【発明の詳細な説明】[産業上の利用分野]本発明は体腔内に留置してその体腔内の圧力を測定する
医療用カプセルに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a medical capsule that is placed in a body cavity to measure the pressure inside the body cavity.
[従来の技術]体腔内に留置してその体腔内の圧力を測定するための医
療用カプセルが実開昭54−133884号公報におい
て知られている。この公報のものは消化管内圧測定用ラ
ジオカプセルに係るものである。そして、このカプセル
内にコイルとコンデンサからなるLC共振回路部を備え
た発振回路を設けるとともにそのカプセルに設けたダイ
アフラムに連結した磁性体を上記コイルに出し入れする
ことで、LC共振回路のコンダクタンスLを変化し、こ
れにより発信する周波数から圧力を測定するようになっ
ている。[Prior Art] A medical capsule that is placed in a body cavity to measure the pressure inside the body cavity is known from Japanese Utility Model Application Publication No. 54-133884. This publication relates to a radiocapsule for measuring gastrointestinal pressure. Then, an oscillation circuit including an LC resonant circuit section consisting of a coil and a capacitor is provided inside this capsule, and a magnetic material connected to a diaphragm provided in the capsule is inserted into and removed from the coil, thereby adjusting the conductance L of the LC resonant circuit. This allows pressure to be measured from the emitted frequency.
[発明が解決しようとする課題]この種の医療用カプセルはダイアフラムに連結した磁性
体を上記コイルに出し入れすることで、LC共振回路の
コンダクタンスLを変化し、これを検知して測定する。[Problems to be Solved by the Invention] This type of medical capsule changes the conductance L of the LC resonance circuit by moving a magnetic body connected to a diaphragm into and out of the coil, which is detected and measured.
しかし、コイル内に出し入れする磁性体は比較的大きな
質量があり、特に、腸のように嬬動運動をしている部位
の圧力を測定しようとした場合、その磁性体の質量が測
定誤差の原因となった。特に、微少な圧力を測定する場
合にはそのダイアフラムの膜を柔軟に形成しなければな
らないため、さらに、大きなill定誤差を招き易い。However, the magnetic material that is moved in and out of the coil has a relatively large mass, and the mass of the magnetic material can cause measurement errors, especially when trying to measure the pressure of an area that undergoes oscillating movements, such as the intestines. It became. In particular, when measuring minute pressures, the membrane of the diaphragm must be formed to be flexible, which is likely to cause a large error in illumination.
本発明は上記課題に着目してなされたもので、その目的
とするところは比較的簡単な構成でありながら、その各
種状況にある体腔内の圧力を安定して正確に測定できる
医療用カプセルを提供することにある。The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a medical capsule that has a relatively simple structure and is capable of stably and accurately measuring pressure inside body cavities in various situations. It is about providing.
[課題を解決するための手段および作用]上記課題を解
決するために本発明は、体腔内に留置してその体腔内の
圧力を81定する医療用カプセルにおいて、カプセル本
体内に共振回路を組み込み、この共振回路のコンデンサ
の少なくとも一方の電極を体腔内の圧力で変位する受圧
面部に設け、この受圧面部の変位で上記コンデンサの容
量を変え、そのコンデンサの容量で共振する共振回路の
共振周波数から体腔内の圧力をaP1定する。[Means and effects for solving the problems] In order to solve the above problems, the present invention provides a medical capsule that is placed in a body cavity to regulate the pressure inside the body cavity, and a resonance circuit is built into the capsule body. , at least one electrode of the capacitor of this resonant circuit is provided on a pressure-receiving surface that is displaced by the pressure inside the body cavity, and the capacitance of the capacitor is changed by the displacement of this pressure-receiving surface, and the resonant frequency of the resonant circuit that resonates with the capacitance of the capacitor is determined. The pressure inside the body cavity is determined as aP1.
したがって、体腔内の圧力で変位する受圧面部はほとん
ど慣性の影響を受けずに、種々の状況部位にあってもそ
の体腔内の圧力を安定して正確に測定できる。Therefore, the pressure-receiving surface section, which is displaced by the pressure within the body cavity, is hardly affected by inertia, and the pressure within the body cavity can be stably and accurately measured even under various conditions.
[実施例]第1図および第2図は本発明の第1の実施例を示すもの
である。第1図で示す医療用カプセル1はカプセル本体
2の内部に共振回路3のコンデンサ4とコイル5を組み
込んでなるものである。[Embodiment] FIGS. 1 and 2 show a first embodiment of the present invention. A medical capsule 1 shown in FIG. 1 has a capacitor 4 and a coil 5 of a resonant circuit 3 built into a capsule body 2.
カプセル本体2は筒状体6とこの一端に気密的に取着さ
れた鏡板7とからなっている。カプセル本体2の開口端
にはリング状のダイアフラム枠8が接着剤9により気密
的に取着されている。そして、このダイアフラム枠8に
は体腔内に圧力によって変位する受圧面部としてのダイ
アフラム10が張設されている。ダイアフラム10の全
周縁はダイアフラム枠8に対して気密的に接着されてい
る。The capsule body 2 consists of a cylindrical body 6 and an end plate 7 airtightly attached to one end of the cylindrical body 6. A ring-shaped diaphragm frame 8 is airtightly attached to the open end of the capsule body 2 with an adhesive 9. A diaphragm 10 is stretched over the diaphragm frame 8 and serves as a pressure receiving surface that is displaced by pressure within the body cavity. The entire periphery of the diaphragm 10 is hermetically bonded to the diaphragm frame 8.
このダイアフラム10の内側膜面には上記コンデンサ4
を構成する一方の電極11が貼り付けられている。上記
コンデンサ4を構成する他方の電極12は電極枠13に
取付けられている。そして、この画電極11.12は第
1図で示すように平行に対向して配置され、共振回路3
のコンデンサ4を構成している。他方の電極12を取り
付ける電極枠13はカプセル本体2の筒状体6に取着固
定されている。The capacitor 4 is provided on the inner membrane surface of this diaphragm 10.
One electrode 11 constituting the is pasted. The other electrode 12 constituting the capacitor 4 is attached to an electrode frame 13. The picture electrodes 11 and 12 are arranged in parallel and facing each other as shown in FIG.
This constitutes a capacitor 4. An electrode frame 13 to which the other electrode 12 is attached is attached and fixed to the cylindrical body 6 of the capsule body 2.
さらに、カプセル本体2の筒状体6内には共振回路3の
コイル5を組み込んだコイル組立て体14が設けられて
いる。Further, within the cylindrical body 6 of the capsule body 2, a coil assembly 14 incorporating the coil 5 of the resonant circuit 3 is provided.
そして、上記ダイアフラム枠8、電極枠13、およびコ
イル組立て体14はカプセル本体2の筒状体6内に重ね
て嵌め込まれる。すなわち、筒状体6に鏡板7を取着す
る前にその筒状体6にダイアフラム枠8、電極枠13、
およびコイル組立て体14の順で嵌め込み、それぞれ嵌
合部を気密的に接着して固定し、最後に筒状体6に鏡板
7を取着して完了する。なお、筒状体6の最先端開口端
縁にはフランジ15が形成されていて、これに最先端の
ダイアフラム枠8を突き当てるようになっている。The diaphragm frame 8, electrode frame 13, and coil assembly 14 are fitted into the cylindrical body 6 of the capsule body 2 in an overlapping manner. That is, before attaching the end plate 7 to the cylindrical body 6, the diaphragm frame 8, the electrode frame 13,
and the coil assembly 14 are fitted in this order, and the fitting portions are hermetically bonded and fixed, and finally, the end plate 7 is attached to the cylindrical body 6 to complete the process. A flange 15 is formed at the opening edge of the cylindrical body 6 at the most distal end, and the diaphragm frame 8 at the distal end is abutted against this flange 15.
また、鏡板7には磁性体からなるねじ16を螺合するね
じ孔17が形成されている。このねじ孔17に螺合する
ねじ16は上記コイル組立て体14の内腔部分に進退自
在に設けられている。そして、このねじ16の位置を選
択することによりコイル5のインダクタンスを可変でき
るようになっている。なお、このねじ16の位置を決定
したところで、上記ねじ孔16には接着剤等の充填剤1
8が詰め込まれ、その部分を気密的にしている。Further, a screw hole 17 is formed in the end plate 7, into which a screw 16 made of a magnetic material is screwed. A screw 16 that is screwed into the screw hole 17 is provided in the inner cavity of the coil assembly 14 so as to be able to move forward and backward. By selecting the position of this screw 16, the inductance of the coil 5 can be varied. Note that once the position of this screw 16 is determined, filler 1 such as adhesive is applied to the screw hole 16.
8 is packed to make the area airtight.
一方、この医療用カプセル1とは別に体外に設置される
検出装置21が用意されている。この検出装置21は第
2図で示すように体外検出コイル22とインピーダンス
検出器23とからなり、後述するように医療用カプセル
1の共振回路3の共振状態を検出するようになっている
。On the other hand, apart from this medical capsule 1, a detection device 21 installed outside the body is prepared. As shown in FIG. 2, this detection device 21 consists of an extracorporeal detection coil 22 and an impedance detector 23, and is adapted to detect the resonance state of the resonance circuit 3 of the medical capsule 1, as will be described later.
次に、この医療用カプセル1を経口的に飲み込んで、腸
等の体腔内の圧力を測定する場合の作用を説明する。体
腔内に入った医療用カプセル1はX線透視等種々の方式
でその位置の確認が行なわれる。そして、体腔内におい
て、医療用カプセル1のダイアフラム10には体腔内の
圧力が加わり、その圧力に応じてダイアフラム10が変
形する。Next, the operation when this medical capsule 1 is swallowed orally and the pressure inside a body cavity such as the intestine is measured will be explained. The position of the medical capsule 1 that has entered the body cavity is confirmed by various methods such as X-ray fluoroscopy. In the body cavity, pressure within the body cavity is applied to the diaphragm 10 of the medical capsule 1, and the diaphragm 10 deforms in response to the pressure.
・このダイアフラム10の変形に伴ってコンデンサ4の
一方の電極11が変位し、他方の電極12との距離を変
える。このように体腔内の圧力に応じて電極11.12
間の距離が定まり、そのコンデンサ4の容量が定まる。- With this deformation of the diaphragm 10, one electrode 11 of the capacitor 4 is displaced, changing the distance from the other electrode 12. In this way, depending on the pressure inside the body cavity, the electrodes 11, 12
The distance between them is determined, and the capacitance of the capacitor 4 is determined.
そして、このコンデンサ4とコイル5で構成される共振
回路3の共振周波数が変化する。Then, the resonant frequency of the resonant circuit 3 composed of the capacitor 4 and the coil 5 changes.
そこで、第2図で示すように体内Aに設置される医療用
カプセル1とは別に体外Bに設置される検出装置21を
駆動し、その体外検出コイル22によって磁界を発生し
、この磁界で、医療用カプセル1の共振回路3のコイル
5を磁気的に駆動し、その共振回路3を共振させる。そ
して、この共振状態での共振周波数を体外Bの検出装置
21における体外検出コイル22を通じてインピーダン
ス検出器23で検出する。すなわち、共振状態において
、体外検出コイル22に流れる電流が増加するから、そ
のピークを検出する。そして、検出した値を体内圧力に
換算して出力させる。これにより体内圧力を知ることが
できる。Therefore, as shown in FIG. 2, in addition to the medical capsule 1 installed inside the body A, a detection device 21 installed outside the body B is driven, and the outside detection coil 22 generates a magnetic field. The coil 5 of the resonant circuit 3 of the medical capsule 1 is magnetically driven to cause the resonant circuit 3 to resonate. Then, the resonance frequency in this resonance state is detected by the impedance detector 23 through the extracorporeal detection coil 22 in the extracorporeal B detection device 21. That is, in the resonance state, the current flowing through the extracorporeal detection coil 22 increases, so its peak is detected. Then, the detected value is converted into internal body pressure and output. This allows you to know the internal pressure.
そこで、上記構成の医療用カプセル1において、体腔内
の圧力を受けるダイアフラム10で移動するのは一般に
きわめて薄い電極11であり、電極11を移動させるの
に必要な力はきわめて小さくてよい。しかも、その電極
11部分が小形で軽量であるから、その電極11の慣性
により圧力測定に誤差が生じにくい。特に、腸のように
螺動運動をしている部位の圧力を測定しようとした場合
、その移動する部材の質量が測定誤差の原因となるが、
このような場合でも誤差が生じにくい。特に、微小な圧
力を測定する場合にはそのダイアフラム10の膜厚を薄
く柔軟に形成し、感度を高めるがなければならないため
、この場合にも、移動する部材の慣性を小さくできるの
で、その感度を容易に小さくできる。Therefore, in the medical capsule 1 having the above configuration, it is generally the extremely thin electrode 11 that is moved by the diaphragm 10 that receives pressure within the body cavity, and the force required to move the electrode 11 may be extremely small. Moreover, since the electrode 11 portion is small and lightweight, errors in pressure measurement are less likely to occur due to the inertia of the electrode 11. In particular, when trying to measure the pressure of a part that is moving in a spiral motion, such as the intestines, the mass of the moving member causes measurement errors.
Even in such a case, errors are unlikely to occur. In particular, when measuring minute pressures, the diaphragm 10 must be made thin and flexible to increase sensitivity. can be easily made smaller.
なお、初期における共振回路3の校正はダイアフラム1
0に基準の圧力を加え、そのときの共振周波数を:A整
する。この共振周波数の調整はカプセル本体2の鏡板7
に螺合したねじ16を進退させてコイル組立て体14の
内腔部分に対する進入量を選定してそのコイル5のコン
ダクタンスを変えることにより行なう。この調整が完了
すると、ねじ孔16には接着剤等の充填剤18が詰め、
その部分を気密的に密閉して固定する。Note that the initial calibration of the resonant circuit 3 is performed using the diaphragm 1.
Apply a standard pressure to 0 and adjust the resonance frequency at that time to :A. Adjustment of this resonant frequency is performed using the end plate 7 of the capsule body 2.
This is done by moving the screw 16 screwed into the coil assembly 14 back and forth to select the amount of penetration into the inner cavity of the coil assembly 14, thereby changing the conductance of the coil 5. When this adjustment is completed, the screw hole 16 is filled with a filler 18 such as adhesive.
Seal the area airtight and secure it.
第3図は本発明の第2の実施例を示すものである。この
実施例はダイアフラム10の膜に取着する電極11を、
そのダイアフラム10に金属コーティングすることによ
り形成した。その他の構成作用効果は上記第1の実施例
と同様である。FIG. 3 shows a second embodiment of the invention. In this embodiment, the electrode 11 attached to the membrane of the diaphragm 10 is
It was formed by coating the diaphragm 10 with metal. Other structural effects are the same as those of the first embodiment.
しかして、この実施例の構成によれば、ダイアフラム1
0の膜に取着する電極11が金属コーティングであるか
ら、そのダイアフラム10の変形が容易になり、微小な
圧力も正確に検出ができるようになる。According to the configuration of this embodiment, the diaphragm 1
Since the electrode 11 attached to the membrane 0 is coated with metal, the diaphragm 10 can be easily deformed, and even minute pressures can be detected accurately.
第4図は本発明の第3の実施例を示すものである。この
実施例はダイアフラム100体を変形可能な金属薄片で
形成し、このダイアフラム10を電極11としたもので
ある。そして、この電極11としてのダイアフラム10
がこれに受ける圧力で変位し、コンデンサ4の容量を変
化させる。FIG. 4 shows a third embodiment of the invention. In this embodiment, a diaphragm 100 is formed of a deformable metal thin piece, and the diaphragm 10 is used as an electrode 11. A diaphragm 10 as this electrode 11
is displaced by the pressure applied thereto, changing the capacitance of the capacitor 4.
なお、その他の構成作用効果は上記第1の実施例と同様
である。Note that the other structural effects are the same as those of the first embodiment.
しかして、この実施例の構成によれば、ダイアフラム1
0と電極11とを兼用できるから構成の簡略化とともに
そのダイアフラム10および電極11の質量が小さくな
り、検出誤差が小さく、正確に検出することができるよ
うになる。According to the configuration of this embodiment, the diaphragm 1
Since the diaphragm 10 and the electrode 11 can be used together, the configuration is simplified and the mass of the diaphragm 10 and the electrode 11 is reduced, so that detection errors are small and accurate detection is possible.
なお、本願の発明は上記各実施例のものに限定されるも
のではない。たとえばコンデンサ4の各電極11.12
とも体腔内の圧力で変位するように構成してもよい。ま
た、医療用カプセル1内にその共振回路3に電力を供給
する電池を組み込んでもよい。Note that the invention of the present application is not limited to the above embodiments. For example, each electrode 11.12 of the capacitor 4
Both may be configured to be displaced by pressure within the body cavity. Further, a battery that supplies power to the resonance circuit 3 may be incorporated into the medical capsule 1.
[発明の効果]以上説明したように本発明は体腔内に留置してその体腔
内の圧力を測定する医療用カプセルにおいて、カプセル
本体内に共振回路を組み込み、この共振回路のコンデン
サの少なくとも一方の電極を体腔内の圧力で変位する受
圧面部に設け、この受圧面部の変位で上記コンデンサの
容量を変え、そのコンデンサの容量で共振する共振回路
の共振周波数から体腔内の圧力を測定するようにしたも
のである。[Effects of the Invention] As explained above, the present invention provides a medical capsule that is placed in a body cavity to measure the pressure inside the body cavity, in which a resonant circuit is built into the capsule body, and at least one of the capacitors of the resonant circuit is connected to the capsule body. An electrode is installed on a pressure-receiving surface that is displaced by the pressure inside the body cavity, and the capacitance of the capacitor is changed by the displacement of the pressure-receiving surface, and the pressure inside the body cavity is measured from the resonant frequency of a resonant circuit that resonates with the capacitance of the capacitor. It is something.
したがって、体腔内の圧力で変位する受正面部はほとん
ど慣性の影響を受けずに、種々の状況部位にあってもそ
の体腔内の圧力を安定して正確にn1定できる。Therefore, the receiving surface, which is displaced by the pressure within the body cavity, is hardly affected by inertia, and the pressure within the body cavity can be stably and accurately determined n1 even in various situations.
第1図は本発明の第1の実施例を示す側断面図、第2図
はその第1の実施例における電気回路図、第3図は本発
明の第2の実施例を示す側断面図、第4図は本発明の第
3の実施例を示す側断面図である。1・・・医療用カプセル、2・・・カプセル本体、3・
・・共振回路、4・・・コンデンサ、5・・・コイル、
11.12・・・電極。出願人代理人 弁理士 坪井 淳第1図第2図1、事件の表示特願昭63−115332号2、発明の名称医療用カプセル3、補正をする者事件との関係 特許出願人(037)オリンパス光学工業株式会社4、代理人東京都千代田区霞が関3丁目7番2号 UBEビル7、
補正の内容 “(1)明細書第8頁第8行目の「高めるが」を「高め」
に補正する。Fig. 1 is a side sectional view showing a first embodiment of the present invention, Fig. 2 is an electric circuit diagram of the first embodiment, and Fig. 3 is a side sectional view showing a second embodiment of the invention. , FIG. 4 is a side sectional view showing a third embodiment of the present invention. 1...Medical capsule, 2...Capsule body, 3.
...resonant circuit, 4...capacitor, 5...coil,
11.12... Electrode. Applicant's representative Patent attorney Jun Tsuboi Figure 1, Figure 2, Figure 1, Case description Japanese Patent Application No. 63-115332 2, Name of the invention Medical Capsule 3, Person making the amendment Relationship to the case Patent applicant (037) Olympus Optical Industry Co., Ltd. 4, Agent UBE Building 7, 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo;
Contents of the amendment “ (1) Changed “to raise” from line 8 on page 8 of the specification to “high”
Correct to.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11533288AJPH01285247A (en) | 1988-05-12 | 1988-05-12 | Medical capsule |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11533288AJPH01285247A (en) | 1988-05-12 | 1988-05-12 | Medical capsule |
Publication Number | Publication Date |
---|---|
JPH01285247Atrue JPH01285247A (en) | 1989-11-16 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11533288APendingJPH01285247A (en) | 1988-05-12 | 1988-05-12 | Medical capsule |
Country | Link |
---|---|
JP (1) | JPH01285247A (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002330942A (en)* | 2000-12-18 | 2002-11-19 | Biosense Inc | Telemetric reader/charger device for medical sensor |
US6628124B1 (en)* | 1999-03-04 | 2003-09-30 | Riken | Electrocapacitive force measuring apparatus |
KR100457752B1 (en)* | 2002-07-15 | 2004-12-08 | 경북대학교 산학협력단 | Remote Driving System Using Magnetic Field for Wireless Telemetry Capsule in Body |
WO2018018034A1 (en)* | 2016-07-22 | 2018-01-25 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US9883819B2 (en) | 2009-01-06 | 2018-02-06 | Proteus Digital Health, Inc. | Ingestion-related biofeedback and personalized medical therapy method and system |
US9941931B2 (en) | 2009-11-04 | 2018-04-10 | Proteus Digital Health, Inc. | System for supply chain management |
US9962107B2 (en) | 2005-04-28 | 2018-05-08 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US10175376B2 (en) | 2013-03-15 | 2019-01-08 | Proteus Digital Health, Inc. | Metal detector apparatus, system, and method |
US10207093B2 (en) | 2010-04-07 | 2019-02-19 | Proteus Digital Health, Inc. | Miniature ingestible device |
US10223905B2 (en) | 2011-07-21 | 2019-03-05 | Proteus Digital Health, Inc. | Mobile device and system for detection and communication of information received from an ingestible device |
US10238604B2 (en) | 2006-10-25 | 2019-03-26 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US10398161B2 (en) | 2014-01-21 | 2019-09-03 | Proteus Digital Heal Th, Inc. | Masticable ingestible product and communication system therefor |
US10421658B2 (en) | 2013-08-30 | 2019-09-24 | Proteus Digital Health, Inc. | Container with electronically controlled interlock |
US10441194B2 (en) | 2007-02-01 | 2019-10-15 | Proteus Digital Heal Th, Inc. | Ingestible event marker systems |
US10517506B2 (en) | 2007-05-24 | 2019-12-31 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
US10529044B2 (en) | 2010-05-19 | 2020-01-07 | Proteus Digital Health, Inc. | Tracking and delivery confirmation of pharmaceutical products |
US10542909B2 (en) | 2005-04-28 | 2020-01-28 | Proteus Digital Health, Inc. | Communication system with partial power source |
US10588544B2 (en) | 2009-04-28 | 2020-03-17 | Proteus Digital Health, Inc. | Highly reliable ingestible event markers and methods for using the same |
US10682071B2 (en) | 2008-07-08 | 2020-06-16 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US11051543B2 (en) | 2015-07-21 | 2021-07-06 | Otsuka Pharmaceutical Co. Ltd. | Alginate on adhesive bilayer laminate film |
US11149123B2 (en) | 2013-01-29 | 2021-10-19 | Otsuka Pharmaceutical Co., Ltd. | Highly-swellable polymeric films and compositions comprising the same |
US11464423B2 (en) | 2007-02-14 | 2022-10-11 | Otsuka Pharmaceutical Co., Ltd. | In-body power source having high surface area electrode |
US11504511B2 (en) | 2010-11-22 | 2022-11-22 | Otsuka Pharmaceutical Co., Ltd. | Ingestible device with pharmaceutical product |
US11529071B2 (en) | 2016-10-26 | 2022-12-20 | Otsuka Pharmaceutical Co., Ltd. | Methods for manufacturing capsules with ingestible event markers |
US11744481B2 (en) | 2013-03-15 | 2023-09-05 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US11928614B2 (en) | 2006-05-02 | 2024-03-12 | Otsuka Pharmaceutical Co., Ltd. | Patient customized therapeutic regimens |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6628124B1 (en)* | 1999-03-04 | 2003-09-30 | Riken | Electrocapacitive force measuring apparatus |
JP2002330942A (en)* | 2000-12-18 | 2002-11-19 | Biosense Inc | Telemetric reader/charger device for medical sensor |
KR100457752B1 (en)* | 2002-07-15 | 2004-12-08 | 경북대학교 산학협력단 | Remote Driving System Using Magnetic Field for Wireless Telemetry Capsule in Body |
US10542909B2 (en) | 2005-04-28 | 2020-01-28 | Proteus Digital Health, Inc. | Communication system with partial power source |
US10610128B2 (en) | 2005-04-28 | 2020-04-07 | Proteus Digital Health, Inc. | Pharma-informatics system |
US10517507B2 (en) | 2005-04-28 | 2019-12-31 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US9962107B2 (en) | 2005-04-28 | 2018-05-08 | Proteus Digital Health, Inc. | Communication system with enhanced partial power source and method of manufacturing same |
US11476952B2 (en) | 2005-04-28 | 2022-10-18 | Otsuka Pharmaceutical Co., Ltd. | Pharma-informatics system |
US11928614B2 (en) | 2006-05-02 | 2024-03-12 | Otsuka Pharmaceutical Co., Ltd. | Patient customized therapeutic regimens |
US11357730B2 (en) | 2006-10-25 | 2022-06-14 | Otsuka Pharmaceutical Co., Ltd. | Controlled activation ingestible identifier |
US10238604B2 (en) | 2006-10-25 | 2019-03-26 | Proteus Digital Health, Inc. | Controlled activation ingestible identifier |
US10441194B2 (en) | 2007-02-01 | 2019-10-15 | Proteus Digital Heal Th, Inc. | Ingestible event marker systems |
US11464423B2 (en) | 2007-02-14 | 2022-10-11 | Otsuka Pharmaceutical Co., Ltd. | In-body power source having high surface area electrode |
US10517506B2 (en) | 2007-05-24 | 2019-12-31 | Proteus Digital Health, Inc. | Low profile antenna for in body device |
US11217342B2 (en) | 2008-07-08 | 2022-01-04 | Otsuka Pharmaceutical Co., Ltd. | Ingestible event marker data framework |
US10682071B2 (en) | 2008-07-08 | 2020-06-16 | Proteus Digital Health, Inc. | State characterization based on multi-variate data fusion techniques |
US9883819B2 (en) | 2009-01-06 | 2018-02-06 | Proteus Digital Health, Inc. | Ingestion-related biofeedback and personalized medical therapy method and system |
US10588544B2 (en) | 2009-04-28 | 2020-03-17 | Proteus Digital Health, Inc. | Highly reliable ingestible event markers and methods for using the same |
US10305544B2 (en) | 2009-11-04 | 2019-05-28 | Proteus Digital Health, Inc. | System for supply chain management |
US9941931B2 (en) | 2009-11-04 | 2018-04-10 | Proteus Digital Health, Inc. | System for supply chain management |
US11173290B2 (en) | 2010-04-07 | 2021-11-16 | Otsuka Pharmaceutical Co., Ltd. | Miniature ingestible device |
US10207093B2 (en) | 2010-04-07 | 2019-02-19 | Proteus Digital Health, Inc. | Miniature ingestible device |
US10529044B2 (en) | 2010-05-19 | 2020-01-07 | Proteus Digital Health, Inc. | Tracking and delivery confirmation of pharmaceutical products |
US11504511B2 (en) | 2010-11-22 | 2022-11-22 | Otsuka Pharmaceutical Co., Ltd. | Ingestible device with pharmaceutical product |
US11229378B2 (en) | 2011-07-11 | 2022-01-25 | Otsuka Pharmaceutical Co., Ltd. | Communication system with enhanced partial power source and method of manufacturing same |
US10223905B2 (en) | 2011-07-21 | 2019-03-05 | Proteus Digital Health, Inc. | Mobile device and system for detection and communication of information received from an ingestible device |
US11149123B2 (en) | 2013-01-29 | 2021-10-19 | Otsuka Pharmaceutical Co., Ltd. | Highly-swellable polymeric films and compositions comprising the same |
US11744481B2 (en) | 2013-03-15 | 2023-09-05 | Otsuka Pharmaceutical Co., Ltd. | System, apparatus and methods for data collection and assessing outcomes |
US10175376B2 (en) | 2013-03-15 | 2019-01-08 | Proteus Digital Health, Inc. | Metal detector apparatus, system, and method |
US10421658B2 (en) | 2013-08-30 | 2019-09-24 | Proteus Digital Health, Inc. | Container with electronically controlled interlock |
US10084880B2 (en) | 2013-11-04 | 2018-09-25 | Proteus Digital Health, Inc. | Social media networking based on physiologic information |
US10398161B2 (en) | 2014-01-21 | 2019-09-03 | Proteus Digital Heal Th, Inc. | Masticable ingestible product and communication system therefor |
US11950615B2 (en) | 2014-01-21 | 2024-04-09 | Otsuka Pharmaceutical Co., Ltd. | Masticable ingestible product and communication system therefor |
US11051543B2 (en) | 2015-07-21 | 2021-07-06 | Otsuka Pharmaceutical Co. Ltd. | Alginate on adhesive bilayer laminate film |
US10797758B2 (en) | 2016-07-22 | 2020-10-06 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
WO2018018034A1 (en)* | 2016-07-22 | 2018-01-25 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US10187121B2 (en) | 2016-07-22 | 2019-01-22 | Proteus Digital Health, Inc. | Electromagnetic sensing and detection of ingestible event markers |
US11529071B2 (en) | 2016-10-26 | 2022-12-20 | Otsuka Pharmaceutical Co., Ltd. | Methods for manufacturing capsules with ingestible event markers |
US11793419B2 (en) | 2016-10-26 | 2023-10-24 | Otsuka Pharmaceutical Co., Ltd. | Methods for manufacturing capsules with ingestible event markers |
Publication | Publication Date | Title |
---|---|---|
JPH01285247A (en) | Medical capsule | |
US5663505A (en) | Pressure sensor having a piezoelectric vibrator with concencentric circular electrodes | |
US7162926B1 (en) | Lead embedded pressure sensor | |
JP3187059B2 (en) | Mounted accelerometer | |
US3958558A (en) | Implantable pressure transducer | |
US6078677A (en) | Electroacoustic transducer with improved diaphragm attachment | |
US6461301B2 (en) | Resonance based pressure transducer system | |
EP0060252B1 (en) | Non-invasive continuous blood pressure meter | |
JPH0690911A (en) | Expandable finger cuff used for non- invasion monitoring of instantaneous value of blood pressure | |
CN110269595A (en) | A kind of pulse condition pressure sensor based on liquid-packing | |
US3631850A (en) | Pressure transducer apparatus for microhemocirculation studies | |
JPS63134935A (en) | Circular direction vibration type viscosity detecting device | |
JPH10239199A (en) | Device for measuring degree of vacuum | |
JP2577038B2 (en) | Pressure sensor | |
US4624235A (en) | Force-triggered applanation tonometer | |
JP7166120B2 (en) | Pulse wave sensor and pulse wave measuring method | |
JP3142632B2 (en) | barometer | |
JPH10170538A (en) | Acceleration sensor | |
JPH10234679A (en) | Tactile sensor | |
GB1586968A (en) | Pressure transducer | |
JPS593331A (en) | Method for measuring temperature in living body | |
JPH0627130A (en) | Rotary sensor | |
JPS6024428A (en) | pressure sensor | |
JPS6316992Y2 (en) | ||
JPS62147335A (en) | Electric field effect type pressure sensor |