Movatterモバイル変換


[0]ホーム

URL:


JPH01250264A - biomaterial - Google Patents

biomaterial

Info

Publication number
JPH01250264A
JPH01250264AJP63328758AJP32875888AJPH01250264AJP H01250264 AJPH01250264 AJP H01250264AJP 63328758 AJP63328758 AJP 63328758AJP 32875888 AJP32875888 AJP 32875888AJP H01250264 AJPH01250264 AJP H01250264A
Authority
JP
Japan
Prior art keywords
acid
tricalcium phosphate
living body
protein
biomaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63328758A
Other languages
Japanese (ja)
Inventor
Hideyuki Oishi
大石 秀之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion CorpfiledCriticalLion Corp
Priority to JP63328758ApriorityCriticalpatent/JPH01250264A/en
Publication of JPH01250264ApublicationCriticalpatent/JPH01250264A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

PURPOSE:To obtain a simply usable curable living body material having the high compatibility with the tissue of a living body, generating no inflammation, rapidly bonding the tissue of a living body to the surface of an implant and rapidly generating curing, by using no only protein having physiological activity but also a low MW acid to cure tricalcium phosphate. CONSTITUTION:Protain having physiological activity is one having properties such as cell adhesiveness, propagation properties, bone inducing properties, blood coagulating properties or the like and, concretely fibronectin glycoprotein, lipoprotein, a substance occurring from a tooth germ or the like are appropriately used. As a low MW acid used for curing tricalcium phosphate, citric acid or malic acid is pref. used and the amount of tricalcium phosphate in a living body material is set to 40-82.5wt.%, pref., 70-80wt.% and protein having physiological activity may be contained in an amount of 0.7-16%, pref., 1-8%.

Description

Translated fromJapanese

【発明の詳細な説明】〔産業上の利用分野〕本発明はタンパク質を含有したリン酸三カルシウム硬化
性組成物であって、生体親和性が高く、インブラント材
料などとして幅広く使用できる生体材料に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a tricalcium phosphate curable composition containing protein, which is a biological material that has high biocompatibility and can be widely used as an implant material. It is something.

〔従来の技術〕[Conventional technology]

これまでに、人工骨、人工歯等種々の生体材料が開発さ
れている。例えば、特開昭59−88351号及び同5
9−182263号にはリン酸三カルシウムと水との混
和物に酸を添加して生体温度で硬化させた硬化物を骨形
成材料等として使用することが開示されている。しかし
ながら、これらの材料は生体との親和性が不十分である
。これに対して、特開昭61−246107号には、リ
ン酸系カルシウム塩に酸可溶性コラーゲンやアテロコラ
ーゲンなどのコラーゲンとグルタルアルデヒド等のタン
パク固定剤とを加えて凝固させた、生体親和性の高い人
体硬組織修復材料が開示され、特開昭61−45768
号にもリン酸三カルシウムにこう原質及びグルタルアル
デヒド等の架橋剤を添加した骨代替物質が記載されてい
る。しかしながら、グルタルアルデヒド等を用いると、
タンパク質が変性し、炎症等の為害作用を生じ生体材料
として好ましくない。また、特開昭60−225568
には、リン酸三カルシウムに水とカルボキシル基含有高
分子とを添加した組成物が記載され、カルボキシル基含
有高分子の例の1つにアテロコラーゲン水溶液があげら
れているが、高分子酸を用いて硬化させると、体積減少
や強度低下が生じアテロコラーゲン水溶液では細胞付着
等の生理活性が期待できないといった問題がある。さら
に、特開昭62−268563号には、リン酸カルシウ
ム無機質成分に繊維状アテロペプチドコラーゲン及び骨
髄の懸濁液とを加えた組成物が開示されているが、自己
硬化しないという問題がある。
Various biomaterials such as artificial bones and artificial teeth have been developed so far. For example, JP-A-59-88351 and JP-A-59-88351
No. 9-182263 discloses the use of a cured product obtained by adding an acid to a mixture of tricalcium phosphate and water and curing it at biological temperature as an osteogenic material. However, these materials have insufficient affinity with living organisms. On the other hand, Japanese Patent Application Laid-Open No. 61-246107 discloses a highly biocompatible material that is made by adding collagen such as acid-soluble collagen or atelocollagen and a protein fixative such as glutaraldehyde to a phosphate-based calcium salt and coagulating it. Human body hard tissue repair material is disclosed, Japanese Patent Publication No. 61-45768
This issue also describes a bone substitute material that is made by adding a crosslinking agent such as choroid and glutaraldehyde to tricalcium phosphate. However, when using glutaraldehyde etc.
The protein is denatured, causing harmful effects such as inflammation, making it undesirable as a biomaterial. Also, JP-A-60-225568
describes a composition in which water and a carboxyl group-containing polymer are added to tricalcium phosphate, and an aqueous solution of atelocollagen is cited as an example of a carboxyl group-containing polymer; If the atelocollagen aqueous solution is hardened, the problem is that the volume and strength decrease, and physiological activities such as cell adhesion cannot be expected with an aqueous atelocollagen solution. Further, JP-A-62-268563 discloses a composition in which a suspension of fibrous atelopeptide collagen and bone marrow is added to a calcium phosphate mineral component, but this composition has the problem of not self-hardening.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、本発明は生体Mi織との親和性が高く、インブ
ラント後炎症等を起すことがなく、インブラント表面へ
の生体Mi織の付着が早く、かつ硬化が迅速に起り、簡
易に使用できる硬化性生体材料を提供することを目的と
する。
Therefore, the present invention has a high affinity with biological Mi fabrics, does not cause post-implant inflammation, has rapid adhesion of biological Mi fabrics to the implant surface, and quickly hardens, making it easy to use. The purpose is to provide a curable biomaterial.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、タンパク質として生理活性を有するタンパク
質を使用するとともに、低分子量酸を用いてリン酸三カ
ルシウムを硬化させると上記問題点を効率よく解決でき
るとの知見に基づいてなされたのである。
The present invention was made based on the knowledge that the above problems can be efficiently solved by using a physiologically active protein as the protein and curing tricalcium phosphate using a low molecular weight acid.

すなわち、本発明は、リン酸三カルシウム、生理活性を
有するタンパク質、低分子量酸及び水を含有する硬化性
生体材料を提供する。
That is, the present invention provides a curable biomaterial containing tricalcium phosphate, a physiologically active protein, a low molecular weight acid, and water.

本発明で用いる生理活性を有するタンパク質とは、細胞
付着性、増殖性、骨誘導性、血液凝固性等の性質を有す
るタンパク質をいい、具体的にはフィブロネクチン、上
皮細胞成長因子、補体、ガンマグロブリン、線維状コラ
ーゲン、フィブリン、ケラチン、エラスチン、プロテオ
グリカン、ラミニン、糖タンパク質、リポタンパク質、
歯牙由来物質等が適宜用いられる。その他血清成分、ヒ
ト硬組織脱灰粉末等タンパク質を含む混合物を用いるこ
とかできる。ここで、歯牙由来物質としては、セメント
質、或いは象牙質に由来する物質があげられる。セメン
ト質、象牙質は共に有機物から成るマトリクスと、ハイ
ドロキシアパタイトを主成分とするリン酸カルシウム塩
から構成されている。
The physiologically active proteins used in the present invention refer to proteins having properties such as cell adhesion, proliferation, osteoinductivity, and blood coagulation, and specifically include fibronectin, epidermal growth factor, complement, and gamma Globulin, fibrous collagen, fibrin, keratin, elastin, proteoglycan, laminin, glycoprotein, lipoprotein,
A tooth-derived substance or the like is used as appropriate. Other mixtures containing proteins such as serum components and human hard tissue demineralized powder can also be used. Here, examples of tooth-derived substances include cementum or dentin-derived substances. Both cementum and dentin are composed of an organic matrix and a calcium phosphate salt whose main component is hydroxyapatite.

尚、トロポコラーゲン水?容液やアテロコラーゲン水溶
液は生理活性を有しないので本発明で用いる生理活性を
有するタンパク質の範囲外である。
Also, tropocollagen water? Since the solution and the atelocollagen aqueous solution do not have physiological activity, they are outside the scope of the physiologically active protein used in the present invention.

上記タンパク質は任意の形状のものを使用できるが、線
維状のものが好ましく、また水不溶性のものが好ましい
。好ましいタンパク質としては、コラーゲン線維、フィ
ブリン線維などがあげられる。又、歯牙由来物質も好ま
しく、平均粒径50〜750μ、好ましくは100〜4
00μのものを用いるのがよい。
The above-mentioned protein can be used in any shape, but a fibrous protein is preferable, and a water-insoluble protein is preferable. Preferred proteins include collagen fibers and fibrin fibers. In addition, tooth-derived substances are also preferred, with an average particle size of 50 to 750μ, preferably 100 to 4
It is preferable to use one with a diameter of 00μ.

本発明でリン酸三カルシウムを硬化させるために用いる
低分子量酸としては、分子量1000以下、好ましくは
500以下の無機酸及び/又は有機酸があげられる。具
体的には、塩酸、硝酸、硫酸、リン酸、ホウ酸等の無機
酸、酢酸、リンゴ酸、ギ酸、クエン酸、シュウ酸、乳酸
、酪酸等の有機酸があげられる。このうち、クエン酸、
リンゴ酸を用いるのが好ましい。本発明で、低分子量酸
は、組成物のpHが5〜9となる程度の量で用いる。
Examples of the low molecular weight acid used for curing tricalcium phosphate in the present invention include inorganic and/or organic acids having a molecular weight of 1000 or less, preferably 500 or less. Specific examples include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and boric acid, and organic acids such as acetic acid, malic acid, formic acid, citric acid, oxalic acid, lactic acid, and butyric acid. Of these, citric acid,
Preferably, malic acid is used. In the present invention, the low molecular weight acid is used in an amount such that the pH of the composition is 5 to 9.

本発明では、リン酸三カルシウム、好ましくはα型リン
酸三カルシウム、生理活性を有するタンパク質、水及び
低分子量酸を必須成分とし、低分子酸の作用によってリ
ン酸三カルシウムを硬化させ、表面及び内部に生理活性
を有するタンパク質を含んだ硬化物が生成する。ここで
各成分の配合割合は任意でよいが、全固形分1g当り水
を0.2〜0.5−とするのがよく、生体材料中リン酸
三カルシウムの量を40〜82.5重量%(以下%と略
称する。)、好ましくは70〜80%とするのがよく、
また生理活性を有するタンパク質の量を0.1〜16%
、好ましくは1〜8%とするのがよい。
In the present invention, tricalcium phosphate, preferably α-type tricalcium phosphate, a physiologically active protein, water, and a low molecular weight acid are essential components, and the tricalcium phosphate is hardened by the action of the low molecular weight acid, and the surface and A cured product containing physiologically active proteins inside is produced. Although the mixing ratio of each component may be arbitrary, it is preferable that the amount of water be 0.2 to 0.5-0.5% per gram of total solid content, and the amount of tricalcium phosphate in the biomaterial should be 40 to 82.5% by weight. % (hereinafter abbreviated as %), preferably 70 to 80%,
In addition, the amount of physiologically active proteins is 0.1 to 16%.
, preferably 1 to 8%.

本発明では、上記必須成分に対して、歯又は骨に類似す
る成分をもつリン酸水素カルシウム、ヒドロキシアパタ
イト、ピロリン酸カルシウム等のリン酸カルシウムをリ
ン酸三カルシウム100重量部に当して0.01〜50
重量部、好ましくは4〜35重量部添加することができ
る。また、フン化カルシウム、N114F・肝、人骨脱
灰粉末、セメント質粉末などの歯牙粉末をリン酸三カル
シウム100重量部当り0.1〜50重量部、好ましく
は1〜35重量部添加できる。ここで、フン化カルシウ
ムはリン酸三カルシウムをフッ化アパタイトにかえて生
体材料の溶解性を低減するために用いるものであり、N
)1.F −11Fは硬化物と生体のアパタイトとの接
着性を向上させるためのものであり、人骨脱灰粉末は骨
形成力が向上するからである。
In the present invention, in addition to the above-mentioned essential components, calcium phosphate such as calcium hydrogen phosphate, hydroxyapatite, and calcium pyrophosphate, which have components similar to teeth or bones, is added in an amount of 0.01 to 50 parts by weight per 100 parts by weight of tricalcium phosphate.
It can be added in an amount of 4 to 35 parts by weight, preferably 4 to 35 parts by weight. Further, 0.1 to 50 parts by weight, preferably 1 to 35 parts by weight of tooth powder such as calcium fluoride, N114F liver, demineralized human bone powder, and cementum powder can be added per 100 parts by weight of tricalcium phosphate. Here, calcium fluoride is used to reduce the solubility of biomaterials by replacing tricalcium phosphate with fluoroapatite, and N
)1. This is because F-11F is used to improve the adhesion between the cured product and the apatite of the living body, and human bone demineralized powder improves the bone formation ability.

また、歯牙由来物質を用いると、生体材料表面の性状を
歯牙の性状に類似させることができるからである。
In addition, when a tooth-derived substance is used, the properties of the surface of the biomaterial can be made similar to those of a tooth.

本発明において、各成分の配合はリン酸三カルシウムに
タンパク質を添加混合後、低分子量酸の水溶液を加える
かリン酸三カルシウムに低分子量酸の水溶液を加えた後
タンパク質を加える等の順序で行うことができる。また
タンパク質を低分子酸水溶液中に溶解、懸濁させても良
い。
In the present invention, each component is blended in the following order: add protein to tricalcium phosphate, mix, and then add an aqueous solution of a low molecular weight acid, or add an aqueous solution of a low molecular weight acid to tricalcium phosphate, and then add protein. be able to. Alternatively, the protein may be dissolved or suspended in an aqueous low molecular acid solution.

硬化は0〜56℃で放置又は室温にて放置して行うこと
も可能であるが、生体温度下である37℃付近にて、力
lIJ?W下で硬化させるのが好ましい。
Curing can be done by leaving it at 0 to 56°C or at room temperature, but it is possible to cure it by leaving it at 0 to 56°C or at room temperature. Preferably, it is cured under W.

本発明において、タンパク質として線維状タンパク質を
用いた場合、内部に存在する線維は方向がランダムで均
一に分散した状態になっているが、また、生体材料の表
面にも同線維の一部が露出し、表面に密着した様な状態
になっている。
In the present invention, when a fibrous protein is used as the protein, the fibers present inside are uniformly dispersed with random directions, but some of the fibers are also exposed on the surface of the biomaterial. It looks like it is stuck to the surface.

本発明により硬化した生体材料を生体にインブラントす
ると生体との親和性が高いので生体に密着させることが
できる。すなわち、生理活性ををするタンパク質として
、歯牙由来物質を用いて、人工歯根をつくってインブラ
ントすると、該人工歯根と骨との間に歯根膜が形成され
、もともとの歯の構造と極めて類似した形で生体に密着
させることができる。従って、人工歯根と骨とが直接結
合すると、歯に加わった力がそのまま骨に伝達され、骸
骨をいためることになるが、歯根膜があると加えられた
力が該膜に吸収されて骸骨をいためることが少くなると
いう利点がある。一方、生理活性物質として歯牙由来物
質以外のフィブロネクチン等のタンパク質を用いると、
インブラントされた生体材料を骨と直接結合させ、生体
と強固に密着させることができる。
When the biomaterial cured according to the present invention is implanted into a living body, it has a high affinity with the living body and can be brought into close contact with the living body. In other words, when an artificial tooth root is made using a tooth-derived substance as a physiologically active protein and implanted, a periodontal ligament is formed between the artificial tooth root and the bone, and the tooth structure is very similar to the original tooth structure. It can be brought into close contact with a living body. Therefore, when the artificial tooth root and bone are directly connected, the force applied to the tooth is directly transmitted to the bone and damages the skeleton, but if there is a periodontal ligament, the applied force is absorbed by the membrane and damages the skeleton. It has the advantage of being less prone to damage. On the other hand, when proteins other than tooth-derived substances such as fibronectin are used as physiologically active substances,
Implanted biomaterials can be directly bonded to bone and firmly adhered to the living body.

C発明の効果〕本発明により、従来のリン酸カルシウム硬化性組成物の
もつ欠点が改善され、生体・親和性が向上した生体材料
が提供される。従って、本発明の生体材料を生体内にイ
ンブラントとして移植すると、従来のものに比べて生体
とのゆ合が早いため治ゆ期間が短縮し、生着の確率も高
くなった。また、目的に応じたタンパク質を選択するこ
とにより人工歯根、骨補填材さらに人工関節等の軟組織
及び硬組織へのインブラント材料として幅広い応用が可
能である。
C Effects of the Invention] According to the present invention, the drawbacks of conventional calcium phosphate curable compositions are improved, and a biomaterial with improved biocompatibility is provided. Therefore, when the biomaterial of the present invention is implanted into a living body as an implant, the healing period is shortened and the probability of engraftment is increased because it is more quickly integrated with the living body than conventional materials. In addition, by selecting a protein according to the purpose, it can be widely applied as an implant material for artificial tooth roots, bone replacement materials, and soft and hard tissues such as artificial joints.

次に実施例により本発明を説明する。Next, the present invention will be explained with reference to Examples.

〔実施例〕〔Example〕

実施例1α型リン酸三カルシウム(α−TCP)920曙にCa
Pz30rrgとN)14F ・IIF 30 twt
を混和した粉末980■に、牛真皮由来タイブーIアテ
ロコラーゲン線維パウダー20■を混和し均一にした。
Example 1 α-type tricalcium phosphate (α-TCP) 920% Ca
Pz30rrg and N) 14F ・IIF 30 twt
To 980 µm of the mixed powder, 20 µm of bovine dermis-derived Tybu I atelocollagen fiber powder was mixed and made uniform.

さらに1Mクエン酸水溶液(p)l=5.0) 0.2
4−を加え1分間練和した後、円筒形の型(長さ5龍、
直径3鶴)に入れて、37℃、加湿下にて20時間放置
し、硬化させた。
Furthermore, 1M citric acid aqueous solution (p)l=5.0) 0.2
After adding 4- and kneading for 1 minute, mold it into a cylindrical mold (length 5 dragons,
3 cranes in diameter) and left to stand at 37°C under humidification for 20 hours to harden.

実施例22Mリンゴ酸水溶液(pH5)0.4−にヒト胎盤由来
タイプ−■コラーゲン線維50mgを懸濁させたものを
、αTCP1gに加え、1分間練和した後、円筒形の型
(長さ5龍、φ3■l)に流し込んで室温で硬化させた
Example 2 A suspension of 50 mg of human placenta-derived type-■ collagen fibers in 2M malic acid aqueous solution (pH 5) 0.4- was added to 1 g of αTCP, kneaded for 1 minute, and then molded into a cylindrical mold (length: 5 Dragon, φ3■l) and allowed to harden at room temperature.

実施例3人骨の粉末を0.5Mエチレンジアミンテトラアセテー
ト(EDTA)(pH7,4)で脱灰させて得た人骨脱
灰粉末50■を、実施例1の粉末950■に添加した後
、実施例1と同様にクエン酸水溶液を加えて硬化させた
Example 3 After adding 50 μ of demineralized human bone powder obtained by decalcifying human bone powder with 0.5 M ethylenediaminetetraacetate (EDTA) (pH 7,4) to 950 μ of the powder of Example 1, A citric acid aqueous solution was added and cured in the same manner as in 1.

実施例4crTcP 920mg、CaFz50mg、牛真皮由
来タイプ■アテロコラーゲン線維パウダー30mgを均
一に混和し、これに1Mクエン酸水溶液(p115)0
.24Tn1を加えて1分間練和して得た未硬化練和物
を、アルミナ製円筒形素材(長さ5B、直径2龍)の表
面に厚さ1鰭になる様に均一に被覆した。この後37℃
、加湿下にて10時間放置し、硬化させ、さらに室温に
て乾燥した。
Example 4 920 mg of crTcP, 50 mg of CaFz, and 30 mg of bovine dermis-derived type atelocollagen fiber powder were mixed uniformly, and a 1M aqueous citric acid solution (p115) was added to this.
.. The uncured kneaded product obtained by adding 24Tn1 and kneading for 1 minute was uniformly coated on the surface of an alumina cylindrical material (length 5B, diameter 2D) to a thickness of 1 fin. After this 37℃
It was left to stand for 10 hours under humidification to cure, and then dried at room temperature.

実施例5実施例1の粉末950mgにヒトセメント質粉末50■
を混和後、1Mクエン酸水溶液(pH5)0.2tdを
加え、実施例1と同様にして硬化させた。
Example 5 950 mg of the powder of Example 1 and 50 μg of human cementum powder
After mixing, 0.2 td of 1M citric acid aqueous solution (pH 5) was added, and the mixture was cured in the same manner as in Example 1.

比較例αTCP1gに、2Mリンゴ酸水溶液(pH5)0、4
 dを加え、実施例2と同様にして硬化させた。
Comparative Example To 1 g of αTCP, 2M malic acid aqueous solution (pH 5) 0, 4
d was added and cured in the same manner as in Example 2.

実施例1〜5及び比較例で得た生体材料を用いて、細胞
付着及び増殖実験を行った。
Cell adhesion and proliferation experiments were conducted using the biomaterials obtained in Examples 1 to 5 and Comparative Example.

実験にはATCC磁:CRL1486HEPM(Emb
ryonic palatal mesenchyme
;Iluman)、ヒドロ蓋由来間葉細胞を用いた。
ATCC magnet: CRL1486HEPM (Emb
ryonic palatal mesenchyme
; Iluman), hydrotectal-derived mesenchymal cells were used.

先ず各生体材料を高濃度の抗生物質を含む増殖培地に4
日浸漬し滅菌した。この培地を毎日交換した。次に通常
の増殖培地にて生体材料を洗浄した。これらの各生体材
料を、3XlO’個のHEPM細胞を含む増殖培地l−
に浸漬し細胞を付着させた。この際、付着開始後3時間
は30分おきに振とうし生体材料表面に均一に付着させ
た。付着開始24時間後、細胞の付着した生体材料を通
常の増殖培地2ml中に浸漬し、常法に従い10日間培
養した。
First, each biomaterial was placed in a growth medium containing a high concentration of antibiotics.
Sterilized by soaking for a day. This medium was changed daily. The biomaterial was then washed with regular growth medium. Each of these biomaterials was grown in growth medium l- containing 3XlO' HEPM cells.
The cells were immersed in water to allow cells to adhere. At this time, the material was shaken every 30 minutes for 3 hours after the start of adhesion to ensure uniform adhesion to the surface of the biomaterial. 24 hours after the start of adhesion, the biomaterial with attached cells was immersed in 2 ml of a normal growth medium and cultured for 10 days according to a conventional method.

細胞付着増殖性はニュートラルレッドによる超生体染色
法並びにDNA定量により評価した。結果を表−1に示
す。尚、細胞付着、増殖率は比較例を100とする相対
値で表わした。
Cell adhesion and proliferation were evaluated by supravital staining with neutral red and DNA quantification. The results are shown in Table-1. Note that the cell adhesion and proliferation rate were expressed as relative values with the comparative example as 100.

表  1さらに実施例1及び比較例で得た生体材料をピーグル大
大腿骨内に移植した後、経時的にと殺し組織標本を作成
した。その結果骨組織との界面は実施例比較例共に有意
な差になかったが、筋肉等軟組織との界面において、実
施例1で得られた材料は比較例に比べて炎症性細胞浸潤
が軽度であり、生体材料として良好であった。
Table 1 Furthermore, the biomaterials obtained in Example 1 and Comparative Example were implanted into the greater femur of Peagle, and then sacrificed over time to prepare tissue specimens. As a result, there was no significant difference in the interface with bone tissue between the Examples and Comparative Examples, but at the interface with soft tissue such as muscle, the material obtained in Example 1 had milder inflammatory cell infiltration than the Comparative Example. It was good as a biomaterial.

実施例6ピーグル大抜去歯歯根部の粉末(平均粒径200μm)
を0.5 Mエチレンジアミンテトラアセテート(ED
TA)溶液(pH7,4)で脱灰させて得たピーグル犬
歯牙脱灰粉末50■をαTCP920g、Cal”、3
0■と混和して得た均一な粉末1gに、実施例1と同様
にクエン酸水溶液を加えて硬化させた。
Example 6 Powder of root part of Peagle large extracted tooth (average particle size 200 μm)
0.5 M ethylenediaminetetraacetate (ED
αTCP920g, Cal", 3
In the same manner as in Example 1, citric acid aqueous solution was added to 1 g of the uniform powder obtained by mixing with 0.0 cm and hardened.

実施例7ヒト抜去両歯根部の粉末(平均粒径250μm)を6N
塩酸溶液で脱灰させて得たヒト歯牙脱灰粉末20■と実
施例1の粉末980曙を混和して得た均一な粉末1gに
、実施例1と同様にクエン酸水溶液を加えて硬化させた
Example 7 Powder of both extracted human tooth roots (average particle size 250 μm) was added to 6N
To 1 g of homogeneous powder obtained by mixing 20 μm of human tooth demineralized powder obtained by demineralizing with a hydrochloric acid solution and 980 Akebono powder of Example 1, an aqueous citric acid solution was added in the same manner as in Example 1 and hardened. Ta.

実施例8ヒト象牙質の粉末(平均粒径300μm)を、0、5 
M E D T A溶液(pH7,4)を用いて4℃で
4時間脱灰させて得たヒト象牙質部分脱灰粉末40■、
aTCP 920mg、CaF、40awを均一に混和
し、これに1Mクエン酸水溶液(pH5) 0.24−
を加えて1分間練和して得た未硬化練和物を、実施例4
と同様にしてアルミナ製円筒形素材表面に被覆した。
Example 8 Human dentin powder (average particle size 300 μm) was
Human dentin partially demineralized powder obtained by demineralizing for 4 hours at 4°C using MEDTA solution (pH 7,4), 40
Uniformly mix 920 mg of aTCP, CaF, 40 aw, and add 1M citric acid aqueous solution (pH 5) 0.24-
The uncured kneaded product obtained by adding and kneading for 1 minute was
The surface of the alumina cylindrical material was coated in the same manner as above.

実施例1〜3.5〜8及び比較例で得た生体材料を厚さ
2鰭の円盤状に成型し、生体材料表面への培養細胞の配
列性を、Pitaru等の方法(S、 Pitarue
t al、、 J、 Periodont、 Res、
、  1984 : 19.408−418)に従って
調べた。培養細胞としてヒト線維芽細胞WSI  (A
TCC患:CRL−1502)を用いた他は原報通りに
行い、生体材料表面への培養細胞の配列の規則性をオリ
エンテーション インデックス(ORIENTATIO
N INDIEX)で評価した。生体材料の滅菌は細胞
付着増殖性評価実験と同様に行った。培養6日目のデー
タを表2に示す。
The biomaterials obtained in Examples 1 to 3.5 to 8 and Comparative Examples were molded into a disk shape with a thickness of 2 fins, and the arrangement of cultured cells on the surface of the biomaterial was determined using the method of Pitaru et al.
tal,, J, Periodont, Res,
, 1984: 19.408-418). Human fibroblast WSI (A
The regularity of the arrangement of cultured cells on the surface of the biomaterial was determined using the orientation index (ORIENTATIO).
NINDIEX). Sterilization of the biomaterial was performed in the same manner as in the cell attachment and proliferation evaluation experiment. Table 2 shows the data on the 6th day of culture.

表2中1平均値±SE (N=6)次いで、細胞配列の規則性と生体内移植に於ける効果を
検討するため、実施例1.6及び比較例で得た生体材料
をピーグル天下顎骨内に移植した。
Table 2 Mean value ± SE (N=6) Next, in order to examine the regularity of cell arrangement and the effect on in-vivo transplantation, the biomaterials obtained in Example 1.6 and Comparative Example were used in the Peigle mandibular bone. transplanted inside.

ピーグル犬下顎前臼歯を全て抜歯した後、2力月放置し
て治癒した無歯顎部にドリルで穴をあけて形成した下顎
骨窩洞に生体材料を挿入した後、縫合した。その後、経
時的に層殺し、組織標本を作成した。
After all of the mandibular premolars of a Pegle dog were extracted, a biomaterial was inserted into the mandibular cavity created by drilling a hole in the edentulous part that had healed for two months, and then sutured. Thereafter, the layers were removed over time and tissue specimens were prepared.

その結果、実施例1で得られた材料は比較例と同様に下
顎骨と骨性癒着したが、骨性癒着の時期は比較例よりも
有意に早かった。一方、実施例6で得られた材料は骨性
癒着することなく、その表面と下顎骨の間には線維性組
織が介在していた。
As a result, the material obtained in Example 1 had bony adhesion to the mandible as in the comparative example, but the timing of bony adhesion was significantly earlier than in the comparative example. On the other hand, the material obtained in Example 6 did not exhibit bony adhesion, and fibrous tissue was present between the surface and the mandible.

同組織の線維の配向性は生体材料と下顎骨に対し略直角
であり、該組織は歯根膜様線維であった。
The fiber orientation of the tissue was approximately perpendicular to the biomaterial and the mandible, and the tissue was periodontal ligament-like fibers.

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]リン酸三カルシウム、生理活性を有するタンパク質、低
分子量酸及び水を含有する硬化性生体材料。
A curable biomaterial containing tricalcium phosphate, bioactive proteins, low molecular weight acids, and water.
JP63328758A1987-12-261988-12-26 biomaterialPendingJPH01250264A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP63328758AJPH01250264A (en)1987-12-261988-12-26 biomaterial

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
JP62-3311081987-12-26
JP331108871987-12-26
JP63328758AJPH01250264A (en)1987-12-261988-12-26 biomaterial

Publications (1)

Publication NumberPublication Date
JPH01250264Atrue JPH01250264A (en)1989-10-05

Family

ID=26572970

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP63328758APendingJPH01250264A (en)1987-12-261988-12-26 biomaterial

Country Status (1)

CountryLink
JP (1)JPH01250264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5358935A (en)*1992-11-191994-10-25Robert Allen SmithNonantigenic keratinous protein material
US9283074B2 (en)2002-06-132016-03-15Kensey Nash Bvf Technology, LlcDevices and methods for treating defects in the tissue of a living being

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5358935A (en)*1992-11-191994-10-25Robert Allen SmithNonantigenic keratinous protein material
US9283074B2 (en)2002-06-132016-03-15Kensey Nash Bvf Technology, LlcDevices and methods for treating defects in the tissue of a living being

Similar Documents

PublicationPublication DateTitle
US6051247A (en)Moldable bioactive compositions
Qi et al.Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration
JP5368102B2 (en) Maxillofacial bone enhancement using rhPDGF-BB and biocompatible matrix
Hu et al.A mechanically reinforced super bone glue makes a leap in hard tissue strong adhesion and augmented bone regeneration
US11925722B2 (en)Composition of a calcium phosphate and an additive compound containing a phosphate or phosphonate group
JPS62268563A (en)Bone mallow/collagen/inorganic matrix for repairing defect of bone, its preparation and method for repairing defect of bone using the same
AU736846B2 (en)Moldable bioactive compositions
JP2020508721A (en) A method for engineering instant nanoporous bioartificial bone tissue composites
JPH06304242A (en)Collagen-calcium phosphate composite material and usage thereof
Yuan et al.Experimental study of natural hydroxyapatite/chitosan composite on reconstructing bone defects
US6860932B2 (en)Dental and medical cement
JPH07101874A (en)Repairing and therapeutic agent for bone
JP5605618B2 (en) Bone regeneration material kit, paste-like bone regeneration material, bone regeneration material and bone cement
US20020001623A1 (en)Organism-compatible materials with combined extra-cellular matrices, extracellular-matrix preparations, and production methods
JPH01250264A (en) biomaterial
JP2000079161A (en)Osteoanagenesis material
KR20140140204A (en)An injectable composition for bone defects and a preparation method therof
Komath et al.Designing Bioactive Scaffolds for Dental Tissue Engineering
JP2006122518A (en)Composition for forming bone or periodontium
JP2544075B2 (en) Method for producing cured body for medical and dental treatment
JPS6171060A (en)Alpha-calcium triphosphate composition for filling bone and tooth and its production
CN114984327B (en)Composite bone defect filling agent and preparation method thereof
Laurel et al.Nano calcium sulfate and collagen biomaterials: effects on osteoblastic cells
JPS63115568A (en)Hard tissue substitute composition of human body
JPH01171559A (en)Organism material

[8]ページ先頭

©2009-2025 Movatter.jp