【発明の詳細な説明】[産業上の利用分野コこの発明は水ガラスの建築業界におi−する建44の不
燃化あるいは難燃化、化学装置や暖熱装置に用いられる
水ガラス基材はパテの硬化剤、耐火耐熱塗料、鉱物性の
絶縁物質、含浸物質及び被覆物質用の結合剤として利用
されている。[Detailed Description of the Invention] [Industrial Application Fields] This invention is applied to the construction industry of water glass, making it non-combustible or flame retardant, and water glass base material used in chemical equipment and heating equipment. It is used as a hardener for putty, as a binder for fire-resistant and heat-resistant paints, mineral insulation materials, impregnating materials, and coating materials.
[従来の技術]水ガラスは安価な無機接着剤であるが、硬化に時間か掛
かり、耐水性か良好でないことの理由で、単味の使用に
は自すがら限度がある。上記の欠点を改良するために種
々の硬化剤の添加か行なわれており、不燃性無機硬化剤
として古くから、ケイ弗化ナトリウムが知られている。[Prior Art] Water glass is an inexpensive inorganic adhesive, but its use as a single adhesive is limited because it takes a long time to cure and its water resistance is poor. In order to improve the above-mentioned drawbacks, various hardening agents have been added, and sodium silicofluoride has been known as a nonflammable inorganic hardening agent for a long time.
また縮合リン酸アルミニウム(特願公告昭44−897
7号)ホウ酸カルシウム(特公昭49−10813号)
第一リン酸の金属塩を基′A副とするケイ弗化物(特公
昭49−16253j+)等が硬化剤として用いられて
いる。Also, condensed aluminum phosphate (patent application publication 1989-897)
No. 7) Calcium borate (Special Publication No. 49-10813)
A silicofluoride (Japanese Patent Publication No. 49-16253j+) having a metal salt of primary phosphoric acid as the base A is used as a curing agent.
し発明が解決しようとする課題]しかし上記従来の技術のうち、最も効果的な硬化剤は、
縮合リン酸アルミニウム(特公昭44−8977号)で
あるか、そのX線回折図を第1図に示す。横軸は走査角
度20を示し、単位は。[Problems to be Solved by the Invention] However, among the above conventional techniques, the most effective curing agent is
The X-ray diffraction pattern of condensed aluminum phosphate (Japanese Patent Publication No. 44-8977) is shown in FIG. The horizontal axis indicates the scanning angle 20, in units of .
である。縦軸GJX線回折強度を表わす。図中1は等軸
晶系Al (1’03) 3の回折ピークを、2は準安
定相A、Q−(P(h)30回折ピークを示す。この物
質は等軸晶系へg(PO3)3と準安定相へl (PO
3) 3との混合物であり、特公昭44−8977号に
記されたように、「第1段階で恒量になるまで最高40
0℃に、第2段階で再び恒量となるまで最高750℃に
加熱する」事を特徴としているが、第1段階の熱処理温
度を変化した場合の生成物のX線回折図を第2図に示す
。第2図は水酸化アルミニウムとリン酸のみで合成した
縮合リン酸アルミニウムのX線回折図である。加熱処理
温度400℃以上の場合は等軸晶系へM (PO3)
3のみとなり、準安定相AQ (po3) 3は消滅す
る。又加熱処理温度が250℃では、準安定相An (
PO3) sは合成てきない。等軸晶・系AU (PO
3) 3と準安定相人文(PO3)3との硬化作用の比
較のために、次きの実験を行なった。マイカ粉 300
重量部、八11(PO3)375重量部、水ガラス30
0重量部、水60重量部を混合して、その泥しようを型
に流しく厚さ10mmの円柱状)、放置し硬化作用を観
察した。It is. The vertical axis represents GJX-ray diffraction intensity. In the figure, 1 indicates the diffraction peak of the equiaxed crystal system Al (1'03) 3, and 2 indicates the metastable phase A, Q-(P(h) 30 diffraction peak. This material changes to the equiaxed crystal system g( PO3)3 and metastable phase l (PO
3) It is a mixture of
0℃ and then heated to a maximum of 750℃ in the second step until the weight becomes constant again.Figure 2 shows the X-ray diffraction diagram of the product when the heat treatment temperature in the first step is changed. show. FIG. 2 is an X-ray diffraction diagram of condensed aluminum phosphate synthesized using only aluminum hydroxide and phosphoric acid. If the heat treatment temperature is 400℃ or higher, it will change to equiaxed crystal system (PO3)
3, and the metastable phase AQ (po3) 3 disappears. Moreover, when the heat treatment temperature is 250°C, the metastable phase An (
PO3) s cannot be synthesized. Equiaxed system AU (PO
3) The following experiment was conducted to compare the hardening effects of 3) and metastable soujinbun (PO3) 3. Mica powder 300
Parts by weight, 811 (PO3) 375 parts by weight, 30 parts by weight of water glass
0 parts by weight and 60 parts by weight of water were mixed, and the slurry was poured into a mold (cylindrical shape with a thickness of 10 mm), left to stand, and the hardening effect was observed.
八l (PO3) 3としては、等軸晶系と準安定相を
用いた。準安定相を用いた物は24時間以内に硬化した
か、等軸晶系の物は1週間経過しても硬化現象は認めら
れなかった。等軸晶系メタリン酸アルミニウムへl (
1’03) 3は硬化作用か全くなく、準安定相メタリ
ン酸アルミニウムA、Q ([’03) 3が硬化作用
をもつことが分かった。従って加熱IA理効果により等
軸晶系Δy (PO3) 3の生成を極力押さえ、準安
定相Δx (PO3) 3の合成率を犬にすることを目
的としている。As 8l(PO3)3, an equiaxed crystal system and a metastable phase were used. The product using the metastable phase was cured within 24 hours, and the product using the equiaxed crystal system showed no hardening phenomenon even after one week had passed. To equiaxed aluminum metaphosphate (
It was found that 1'03) 3 had no hardening effect at all, and the metastable phase aluminum metaphosphates A and Q (['03)3 had a hardening effect. Therefore, the purpose is to suppress the formation of the equiaxed crystal system Δy (PO3) 3 as much as possible by the heating IA process effect, and to minimize the synthesis rate of the metastable phase Δx (PO3) 3.
[課題を解決するための手段]準安定相A文(PO3) 3の合成率を大にするために
、種々の添加物の影響を調べた。添加物としては、Ca
O,ZnO,MgO,ZrO2,Yz[]3等を用いた
。[Means for solving the problem] In order to increase the synthesis rate of metastable phase A (PO3) 3, the effects of various additives were investigated. As an additive, Ca
O, ZnO, MgO, ZrO2, Yz[]3, etc. were used.
CaO,ZnO,ZrO2,Y2O3等の添加の場合は
、第2図と同様で、加熱処理温度400℃以上の場合は
等軸晶系AU (PO3) 3のみて、準安定相人文(
PO3) 3をつるためには、400℃以下で熱処理を
行なう必要がある。MgO添加の場合は第3図に示す。In the case of addition of CaO, ZnO, ZrO2, Y2O3, etc., it is the same as shown in Fig. 2, and when the heat treatment temperature is 400°C or higher, the equiaxed crystal system AU (PO3) 3 becomes metastable.
In order to obtain PO3) 3, it is necessary to perform heat treatment at 400°C or lower. The case of MgO addition is shown in FIG.
加熱処理温度550℃でも準安定相Ap (PO3)
3は安定に存在する。多少の等軸晶系u (PO3)
3を伴っている。準安定相と等軸品系との量比を見るた
めに、加熱処理温度とX線回折強度比IB/■c[準安
定相へi (PO3) 3の面間隔5.48人のピーク
の高さをIB、等軸晶系A父(PO3)3の面間隔43
4人のピークの高さを■、とする]との関係を第4図に
示す。横軸は加熱処理温度(’C)を、縦軸はIn/I
cを表わす。第4図に示したように1、/Ioは400
℃最大であるが、400℃より少し上昇すると急激に減
少し、 500℃で最低となり、 500℃以上ではま
た増加するが、 700℃が極大である。従って準安定
相AJ! (PO3) 3の合成率を大にするためには
、加熱処理温度400℃以下に保つ必要がある。工業的
にはMgO添加、加熱処理温度は絶対に400℃以下に
保つことである。MgO以外の添加物又は不純物の影響
により準安定相へ、Q (PO3) 3の合成率が左右
されることがある。Metastable phase Ap (PO3) even at heat treatment temperature of 550℃
3 exists stably. Some equiaxed crystal system u (PO3)
It is accompanied by 3. In order to see the quantity ratio of the metastable phase and the equiaxed product system, we calculated the heat treatment temperature and the X-ray diffraction intensity ratio IB/■c [to the metastable phase i (PO3) 3 interplanar spacing 5.48 peak height. IB, equiaxed crystal system A father (PO3) 3 interplanar spacing 43
The peak height of the four people is assumed to be .] is shown in Fig. 4. The horizontal axis is the heat treatment temperature ('C), and the vertical axis is In/I.
represents c. As shown in Figure 4, 1, /Io is 400
The temperature is maximum at ℃, but it decreases rapidly when the temperature rises slightly above 400℃, reaches the minimum at 500℃, increases again above 500℃, and reaches its maximum at 700℃. Therefore, the metastable phase AJ! (PO3) In order to increase the synthesis rate of 3, it is necessary to maintain the heat treatment temperature at 400° C. or lower. Industrially, the MgO addition and heat treatment temperatures must be kept below 400°C. The synthesis rate of Q (PO3) 3 may be influenced by the influence of additives or impurities other than MgO into a metastable phase.
[作 用]上記のように、縮合リン酸アルミニウムには等軸晶系へ
交(PO3)3と準安定相Afl(PO3) 3との両
者が存在し、硬化作用に有効なのは準安定相へx (P
O3) 3であることが分かる。準安定相を合成するた
めには、MgOを添加した酸化アルミニウムが不可欠て
あり、しかも加熱処理温度は絶対に400℃以下にすれ
は、純度99%以上の準安定相へl (PO3) 3を
高収率てうることができる。[Function] As mentioned above, condensed aluminum phosphate has both the equiaxed crystal system (PO3)3 and the metastable phase Afl(PO3)3, and it is the metastable phase that is effective for the hardening effect. x (P
It can be seen that O3) is 3. In order to synthesize a metastable phase, aluminum oxide doped with MgO is essential, and the heat treatment temperature must be below 400°C to convert l (PO3) 3 into a metastable phase with a purity of 99% or higher. It can be obtained in high yield.
[実 施 例]320gの水酸化アルミニウム(又は210gの酸化ア
ルミニウム)と18〜34gの酸化マグネシウムを均一
に混合した粉末を、1300gのリン酸(85%)中に
攪はんしながら加え、加熱溶解させた後、蒸発、濃縮を
行ない乾固させる。溶液の加熱温度は、溶液が沸騰しな
い様に、徐々に温度を上げながら行なう。乾固物は 1
10℃で十分に乾燥した後、空気の流通をよくし、中ま
て反応させるため、粗粉砕し、 380℃で恒量になる
まて約3時間加熱し、放冷後細粉砕して硬化剤として用
いる。この際に得られた物質のX線回折図を第5図に示
す。準安定相へM (PO3) 3のみで、等軸晶系へ
U(PO3)3はほとんど認められない。[Example] A uniformly mixed powder of 320 g of aluminum hydroxide (or 210 g of aluminum oxide) and 18 to 34 g of magnesium oxide was added to 1300 g of phosphoric acid (85%) with stirring, and heated. After dissolving, evaporate and concentrate to dryness. The heating temperature of the solution is carried out while gradually increasing the temperature so that the solution does not boil. The dry matter is 1
After sufficiently drying at 10°C, it is coarsely ground to improve air circulation and react inside, heated at 380°C for about 3 hours until it reaches a constant weight, left to cool, and then finely ground to remove the curing agent. used as The X-ray diffraction pattern of the substance obtained at this time is shown in FIG. Only M(PO3)3 enters the metastable phase, and almost no U(PO3)3 enters the equiaxed crystal system.
[発明の効果]この発明は、以上説明したように、簡単に、安価に作る
ことができ、硬化作用も非常に良好である。次ぎにレジ
ライ[・−水ガラス系についての硬化作用を第6図に示
す。レジライトは無定形シリカと準安定相メタリン酸ア
ルミニウムへ’l (PO3) 3の1:1 (重量比
)の物である。横軸はレジライ)・の重量%を、縦軸は
硬化時間(単位は日)を示す。レジライト20%、水ガ
ラス濃度30%が一番効果がある。[Effects of the Invention] As explained above, the present invention can be manufactured easily and inexpensively, and has a very good curing effect. Next, FIG. 6 shows the hardening effect of Regirai [.--water glass system. Resilite is a 1:1 (weight ratio) of amorphous silica and metastable phase aluminum metaphosphate. The horizontal axis shows the weight percent of Regirai), and the vertical axis shows the curing time (in days). A concentration of 20% Regilight and 30% water glass is most effective.
第1図は特公昭44−8977号の縮合リン酸アルミニ
ウムのX線回折図を示すもので、横軸(J走査角度2θ
を示し、単位は°である。縦軸はX線回折強度を表わす
。図中1は等軸晶系Aj−(PO3)sの回折ピークを
、2は準安定相Δl (PO3) 3の回折ピークを示
す。対陰極はCuである。第2図は水酸化アルミニウムとリン酸のみて合成した縮
合リン酸アルミニウムの加熱処理温度の相違によるX線
回折図を示す。横軸は走査角度20を示し、単位GJ°
である。縦軸はX線回折強度を表わす。図中■は250
℃、IIは350℃、IIIは400℃、IVは550
℃加熱処理物を表わし、1は等軸晶系xJ−(PO3)
3の回折ピークを、2は準安定相へx (PO3) 3
の回折ピークを示す。対陰極はCuである。第3図は酸化マグネシウム添加の場合の加熱処理温度の
相違によるX線回折図を示す。横軸は走査角度20を示
し、単位は°である。縦軸はX線回折強度を表わす。図
中、■は250℃、IIは400℃、Illは550℃
加熱処理物を表わし、1は等軸孔系u(poaLの回折
ピークを、2は準安定相A9.(PO3)3の回折ピー
クを示す。対陰極はCuである。第4図は第3図と同じ組成物で、等軸晶系と準安定相の
X線回折強度比I l]/ I cと加熱処理温度の関
係を示す。横軸は加熱処理温度、単位は°である。縦軸
はX線回折強度比IB/Tcを示す。第5図は本発明の準安定相メタリン酸アルミニウムAρ
(PO3)3のX線回折図である。横軸は走査角度20
を示し、単位は°である。縦軸はX線回折強度を表わす
。図中2は準安定相Δl (PO3) 3の回折ピーク
を示す。対陰極はCuである。第6図はレジライi・−水ガラス系にっての硬化作用を
示す。レジライトは無定形シリカと準安定相メタリン酸
アルミニウムの1:1 (重量比)混合物であり、横軸
は準安定相メタリン酸アルミニウムの重量%を、縦軸は
硬化時間(単位口)を示す。Figure 1 shows the X-ray diffraction diagram of condensed aluminum phosphate published in Japanese Patent Publication No. 44-8977.
The unit is °. The vertical axis represents the X-ray diffraction intensity. In the figure, 1 indicates the diffraction peak of the equiaxed crystal system Aj-(PO3)s, and 2 indicates the diffraction peak of the metastable phase Δl(PO3)3. The anticathode is Cu. FIG. 2 shows X-ray diffraction patterns of condensed aluminum phosphate synthesized using only aluminum hydroxide and phosphoric acid at different heat treatment temperatures. The horizontal axis shows the scanning angle 20, unit GJ°
It is. The vertical axis represents the X-ray diffraction intensity. ■ in the diagram is 250
℃, II is 350℃, III is 400℃, IV is 550℃
℃ heat treated product, 1 is equiaxed crystal system xJ-(PO3)
The diffraction peak of 3 is transferred to the metastable phase of 2x (PO3) 3
shows the diffraction peak of The anticathode is Cu. FIG. 3 shows X-ray diffraction patterns depending on the heat treatment temperature when magnesium oxide is added. The horizontal axis indicates the scanning angle 20, in degrees. The vertical axis represents the X-ray diffraction intensity. In the figure, ■ is 250℃, II is 400℃, and Ill is 550℃
1 represents the diffraction peak of the equiaxed pore system u(poaL), and 2 represents the diffraction peak of the metastable phase A9.(PO3)3. The anticathode is Cu. The relationship between the X-ray diffraction intensity ratio I l / I c of the equiaxed crystal system and the metastable phase and the heat treatment temperature is shown for the same composition as in the figure. The horizontal axis is the heat treatment temperature, and the unit is °. The vertical axis is the heat treatment temperature. The axis shows the X-ray diffraction intensity ratio IB/Tc. Figure 5 shows the metastable phase aluminum metaphosphate Aρ of the present invention.
It is an X-ray diffraction diagram of (PO3)3. The horizontal axis is the scanning angle 20
The unit is °. The vertical axis represents the X-ray diffraction intensity. In the figure, 2 indicates the diffraction peak of the metastable phase Δl (PO3) 3. The anticathode is Cu. FIG. 6 shows the hardening effect of the Regirai i-water glass system. Resilite is a 1:1 (weight ratio) mixture of amorphous silica and metastable aluminum metaphosphate, where the horizontal axis shows the weight percent of the metastable aluminum metaphosphate, and the vertical axis shows the curing time (unit unit). .
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7749588AJPH01249638A (en) | 1988-03-30 | 1988-03-30 | Production of hardener for water glass |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7749588AJPH01249638A (en) | 1988-03-30 | 1988-03-30 | Production of hardener for water glass |
| Publication Number | Publication Date |
|---|---|
| JPH01249638Atrue JPH01249638A (en) | 1989-10-04 |
| JPH0569052B2 JPH0569052B2 (en) | 1993-09-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7749588AGrantedJPH01249638A (en) | 1988-03-30 | 1988-03-30 | Production of hardener for water glass |
| Country | Link |
|---|---|
| JP (1) | JPH01249638A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9005355B2 (en) | 2010-10-15 | 2015-04-14 | Bunge Amorphic Solutions Llc | Coating compositions with anticorrosion properties |
| US9023145B2 (en) | 2008-02-12 | 2015-05-05 | Bunge Amorphic Solutions Llc | Aluminum phosphate or polyphosphate compositions |
| US9169120B2 (en) | 2004-08-30 | 2015-10-27 | Bunge Amorphic Solutions Llc | Aluminum phosphate or polyphosphate particles for use as pigments in paints and method of making same |
| US9187653B2 (en) | 2004-08-30 | 2015-11-17 | Bunge Amorphic Solutions Llc | Aluminum phosphate, polyphosphate, and metaphosphate particles and their use as pigments in paints and method of making same |
| US9371454B2 (en) | 2010-10-15 | 2016-06-21 | Bunge Amorphic Solutions Llc | Coating compositions with anticorrosion properties |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9169120B2 (en) | 2004-08-30 | 2015-10-27 | Bunge Amorphic Solutions Llc | Aluminum phosphate or polyphosphate particles for use as pigments in paints and method of making same |
| US9187653B2 (en) | 2004-08-30 | 2015-11-17 | Bunge Amorphic Solutions Llc | Aluminum phosphate, polyphosphate, and metaphosphate particles and their use as pigments in paints and method of making same |
| US9023145B2 (en) | 2008-02-12 | 2015-05-05 | Bunge Amorphic Solutions Llc | Aluminum phosphate or polyphosphate compositions |
| US9005355B2 (en) | 2010-10-15 | 2015-04-14 | Bunge Amorphic Solutions Llc | Coating compositions with anticorrosion properties |
| US9371454B2 (en) | 2010-10-15 | 2016-06-21 | Bunge Amorphic Solutions Llc | Coating compositions with anticorrosion properties |
| Publication number | Publication date |
|---|---|
| JPH0569052B2 (en) | 1993-09-30 |
| Publication | Publication Date | Title |
|---|---|---|
| US5496529A (en) | Aluminum phosphates and binder compositions/ceramic materials comprised thereof | |
| US3923534A (en) | Cold-setting refractory compositions | |
| CA1203255A (en) | Magnesium phosphate glass cements with ceramic-type properties | |
| Zhang et al. | Facile synthesis of monodisperse YAG: Ce 3+ microspheres with high quantum yield via an epoxide-driven sol–gel route | |
| Ribeiro et al. | Use of microwave oven in the calcination of MgO and effect on the properties of magnesium phosphate cement | |
| JPS6242871B2 (en) | ||
| CN107056115A (en) | A kind of rush for ardealite based cementitious material coagulates type early strength agent and preparation method thereof | |
| JPS5864207A (en) | Manufacture of water glass cement hardening agent | |
| JPH01249638A (en) | Production of hardener for water glass | |
| JPH07223837A (en) | Heat resistant hollow beads, its manufacturing and use | |
| Podbolotov et al. | EXOTHERMIC SYNTHESIS OF CERAMIC MATERIALS BASED ON BARIUM AND STRONTIUM ALUMINOSILICATES. | |
| Reynaud et al. | A new solution route to silicates. Part 3: Aqueous sol-gel synthesis of willemite and potassium antimony silicate | |
| JPS62209039A (en) | Aqueous solution of basic yttrium acetate and production thereof | |
| US4774068A (en) | Method for production of mullite of high purity | |
| JPH02107600A (en) | Production of aluminum borate whisker | |
| Lin et al. | Low-temperature synthesis of pure BaAl2Si2O8 glass–ceramic powder by citrate process | |
| JPS6159243B2 (en) | ||
| RU2180890C1 (en) | Method for production of high-condensed ammonium polyphosphate | |
| US3411927A (en) | Processing of asphalt and lightweight aggregate composition | |
| JPS6241743A (en) | Manufacture of dry powder containing hard volatile organic compound | |
| JPS60260410A (en) | Manufacture of beta-sialon powder | |
| JP2921958B2 (en) | Method for producing δ-type alkali metal disilicate | |
| Podbolotov | Exothermic Synthesis of Ceramic Materials Based on the System Zn2SiO4–RO (R= Ba, Sr)–Al2O3–SiO2 | |
| US3247251A (en) | Cyclohexylamine borates and production thereof | |
| SU1505904A1 (en) | Method of preparing fluid magnesium/phosphate binder |
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080930 Year of fee payment:15 | |
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080930 Year of fee payment:15 |