measured using gas chromatography. The same method was used for hydrogen sulfide under the conditions shown in Table 1, and the results are shown in Figure 2. In Figure 2, the horizontal axis is time (minutes) and the vertical axis is 36 minutes.
Shows the concentration (ppm) of hydrogen sulfide in one box.

発明の効果上記実施例からあきらかなように本発明の脱臭方法によ
れば酸化チタンと酸化マンガンの混合金属酸化物に紫外
線を照射すると、それらと共存している酸素を含む気体
中の硫化水素は非常に効果的に分解され無臭化してしま
う0さらにその触媒に白金を担持した場合、より効果的
に分解が進む。
Effects of the Invention As is clear from the above examples, according to the deodorizing method of the present invention, when mixed metal oxides of titanium oxide and manganese oxide are irradiated with ultraviolet rays, hydrogen sulfide in the oxygen-containing gas coexisting with them is removed. The catalyst is decomposed very effectively and becomes odorless.Furthermore, if platinum is supported on the catalyst, the decomposition proceeds more effectively.

また、酸化チタン、酸化マンガンそれぞれ単独の場合よ
りも、この混合金属酸化物の方がより光触媒効果が大き
い。
Moreover, this mixed metal oxide has a greater photocatalytic effect than when titanium oxide or manganese oxide is used alone.

また、本発明は、硫化水素をはじめとする硫黄化合物の
分解に限らず他の悪臭物質である、窒素化合物(アンモ
ニア、アミン類)、アルデヒド類(ホルマリン、アセト
アルデヒドなど)、ケトン類、アルコール類、脂肪酸及
び芳香族化合物も酸化、無臭化ができる。
In addition, the present invention is not limited to the decomposition of sulfur compounds such as hydrogen sulfide, but also other malodorous substances such as nitrogen compounds (ammonia, amines), aldehydes (formalin, acetaldehyde, etc.), ketones, alcohols, Fatty acids and aromatic compounds can also be oxidized and deodorized.

本発明は、単独、あるいは他の吸着剤及び化学的方法を
組み合せることで、すぐれた脱臭性能を発揮すると同時
に長期にわたりその性能を維持することができる。
The present invention, alone or in combination with other adsorbents and chemical methods, can exhibit excellent deodorizing performance and at the same time maintain that performance for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法による分解性能を測定する装置の
断面図、第2図は本発明の実施例における硫化水素の分
解特性図である。1・・・・・・触媒、4・・・・・・光源。第1図(−触f呆2−15原
FIG. 1 is a sectional view of an apparatus for measuring decomposition performance according to the method of the present invention, and FIG. 2 is a diagram of hydrogen sulfide decomposition characteristics in an example of the present invention. 1...Catalyst, 4...Light source. Figure 1 (-touch f 2-15 original

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims](1)酸化チタンと酸化マンガンの混合金属酸化物と被
酸化性化合物及び酸素を含む気体の存在下で前記混合金
属酸化物に紫外線を照射する光触媒による脱臭方法。
(1) A deodorizing method using a photocatalyst in which the mixed metal oxide of titanium oxide and manganese oxide is irradiated with ultraviolet rays in the presence of an oxidizable compound and a gas containing oxygen.
(2)混合金属酸化物に導電性無機物質を担持した請求
項1記載の光触媒による脱臭方法。
(2) The deodorizing method using a photocatalyst according to claim 1, wherein a conductive inorganic substance is supported on the mixed metal oxide.
JP63117240A1988-05-131988-05-13 Photocatalytic deodorization methodExpired - Fee RelatedJPH0759293B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP63117240AJPH0759293B2 (en)1988-05-131988-05-13 Photocatalytic deodorization method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP63117240AJPH0759293B2 (en)1988-05-131988-05-13 Photocatalytic deodorization method

Publications (2)

Publication NumberPublication Date
JPH01288322Atrue JPH01288322A (en)1989-11-20
JPH0759293B2 JPH0759293B2 (en)1995-06-28

Family

ID=14706856

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP63117240AExpired - Fee RelatedJPH0759293B2 (en)1988-05-131988-05-13 Photocatalytic deodorization method

Country Status (1)

CountryLink
JP (1)JPH0759293B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5616532A (en)*1990-12-141997-04-01E. Heller & CompanyPhotocatalyst-binder compositions
JPH09186949A (en)*1995-12-271997-07-15Toshiba Lighting & Technol Corp Video equipment
US5849200A (en)*1993-10-261998-12-15E. Heller & CompanyPhotocatalyst-binder compositions
WO2000018504A1 (en)*1998-09-302000-04-06Nippon Sheet Glass Co., Ltd.Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
EP0812619B1 (en)*1996-06-122003-11-26Eastman Kodak CompanyInorganic transparent photocatalytic composition
JP2012016697A (en)*2010-06-102012-01-26Mitsui Chemicals IncPhotocatalyst and method of manufacturing the same
JP2014522343A (en)*2011-04-182014-09-04エンパイア テクノロジー ディベロップメント エルエルシー Light regenerative deoxygenation packaging
JP2023508180A (en)*2019-12-272023-03-01カリステア・ソシエテ・パール・アクシオンス・サンプリフィエ Method for manufacturing photocatalyst device, photocatalyst device, photocatalyst composition, and gas decontamination device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5616532A (en)*1990-12-141997-04-01E. Heller & CompanyPhotocatalyst-binder compositions
US5849200A (en)*1993-10-261998-12-15E. Heller & CompanyPhotocatalyst-binder compositions
US5854169A (en)*1993-10-261998-12-29E. Heller & CompanyPhotocatalyst-binder compositions
US6093676A (en)*1993-10-262000-07-25E. Heller & CompanyPhotocatalyst-binder compositions
JPH09186949A (en)*1995-12-271997-07-15Toshiba Lighting & Technol Corp Video equipment
EP0812619B1 (en)*1996-06-122003-11-26Eastman Kodak CompanyInorganic transparent photocatalytic composition
WO2000018504A1 (en)*1998-09-302000-04-06Nippon Sheet Glass Co., Ltd.Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
US6576344B1 (en)1998-09-302003-06-10Nippon Sheet Glass Co., Ltd.Photocatalyst article, anti-fogging, anti-soiling articles, and production method of anti-fogging, anti-soiling articles
JP2012016697A (en)*2010-06-102012-01-26Mitsui Chemicals IncPhotocatalyst and method of manufacturing the same
JP2014522343A (en)*2011-04-182014-09-04エンパイア テクノロジー ディベロップメント エルエルシー Light regenerative deoxygenation packaging
JP2023508180A (en)*2019-12-272023-03-01カリステア・ソシエテ・パール・アクシオンス・サンプリフィエ Method for manufacturing photocatalyst device, photocatalyst device, photocatalyst composition, and gas decontamination device

Also Published As

Publication numberPublication date
JPH0759293B2 (en)1995-06-28

Similar Documents

PublicationPublication DateTitle
JPH0512967B2 (en)
JP2009226299A (en)Photocatalytic material, method for decomposing organic material, interior component, air cleaner, oxidizing agent manufacturing apparatus
JPH03106420A (en)Deodorizing method for photo-catalyst
JPH01288322A (en)Deodorization by photocatalyst
JP2001187343A (en) Room temperature purification catalyst and method of using the same
JPH07114925B2 (en) Photocatalytic deodorization method
CN108479796A (en)A kind of cleaning equipment and its purification method of photochemical catalyst and volatile organic matter
JPH01232966A (en)Deodorizing method by photocatalyst
JPH0515488B2 (en)
JP2000218161A (en) Photocatalyst
JPH067906B2 (en) Photocatalytic deodorization method
CN108295640A (en)A kind of odor treatment method and equipment
CN1290573A (en)Light catalyst for purifying air
JP2000107276A (en) Air purification equipment
JPS61135669A (en)Ultraviolet oxidative decomposition deodorizing method
JPH0290924A (en) Deodorization method using photocatalyst
JPH01293876A (en)Deodorizing apparatus by photocatalyst
JPH0442056B2 (en)
JPH0532321B2 (en)
JPH02169039A (en) How to regenerate photocatalyst
JPH01159031A (en) Deodorizing method and device using photocatalyst
JP2001061948A (en)Material for purifying air
JPH045485B2 (en)
JP2006272062A (en) Decomposing material for harmful substances such as medical use
JP2000246050A (en)Deodorizing apparatus

Legal Events

DateCodeTitleDescription
LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp