Movatterモバイル変換


[0]ホーム

URL:


JPH01281426A - Liquid crystal light valve and projector having liquid crystal light valve - Google Patents

Liquid crystal light valve and projector having liquid crystal light valve

Info

Publication number
JPH01281426A
JPH01281426AJP63111042AJP11104288AJPH01281426AJP H01281426 AJPH01281426 AJP H01281426AJP 63111042 AJP63111042 AJP 63111042AJP 11104288 AJP11104288 AJP 11104288AJP H01281426 AJPH01281426 AJP H01281426A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal light
light valve
lens
projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63111042A
Other languages
Japanese (ja)
Inventor
Masatake Matsuo
誠剛 松尾
Yoshitaka Ito
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson CorpfiledCriticalSeiko Epson Corp
Priority to JP63111042ApriorityCriticalpatent/JPH01281426A/en
Publication of JPH01281426ApublicationCriticalpatent/JPH01281426A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromJapanese

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕本発明は9、液晶デイスプレィ、プロジェクタ、コピア
、及び光プリンタなどの光学機器に使用される液晶ライ
トバルブ及びそれを備えたプロジェクタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal light valve used in optical equipment such as a liquid crystal display, a projector, a copier, and an optical printer, and a projector equipped with the same.

〔従来の技術〕[Conventional technology]

従来の液晶ライトバルブは液晶ライトバルブの入射光側
の近傍にはレンズアレイは無かった。
Conventional liquid crystal light valves do not have a lens array near the incident light side of the liquid crystal light valve.

(SID  87DIGEST・75p、画@電子学会
予稿87 01 03 13ρ)。
(SID 87DIGEST, 75p, picture @ IEEJ Proceedings 87 01 03 13ρ).

したかって、従来の液晶ライ1−バルブを用いたプロジ
ェクタ−には、レンズアレイの無い液晶ライトバルブが
用いられていた。
Therefore, a conventional projector using a liquid crystal light bulb uses a liquid crystal light valve without a lens array.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前述の従来技術では、液晶ライトバルブの各液
晶の開口部周辺の光は、配線部材や遮光体等により吸収
され、有効に使用されないので、みかけの透過率が小さ
いという課題を有していた。
However, the above-mentioned conventional technology has the problem that the light around the opening of each liquid crystal in the liquid crystal light valve is absorbed by wiring members, light shields, etc. and is not used effectively, resulting in a low apparent transmittance. Ta.

また上記熱吸収により液晶付近の温度上昇が生じ、入射
光量を増やすとライトバルブが正常に動作しなくなると
いう課題を有していた。またそのような液晶ライトバル
ブプを備えたグロジェクターでは4−記理由により、も
ともと液晶ライトバルブ部分の透過率が低いうえに、明
るい光源を使えず、そのため画面が暗いという課題を有
していた。
Further, the temperature in the vicinity of the liquid crystal increases due to the heat absorption, and when the amount of incident light is increased, the light valve does not operate normally. In addition, for the reason stated in 4-4, in a glow projector equipped with such a liquid crystal light valve, the transmittance of the liquid crystal light valve part was originally low, and a bright light source could not be used, resulting in a dark screen. .

そこで本発明は、このような課題を解決するため液晶ラ
イトバルブの各液晶開口部周辺の光を各液晶開口部に導
き、有効に利用することで、みかけの透過率が大きく、
入射光量を増やしても正常に動作する液晶ライトバルブ
を提供することにある。
Therefore, in order to solve such problems, the present invention guides the light around each liquid crystal opening of the liquid crystal light valve to each liquid crystal opening and uses it effectively, thereby increasing the apparent transmittance.
To provide a liquid crystal light valve that operates normally even when the amount of incident light is increased.

また本発明の他の目的は、そのような液晶ライトバルブ
を使うことにより、液晶ライトバルブ部分の透過率が大
きく、しかもより明るい光源を使えるため、明るい画面
をもったプロジェクタ−を提供する点にある。
Another object of the present invention is to provide a projector with a bright screen because the transmittance of the liquid crystal light valve is high and a brighter light source can be used by using such a liquid crystal light valve. be.

〔課Uを解決するための手段〕[Means for solving Section U]

本発明のライ1−バルブは、各液晶開口部に略光軸合わ
せされた複数のレンズを該液晶開口部の前に設置したこ
とを特徴とする。また、かかる液晶ライトバルブを光源
で照らし、その像をレンズ系で投映できるようにすると
、プロジェクタ−が構成される。(第6図)〔作 用〕上記のように構成された液晶ライトバルブでは、各液晶
開口部列周辺の光も、藺々のマイクロレンズによって各
液晶開口部に導かれ、有効に利用できる。従ってみかけ
の透過率が増加するとともに、各液晶開口部周辺での熱
吸収も少ないため液晶付近の温度上昇も小さく、入射光
量を増やしても正常に動作する。
The light bulb of the present invention is characterized in that a plurality of lenses whose optical axes are substantially aligned with each liquid crystal opening are installed in front of the liquid crystal opening. Furthermore, a projector is constructed by illuminating such a liquid crystal light valve with a light source and projecting the image using a lens system. (FIG. 6) [Function] In the liquid crystal light valve configured as described above, light around each liquid crystal aperture row is also guided to each liquid crystal aperture by the individual microlenses and can be used effectively. Therefore, the apparent transmittance increases, and since there is little heat absorption around each liquid crystal opening, the temperature rise near the liquid crystal is also small, and normal operation is possible even when the amount of incident light is increased.

また、そのような液晶ライトバルブを使うことにより、
液晶ライトバルブ部分の透過率が大きく、しかもより明
るい光源を使えるため、明るい画面をもったグロジェク
ターが実現できる。
Also, by using such a liquid crystal light valve,
The LCD light valve has a high transmittance and can use a brighter light source, making it possible to create a glow projector with a bright screen.

〔実 施 例〕〔Example〕

以下、実施例にもとづき本発明の詳細な説明する。ただ
し、本発明は以下の実施例に限定さるものではない。
Hereinafter, the present invention will be described in detail based on Examples. However, the present invention is not limited to the following examples.

〔実 施 例1〕表面を光学研磨したガラス基板(’40awmX30r
m X 1 m >の表面に、イオン交換法を用いて、
短径72μm、長径80μmの長円状の分布屈折率平板
マイクロレンズを、TPTの画素配列に合わせてトライ
アングル状に形成した。(第1図)このマイクロレンズ
アレイを、TPTを用いた従来の液晶ライトバルブに、
おのおののレンズが各液晶開口部に対応するように位置
合わせをしながら接着した。そうして得られた液晶ライ
トバルブに平行光を入射したところ、従来のレンズを用
いない液晶ライトバルブに比べて、みかけの透過率が9
0%以上アップした。(従来の透過率40%が77%)
また、従来のレンズを使わない液晶ライトバルブに比べ
て、液晶ライトバルブが正常に動作する最大入射光量が
平均で3倍以上になった。
[Example 1] A glass substrate with an optically polished surface ('40awm x 30r
m X 1 m > using an ion exchange method,
An elongated distributed index flat plate microlens with a minor axis of 72 μm and a major axis of 80 μm was formed in a triangular shape in accordance with the pixel arrangement of the TPT. (Figure 1) This microlens array can be used in a conventional liquid crystal light valve using TPT.
Each lens was glued while being aligned so that it corresponded to each liquid crystal aperture. When parallel light was incident on the liquid crystal light valve obtained in this way, the apparent transmittance was 99% compared to a conventional liquid crystal light valve that does not use a lens.
It increased by more than 0%. (Conventional transmittance of 40% is now 77%)
Additionally, compared to conventional liquid crystal light valves that do not use lenses, the maximum amount of incident light required for normal operation of the liquid crystal light valve is more than three times as large on average.

〔実 施 例2〕表面を光学所書したガラス基板<40mX30噛X 1
 m )の表面に、イオン交換法を用いて、短径72μ
m、長径80μmの長円状の分布屈折率平板マイクロレ
ンズを、TPTの画素配列に合わせてハチの巣状に形成
した。(第2図)このマイクロレンズアレイを、TPT
を用いた従来の液晶ライトバルブに、おのおののレンズ
が各液晶開口部に対応するように位置合わせをしながら
接着した。そうして得られた液晶ライトバルブに平行光
を入射したところ、従来のレンズを用いない液晶ライト
バルブに比べて、みかけの透過率が90%以上アップし
た。(従来の透過率40%が77%)また、従来のレン
ズを使わない液晶ライトバルブに比べて、液晶ライトバ
ルブが正常に動作する最大入射光lが平均で3倍以Eに
なった。
[Example 2] Glass substrate with optical markings on the surface <40m x 30mm x 1
m) using the ion exchange method, a short diameter of 72μ
An oblong distributed index flat plate microlens with a length of 80 μm and a major diameter of 80 μm was formed into a honeycomb shape in accordance with the pixel arrangement of the TPT. (Fig. 2) This microlens array is
We glued each lens to a conventional liquid crystal light valve using a 300-degree lens, aligning each lens to correspond to each liquid crystal aperture. When parallel light was incident on the liquid crystal light valve thus obtained, the apparent transmittance increased by more than 90% compared to a conventional liquid crystal light valve that does not use lenses. (Conventional transmittance of 40% is 77%) Furthermore, compared to conventional liquid crystal light valves that do not use lenses, the maximum incident light L for which liquid crystal light valves operate normally has become more than three times E on average.

〔実 施 例3〕表面を光学研増したガラス基板(40mX3Qrm X
 1 cm >の表面に、熱変形樹脂を材料として、圧
着押圧形成法を用いて、短径72μm、長径80μmの
長円状の凹凸状のマイクロレンズを、TPTの画素配列
に合わせてトライアングル状に形成した。(第1U21
)このマイクロレンズアレイを、TPTを用いた従来の
液晶ライトバルブに、おのおののレンズが各液晶開口部
に対応するように位置合わせをしながら接着した。そう
して得られた液晶ライトバルブに平行光を入射したとこ
ろ、従来のレンズを用いない液晶ライトバルブに比べて
、みかけの透過率が90?≦以上アップした。(従来の
透過率40%が77%)また、従来のl/ンズを使わな
い液晶ライトバルブに比べて、液晶ライトバルブが正常
に動作する最大入射光量が平均で3倍以上になった。
[Example 3] Glass substrate with optically polished surface (40m x 3Qrm
On a surface of >1 cm, an elongated concave-convex microlens with a minor axis of 72 μm and a major axis of 80 μm is formed into a triangular shape according to the pixel arrangement of the TPT using a pressure bonding method using heat deformable resin as the material. Formed. (1st U21
) This microlens array was bonded to a conventional liquid crystal light valve using TPT while being aligned so that each lens corresponded to each liquid crystal opening. When parallel light was incident on the liquid crystal light valve obtained in this way, the apparent transmittance was 90? compared to a conventional liquid crystal light valve that does not use a lens. ≦Uploaded more than ≦. (77% compared to the conventional transmittance of 40%) Furthermore, compared to conventional liquid crystal light valves that do not use l/lens, the maximum amount of incident light required for normal operation of the liquid crystal light valve has become more than three times as large on average.

本実施例で作製した樹脂製の凹凸状のマ・fりロレンズ
は製法が極めて簡便であるため、・上記効果を低コスト
で実現できる。
Since the resin-made convex-convex MAFF lens manufactured in this example is extremely simple to manufacture, the above-mentioned effects can be achieved at low cost.

またレンズの成型法としては圧着押圧成型法に限定され
るものではなく、例えば特開昭60−60756に示さ
れたような熱変形による成型法でもよいし、その他の方
法でもよい。
Furthermore, the lens molding method is not limited to the pressure bonding molding method, but may also be a molding method using thermal deformation as disclosed in JP-A No. 60-60756, or other methods.

〔実 施 rlq4)表面を光学研磨した感光性ガラス基板(40mX30+
++mX10em>に選択的に光を照射し、短径65μ
m、長径72μmの凹凸状のマイクロレンズを、TPT
の画素配列に合わせてトライアングル状に形成した。(
第3図)このマイクロレンズアレイを、TPTを用いた
従来の液晶ライトバルブに、おのおののレンズか各液晶
開口部に対応するように位置合わせをしながら接着しな
。そうL7て得られた液晶ライトバルブに平行光を入射
したところ、従来のレンズを用いない液晶ライトバルブ
に比べて、みかけの透過率が50%以上アップした。(
従来の透過率40%が63%)また、従来のレンズを使
わない液晶ライトバルブに比べて、液晶ライトバルブが
正常に動作する姓大入射光澁が平均で2倍以上になった
[Implementation rlq4] Photosensitive glass substrate with optically polished surface (40m x 30+
++mX10em> selectively irradiated with light, short diameter 65μ
m, a concave-convex microlens with a major axis of 72 μm, was made using TPT.
It was formed into a triangle shape to match the pixel arrangement. (
(Figure 3) This microlens array is glued onto a conventional liquid crystal light valve using TPT, aligning each lens to correspond to each liquid crystal aperture. When parallel light was incident on the liquid crystal light valve obtained by L7, the apparent transmittance increased by more than 50% compared to a conventional liquid crystal light valve that did not use a lens. (
In addition, compared to conventional liquid crystal light valves that do not use lenses, the amount of incident light required for normal operation of liquid crystal light valves has been more than doubled on average.

本実施例で用いた、感光性ガラスから製造したマイクロ
レンズでも、製法が極めて簡便であるため、上記効果を
低コストで実現できた。
Even with the microlens manufactured from photosensitive glass used in this example, since the manufacturing method is extremely simple, the above effects could be achieved at low cost.

〔実 施 例5〕表面を光学研磨したガラス基板(40wx3Q■X 1
1111 >の表面に、熱変形樹脂を材料として、圧着
押圧成型法を用いて、たて72μm、よこ80μmの凹
凸状のマイクロレンズをTPTの画素配列に合わせてト
ライアングル状に形成した。この表面形状は、曲面レン
ズを光軸方向からみて長方形にみえるように切った形状
である。(第4図)このマイクロレンズアレイを、TP
Tを用いた従来の液晶ライトバルブに、おのおののレン
ズが各液晶開口部に対応するように位置合わせをしなが
ら接着した。そうして得られた液晶ライトバルブに平行
光を入射したところ、従来のレンズを用いない液晶ライ
トバルブに比べて、みかけの透過率が120%以上アッ
プした。(従来の透過率40?≦が90%)また、従来
のレンズを使わない液晶ライトバルブに比べて、液晶ラ
イトバルブが正常に動作する最大入射光量が平均で10
倍以上になった。
[Example 5] Glass substrate with optically polished surface (40w x 3Q x 1
1111>, a triangular microlens with a concavo-convex shape of 72 μm in length and 80 μm in width was formed using heat deformable resin as a material using a compression molding method in accordance with the pixel arrangement of the TPT. This surface shape is a shape obtained by cutting a curved lens so that it appears rectangular when viewed from the optical axis direction. (Figure 4) This microlens array is
Each lens was adhered to a conventional liquid crystal light valve using a T-type lens while being aligned so that it corresponded to each liquid crystal aperture. When parallel light was incident on the liquid crystal light valve thus obtained, the apparent transmittance increased by more than 120% compared to a conventional liquid crystal light valve that does not use a lens. (Conventional transmittance is 40?≦90%) Also, compared to conventional liquid crystal light valves that do not use lenses, the maximum amount of incident light for liquid crystal light valves to operate normally is 10% on average.
It has more than doubled.

本実施例で得られた液晶ライトバルブは、レンズの大き
さが、実施例1〜4に比べてさらに大きく、それらの液
晶ライトバルブに比べてより入射光を有効に利用するこ
とができる。
The liquid crystal light valve obtained in this example has a larger lens size than those in Examples 1 to 4, and can utilize incident light more effectively than those liquid crystal light valves.

〔実 施 四6〕表面を光学研磨したガラス基板(40mX30wr X
 1 am )の表面に、イオン交換法を用いて、短径
65μm、長径80μmの長円状の分布屈折率平板マイ
クロレンズを、MIMの画素配列に合わせてトライアン
グル状に形成した。(第1図)このマイクロレンズアレ
イを、MIMを用いた従来の液晶ライトバルブに、おの
おののレンズが各液晶開口部に対応するように位置合わ
せをしながら接着した。そうして得られた液晶ライトバ
ルブに平行光を入射したところ、従来のレンズを用いな
い液晶ライトバルブに比べて、みかけの透過率が50%
以上アップした。(従来の透過率50%が77%)また
、従来のレンズを使わない液晶ライトバルブに比べて、
液晶ライトバルブが正常に動作する最大入射光量が平均
で2倍以上になった。
[Implementation 46] Glass substrate with optically polished surface (40m x 30wr
1 am), an elliptical distributed index flat microlens with a minor axis of 65 μm and a major axis of 80 μm was formed in a triangular shape according to the pixel arrangement of the MIM using an ion exchange method. (FIG. 1) This microlens array was bonded to a conventional liquid crystal light valve using MIM while being aligned so that each lens corresponded to each liquid crystal opening. When parallel light was incident on the liquid crystal light valve obtained in this way, the apparent transmittance was 50% compared to a conventional liquid crystal light valve that does not use a lens.
I have uploaded the above. (Transmittance of 77% compared to 50% of conventional) Also, compared to conventional liquid crystal light valves that do not use lenses,
The maximum amount of incident light for a liquid crystal light valve to operate normally has more than doubled on average.

本発明のようにMIM駆動方式の液晶ライトバルブでも
本発明の効果は大きかった。
The effect of the present invention was great even in the case of a liquid crystal light valve using an MIM driving method as in the present invention.

〔実 施 例7〕表面を光学研磨したガラス基板(40IIIIX30甫
゛\1 am )のに面に、イオン交換法を用いて、冑
径65μm、長径80μmの長円状の分布屈折率平板マ
イクロレンズを、単純マトリクス液晶ライトバルブの画
素配列に合わせて格子状に形成しな。
[Example 7] An elliptical distributed index flat microlens with a diameter of 65 μm and a major axis of 80 μm was fabricated on the surface of a glass substrate (40III are formed in a grid pattern to match the pixel arrangement of a simple matrix liquid crystal light valve.

(第1図)このマイクロレンズアレイを、単純マトリク
ス方式の従来の液晶ライトバルブに、おの」5ののレン
ズが各液晶開口部に対応するように位置合わせをしなが
ら接着した。そうして得られた液晶ライトバルブに平行
光を入射したところ、従来のレンズを甲いない液晶ライ
トバルブに比べ、みかけの透過率が15%以上アップし
た。(従来の透過率60%が70%)本発明のように単純マトリクス方式の液晶ライトバルブ
でも本発明の効果は有った。
(FIG. 1) This microlens array was bonded to a conventional simple matrix type liquid crystal light valve while being aligned so that each of the five lenses corresponded to each liquid crystal aperture. When collimated light was incident on the resulting liquid crystal light valve, the apparent transmittance increased by more than 15% compared to a liquid crystal light valve that did not use conventional lenses. (Conventional transmittance of 60% is 70%) Even a simple matrix type liquid crystal light valve like the present invention had the effect of the present invention.

〔実 施 例8〕実施例1〜7で得られた液晶ライトバルブを用いて、第
・1図に示した構成でビデオプロジェクタ−(画素数4
40x480)を作製した0本実施例のビデオプロジェ
クタ−は液晶ライトバルブに入射する光の平行度が高い
ため、前記の効果がストレートに出て、当初の期待通り
明るい画面を得ることができた。下表に、得られた画面
の明るさを、全光束の光量で示しな、(用いた光源は同
一のもの)本従来の液晶ライトバルブはTFT方式のものを記載し
た。
[Example 8] Using the liquid crystal light valves obtained in Examples 1 to 7, a video projector (number of pixels: 4) was constructed with the configuration shown in Figure 1.
40x480), the light incident on the liquid crystal light valve had a high degree of parallelism, so the above effect was directly produced and a bright screen could be obtained as originally expected. In the table below, the brightness of the obtained screen is shown in terms of the amount of total luminous flux (the light sources used are the same).The conventional liquid crystal light valve is of the TFT type.

しかも。本実施例のビデオプロジェクタ−は、より明る
い光源を使えるため、更に明るい画面らも可能である。
Moreover. Since the video projector of this embodiment can use a brighter light source, an even brighter screen is possible.

また、実施例においては、プロジェクタ−のうちで、ビ
デオプロジェクタ−の例しか示さなかったが、他の種類
のプロジェクタ−(例えば、スチルカメラで得られた1
ilj像を投映するためのプロジェクタ−、スキャナー
で得られた画像やコンピュータの画面上で合成された画
像を投映するためのプロジェクタ−1電子黒板として使
われるプロジェクタ−2その他)でも、液晶ライトバル
ブを用いたプロジェクタ−なら同様の効果があることは
明らかである。
In addition, although only a video projector is shown as an example of projectors in the embodiment, other types of projectors (for example, one obtained with a still camera) are shown.
A projector for projecting ilj images, a projector for projecting an image obtained by a scanner or an image synthesized on a computer screen - 1 A projector used as an electronic blackboard - 2 Others) also uses liquid crystal light valves. It is clear that the projector used has similar effects.

〔発明の効果〕〔Effect of the invention〕

本発明の液晶ライトバルブは、各液晶開口部に略光軸合
わせさらに複数のレンズを該液晶開口部の前に設置した
という簡単な構成によって、みかけの透過率が増加する
とともに、入射光量を増や[7ても正常に動作するとい
う効果を有する。
The liquid crystal light valve of the present invention has a simple configuration in which the optical axis is approximately aligned with each liquid crystal opening, and a plurality of lenses are installed in front of the liquid crystal opening, thereby increasing the apparent transmittance and increasing the amount of incident light. or [7] also has the effect of operating normally.

また、かかる液晶ライトバルブを使うことにより、明る
い画面をもったプロジェクタ−を実現できるという効果
がある。
Furthermore, by using such a liquid crystal light valve, it is possible to realize a projector with a bright screen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の液晶ライトバルブのレンズ部分の表
面図。第2図は、本発明の液晶ライトバルブのレンズ部分の表
面図。第3図は、本発明の液晶ライトバルブのレンズ部分の表
面図。第4図は、本発明の液晶ライトバルブのレンズ部分の表
面図。第5図は、本発明の液晶ライトバルブのレンズ部分の表
面図。第6図は、本発明のグロジェクターの構成図。1・・・マイクロレンズ部分(実施例1.362・・・
マイクロレンズ部分(実施例2)3・・・マイクロレン
ズ部分(実施例4)4・・・マイクロレンズ部分(実施
例5)5・・・マイクロレンズ部分(実施PA7)6・
・・ランプ7・・・リフレクタ8・・・干渉フィルター0・・・ダイクロイ・ツクミラー10・・・ライ1〜ガイド11・・・ミラー12・ ・ ・本発明の液晶ライトノ<ルブ13・・・
ダイクロイックプリズム14・・・グロジエクションレンズ15・・・スクリーン以  上出願人 セイコーエプソン株式会社代理人 弁理士 上 柳 雅 誉(他1名)第2図、−/′第6図
FIG. 1 is a surface view of the lens portion of the liquid crystal light valve of the present invention. FIG. 2 is a surface view of the lens portion of the liquid crystal light valve of the present invention. FIG. 3 is a surface view of the lens portion of the liquid crystal light valve of the present invention. FIG. 4 is a surface view of the lens portion of the liquid crystal light valve of the present invention. FIG. 5 is a surface view of the lens portion of the liquid crystal light valve of the present invention. FIG. 6 is a configuration diagram of the glow projector of the present invention. 1... Microlens part (Example 1.362...
Microlens part (Example 2) 3... Microlens part (Example 4) 4... Microlens part (Example 5) 5... Microlens part (Example PA7) 6.
... Lamp 7 ... Reflector 8 ... Interference filter 0 ... Dichroic mirror 10 ... Light 1 to guide 11 ... Mirror 12 ... Liquid crystal light nozzle of the present invention 13 ...
Dichroic prism 14...Glogeection lens 15...Screen or above Applicant: Seiko Epson Co., Ltd. Agent Patent attorney: Masahiro Kamiyanagi (and 1 other person) Figure 2, -/' Figure 6

Claims (5)

Translated fromJapanese
【特許請求の範囲】[Claims](1)各液晶開口部に、略光軸合わせされた複数のレン
ズを該液晶開口部の入射光側の近傍に設置したことを特
徴とする液晶ライトバルブ。
(1) A liquid crystal light valve characterized in that a plurality of lenses whose optical axes are substantially aligned are installed in each liquid crystal opening near the incident light side of the liquid crystal opening.
(2)レンズを凹凸状のマイクロレンズとすることを特
徴とする請求項1記載の液晶ライトバルブ。
(2) The liquid crystal light valve according to claim 1, wherein the lens is a microlens having an uneven shape.
(3)レンズを分布屈折率平板マイクロレンズとするこ
とを特徴とする請求項1記載の液晶ライトバルブ。
(3) The liquid crystal light valve according to claim 1, wherein the lens is a distributed index flat plate microlens.
(4)液晶を封止している透明基板にレンズが集積され
ていることを特徴とする請求項2、又は請求項3記載の
液晶ライトバルブ。
(4) The liquid crystal light valve according to claim 2 or 3, wherein a lens is integrated on a transparent substrate sealing the liquid crystal.
(5)請求項1記載の液晶ライトバルブを用いることを
特徴とする液晶ライトバルブを備えたプロジェクター。
(5) A projector equipped with a liquid crystal light valve, characterized in that the liquid crystal light valve according to claim 1 is used.
JP63111042A1988-05-071988-05-07Liquid crystal light valve and projector having liquid crystal light valvePendingJPH01281426A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP63111042AJPH01281426A (en)1988-05-071988-05-07Liquid crystal light valve and projector having liquid crystal light valve

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP63111042AJPH01281426A (en)1988-05-071988-05-07Liquid crystal light valve and projector having liquid crystal light valve

Publications (1)

Publication NumberPublication Date
JPH01281426Atrue JPH01281426A (en)1989-11-13

Family

ID=14550938

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP63111042APendingJPH01281426A (en)1988-05-071988-05-07Liquid crystal light valve and projector having liquid crystal light valve

Country Status (1)

CountryLink
JP (1)JPH01281426A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0431886A3 (en)*1989-12-051991-10-16Matsushita Electric Industrial Co., Ltd.Liquid crystal projection color display apparatus
JPH0545642A (en)*1991-06-031993-02-26Nippon Sheet Glass Co Ltd Image display device
EP0598608A1 (en)*1992-11-171994-05-25Sharp Kabushiki KaishaDirect-view display apparatus
US5666175A (en)*1990-12-311997-09-09Kopin CorporationOptical systems for displays
US5793600A (en)*1994-05-161998-08-11Texas Instruments IncorporatedMethod for forming high dielectric capacitor electrode structure and semiconductor memory devices
US5889567A (en)*1994-10-271999-03-30Massachusetts Institute Of TechnologyIllumination system for color displays
WO1999024852A1 (en)*1997-10-161999-05-20Matsushita Electric Industrial Co., Ltd.Hologram element polarization separating device, polarization illuminating device, and image display
US6310723B1 (en)*1994-12-282001-10-30Seiko Epson CorporationPolarization luminaire and projection display
US6392806B2 (en)*1994-10-272002-05-21Kopin CorporationEfficient illumination system for color projection displays
US6417967B1 (en)*1994-10-272002-07-09Massachusetts Institute Of TechnologySystem and method for efficient illumination in color projection displays

Cited By (17)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0431886A3 (en)*1989-12-051991-10-16Matsushita Electric Industrial Co., Ltd.Liquid crystal projection color display apparatus
US5144462A (en)*1989-12-051992-09-01Matsushita Electric Industrial Co., Ltd.Liquid crystal projection color display apparatus having microlens arrays with controllable refractive power
US5666175A (en)*1990-12-311997-09-09Kopin CorporationOptical systems for displays
JPH0545642A (en)*1991-06-031993-02-26Nippon Sheet Glass Co Ltd Image display device
EP0598608A1 (en)*1992-11-171994-05-25Sharp Kabushiki KaishaDirect-view display apparatus
US5561538A (en)*1992-11-171996-10-01Sharp Kabushiki KaishaDirect-view display apparatus
US5793600A (en)*1994-05-161998-08-11Texas Instruments IncorporatedMethod for forming high dielectric capacitor electrode structure and semiconductor memory devices
US6417967B1 (en)*1994-10-272002-07-09Massachusetts Institute Of TechnologySystem and method for efficient illumination in color projection displays
US6243149B1 (en)1994-10-272001-06-05Massachusetts Institute Of TechnologyMethod of imaging using a liquid crystal display device
US6392806B2 (en)*1994-10-272002-05-21Kopin CorporationEfficient illumination system for color projection displays
US5889567A (en)*1994-10-271999-03-30Massachusetts Institute Of TechnologyIllumination system for color displays
US6449023B2 (en)1994-10-272002-09-10Massachusetts Institute Of TechnologyActive matrix liquid crystal display device
US6560018B1 (en)1994-10-272003-05-06Massachusetts Institute Of TechnologyIllumination system for transmissive light valve displays
US6791756B2 (en)1994-10-272004-09-14Massachusetts Institute Of TechnologySystem and method for efficient illumination in color projection displays
US6310723B1 (en)*1994-12-282001-10-30Seiko Epson CorporationPolarization luminaire and projection display
US7119957B2 (en)1994-12-282006-10-10Seiko Epson CorporationPolarization luminaire and projection display
WO1999024852A1 (en)*1997-10-161999-05-20Matsushita Electric Industrial Co., Ltd.Hologram element polarization separating device, polarization illuminating device, and image display

Similar Documents

PublicationPublication DateTitle
US5353133A (en)A display having a standard or reversed schieren microprojector at each picture element
US5615024A (en)Color display device with chirped diffraction gratings
US5151801A (en)Liquid crystal display apparatus providing improved illumination via trucated prisms
EP0598608A1 (en)Direct-view display apparatus
US6680762B2 (en)Projection liquid crystal display apparatus wherein overall focal point of the lens is shifted to increase effective aperture ratio
JPH0351882A (en)Projection-type image display device
US5742438A (en)Projection illumination system
JPH086023A (en) Liquid crystal display device and liquid crystal projection device
US5315330A (en)Projection type display apparatus
JPH01189685A (en)Liquid crystal light valve and video projector with liquid crystal light valve
US4983016A (en)Transmission projection screen and method of manufacturing the same
JPH03248141A (en) Projection type image display device
JPH01281426A (en)Liquid crystal light valve and projector having liquid crystal light valve
CN1057161C (en)Projection optical system for a liquid crystal projector
CN1210603C (en)Reflection-type LCD
KR100501789B1 (en)Compact lighting device
JPS6111788A (en)Image display
JPH09258207A (en) Color liquid crystal display
JP3032084B2 (en) Liquid crystal display device
JPH0255384A (en) Projection display device
US20070182890A1 (en)Liquid crystal device and projector
KR940000591B1 (en)Color image display device of projection type
JPH01281427A (en) LCD light valve and projector equipped with a liquid crystal light valve
JP3189772B2 (en) Reflective projection type image display
JPH03259131A (en) LCD projection device

[8]ページ先頭

©2009-2025 Movatter.jp