【発明の詳細な説明】イ8発明の目的・ の1本発明は、エタノールを原料として脱水反応によりエチ
レンを製造する方法に関するもので、特にアルデヒドを
含有するエタノールを原料とする場合に適している。[Detailed Description of the Invention] A.8 Objectives of the Invention: (1) The present invention relates to a method for producing ethylene by dehydration reaction using ethanol as a raw material, and is particularly suitable when ethanol containing aldehydes is used as a raw material. .
【え立且遣エタノールを脱水してエチレンを製造することは公知で
あるが、エタノールの脱水反応をアルミナ触媒上で行う
とエチレン以外にブテン類その他の副生物が生成するば
かりでなく、触媒上に徐々に炭素質が析出し活性が低下
する。特にアルデヒドを添加して変性したエタノールを
原料とする場合は、副生物が増加し炭素質析出も増加す
るため活性劣化が大きく、長時間の連bAM転が困難で
あった。[It is well known that ethylene can be produced by dehydrating ethanol, but when the ethanol dehydration reaction is carried out on an alumina catalyst, not only butenes and other by-products are produced in addition to ethylene, but also Carbonaceous substances gradually precipitate and the activity decreases. In particular, when ethanol denatured by adding aldehyde is used as a raw material, by-products and carbonaceous precipitation increase, resulting in significant activity deterioration and making continuous bAM conversion for a long time difficult.
fが しよ−と る2、′古本ffi Illはアルデヒドを含有するエタノール、
特にアルデヒド変性エタノールを原料としても長時間の
連続遊転がてきるエチレン製造法を提供することを目的
とする。2, 'Used book ffi Ill is ethanol containing aldehyde,
In particular, the object of the present invention is to provide a method for producing ethylene that can be continuously idled for a long time even when aldehyde-denatured ethanol is used as a raw material.
口1発明の構成圧延U るための−゛本発明のエチレン製造法は、エタノールを原料として脱
水反応によりエチレンを製造する方法において、予め原
料を水素添加処理してから脱水反応を行うことを特徴と
する。1 Constitution of the Invention Rolling - ゛The ethylene production method of the present invention is characterized in that in the method of producing ethylene by a dehydration reaction using ethanol as a raw material, the raw material is subjected to a hydrogenation treatment in advance and then the dehydration reaction is performed. shall be.
本発明方法の実施態様の一例を第1図により説明すると
、アルデヒドを含有する原料エタノールlとライン2か
らの水素とを混合し予熱器3で予熱して水素添加反応器
4に供給し、原料中のアルデヒドを水素添加する。An example of the embodiment of the method of the present invention will be explained with reference to FIG. 1. Raw material ethanol 1 containing aldehyde and hydrogen from line 2 are mixed, preheated in preheater 3, and supplied to hydrogenation reactor 4. The aldehyde inside is hydrogenated.
水素添加反応器4出口の流体を冷却器5て冷却し、気液
分離器6でエタノールと水素とを分離する0分離された
水素は新規に供給される水素7と共にコンプレッサー8
で原料の水素添加用に循環する。The fluid at the outlet of the hydrogenation reactor 4 is cooled by a cooler 5, and ethanol and hydrogen are separated by a gas-liquid separator 6. The separated hydrogen is sent to a compressor 8 together with newly supplied hydrogen 7.
It is circulated for hydrogenation of raw materials.
水素添加処理したエタノールは熱交換器9て予熱し、脱
水反応器lOに送り脱水反応を行わせた後、熱交換器9
.冷却器11で冷却し、気液分離器12でエチレンと水
とを分離しエチレン13を得る。The hydrogenated ethanol is preheated in the heat exchanger 9, sent to the dehydration reactor 1O for dehydration reaction, and then transferred to the heat exchanger 9.
.. It is cooled by a cooler 11, and ethylene and water are separated by a gas-liquid separator 12 to obtain ethylene 13.
水素添加触媒としては、一般に水素添加に使用される触
媒、例えば、Ni、Cu、Pt、Pd等をA文20s
、S i 02 /AJ120x 、活性炭等に担持し
た触媒などが使用できるが、水素添加反応はできるだけ
低温で行うことが予8/冷却による熱損失が少なく経済
的なので、低温で活性を有する触媒、例えば、Ni或は
貴金属なAfL203或は活性)にに担持した触媒など
が特に好ましい。As the hydrogenation catalyst, catalysts commonly used for hydrogenation, such as Ni, Cu, Pt, and Pd, are used.
, S i 02 /AJ120x, a catalyst supported on activated carbon, etc. can be used, but since it is economical to carry out the hydrogenation reaction at as low a temperature as possible with less heat loss due to cooling, catalysts that are active at low temperatures, such as Particularly preferred are catalysts supported on Ni, AfL203, or active metals such as Ni or noble metals.
また当然のことながら、アルデヒドのみを選択的に水素
添加し、エタノールの水素添加を生じない触媒及び条件
で行うことが必要である。Naturally, it is also necessary to selectively hydrogenate only the aldehyde, using a catalyst and conditions that do not cause hydrogenation of ethanol.
アルデヒドの水素添加率を高めるためには過剰の水素を
加えることが望ましいが、それをそのまま脱水反応器に
送ったのではエチレンにH2が混入してしまうと共に水
素の利用率が低下してしまうので、第1図に示すように
水素添加反応後冷却してエタノールと水素とを分離して
から脱水反応器に送る。In order to increase the hydrogenation rate of aldehyde, it is desirable to add excess hydrogen, but if it is sent directly to the dehydration reactor, H2 will be mixed into the ethylene and the hydrogen utilization rate will decrease. As shown in FIG. 1, after the hydrogenation reaction, ethanol and hydrogen are separated by cooling and then sent to a dehydration reactor.
しかし、含有アルデヒド量に対して水素を量論比以下で
供給し、水素添加処理後水素が実質的に0になってしま
う場合、又は水素が残留しても良い場合は水素循環系統
を省略することができる。However, if hydrogen is supplied at a less than stoichiometric ratio to the amount of aldehyde contained, and the hydrogen becomes essentially 0 after hydrogenation treatment, or if it is acceptable for hydrogen to remain, the hydrogen circulation system may be omitted. be able to.
その場合は、水素添加反応器4を改行せずに。In that case, do not change the line for hydrogenation reactor 4.
水素添加触媒を脱水反応器の上部に充填しても良い。The hydrogenation catalyst may be packed in the upper part of the dehydration reactor.
脱水反応で使用する触媒としては、一般に使用されてい
る公知の脱水触媒はいずれも使用可能である。具体的に
はアルミナ触媒が挙げられる。As the catalyst used in the dehydration reaction, any of the commonly used and known dehydration catalysts can be used. A specific example is an alumina catalyst.
1」アルデヒドを含有するエタノールを予め水素添加処理す
ると、脱水反応工程における触媒上の炭JI!1.の析
出か減少し、活性の劣化が抑制され、長時間の連続運転
が可使になる。またエチレン収率も向上する。1” If ethanol containing aldehyde is pre-hydrogenated, charcoal JI! on the catalyst in the dehydration reaction process! 1. This reduces the amount of precipitation, suppresses deterioration of activity, and allows continuous operation for long periods of time. Moreover, the ethylene yield is also improved.
実施例1アセトアルデヒド0.5重量%を含有する工業用エタノ
ール0.2kg/hrに、水素ガス137 N l /
h rを加えて水素添加触媒(N i / A立20
s )0.14kgを充填した反応器に送り、温度80
℃、圧力2.0kg/cm2Gに保ち水素添加反応を行
い、40°Cに冷却し気液分離してf!tたエタノール
0.2kg/hrを、アルミナ触媒1.0kgを充填し
た反応器に送り、温度330″C1圧力2.0kg/c
m2Gに保ち反応させた。Example 1 Hydrogen gas 137 Nl/hr was added to 0.2 kg/hr of industrial ethanol containing 0.5% by weight of acetaldehyde.
Hydrogenation catalyst (N i / A standing 20
s) sent to a reactor filled with 0.14 kg, at a temperature of 80
℃, the pressure is maintained at 2.0 kg/cm2G, a hydrogenation reaction is carried out, the temperature is cooled to 40°C, gas and liquid are separated, and f! 0.2 kg/hr of ethanol was sent to a reactor filled with 1.0 kg of alumina catalyst, and the temperature was 330" C1 pressure 2.0 kg/c.
The reaction was carried out while maintaining at m2G.
生成ガス分析の結果及び500時間反応後の廃触媒上の
炭素分析の結果を第1表に示す、なお。The results of the produced gas analysis and the carbon analysis on the waste catalyst after 500 hours of reaction are shown in Table 1.
水素添加処理後のエタノール中のアセトアルデヒドは0
.011量%以下になっていた。Acetaldehyde in ethanol after hydrogenation treatment is 0
.. 0.011% by weight or less.
比較例1実施例1で使用したのと同じアセトアルデヒド0.51
Q%を含有する工業用エタノール0.2k g / h
rを直接、アルミナ触媒1.0kgを充填した反応器
に送り、温度330°C1圧力2.0kg/cm2Gに
保ち反応させた。Comparative Example 1 Same acetaldehyde as used in Example 1 0.51
Industrial ethanol containing Q% 0.2 kg/h
r was directly sent to a reactor filled with 1.0 kg of alumina catalyst and reacted at a temperature of 330° C. and a pressure of 2.0 kg/cm 2 G.
生成ガス分析の結果及び500時間反応後の廃触媒上の
炭素分析の結果を第1表に示す。Table 1 shows the results of the produced gas analysis and the carbon analysis on the spent catalyst after 500 hours of reaction.
(以下余白)第1表第1表に示された実施例1及び比較例1の結果から明ら
かなように、予め原料の水素添加を行った場合は脱水触
媒上の炭素質の析出が半減し、エタノール転化率、エチ
レン収率が向上し、副反応が抑制されている。(Left below) Table 1 As is clear from the results of Example 1 and Comparative Example 1 shown in Table 1, when the raw materials are hydrogenated in advance, the precipitation of carbonaceous material on the dehydration catalyst is halved. , ethanol conversion and ethylene yield are improved, and side reactions are suppressed.
ハ0発明の効果脱水反応工程における触媒上の炭素質の析出が減少し、
活性の劣化が抑制され、長時間の連続正転か”f ’R
,になる。またエチレン収率も向上する。C) Effects of the invention Precipitation of carbonaceous substances on the catalyst in the dehydration reaction step is reduced,
Deterioration of activity is suppressed and continuous forward rotation for a long period of time is possible.
,become. Moreover, the ethylene yield is also improved.
4、IA面の筒中な説IJJ:jS1図は本発明を実施するプロセスの一例を示す図
である。4. IJJ: jS1 is a diagram showing an example of a process for carrying out the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63058205AJPH01233236A (en) | 1988-03-14 | 1988-03-14 | Production of ethylene |
| IN93/CAL/89AIN171095B (en) | 1987-12-21 | 1989-01-30 |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63058205AJPH01233236A (en) | 1988-03-14 | 1988-03-14 | Production of ethylene |
| Publication Number | Publication Date |
|---|---|
| JPH01233236Atrue JPH01233236A (en) | 1989-09-19 |
| JPH0576932B2 JPH0576932B2 (en) | 1993-10-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63058205AGrantedJPH01233236A (en) | 1987-12-21 | 1988-03-14 | Production of ethylene |
| Country | Link |
|---|---|
| JP (1) | JPH01233236A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011529497A (en)* | 2008-07-31 | 2011-12-08 | セラニーズ・インターナショナル・コーポレーション | Process for the catalytic production of ethylene directly from acetic acid in a single reaction zone |
| JP2011529495A (en)* | 2008-07-31 | 2011-12-08 | セラニーズ・インターナショナル・コーポレーション | Production of ethylene from acetic acid using a dual reaction zone process |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011529497A (en)* | 2008-07-31 | 2011-12-08 | セラニーズ・インターナショナル・コーポレーション | Process for the catalytic production of ethylene directly from acetic acid in a single reaction zone |
| JP2011529495A (en)* | 2008-07-31 | 2011-12-08 | セラニーズ・インターナショナル・コーポレーション | Production of ethylene from acetic acid using a dual reaction zone process |
| Publication number | Publication date |
|---|---|
| JPH0576932B2 (en) | 1993-10-25 |
| Publication | Publication Date | Title |
|---|---|---|
| US3076810A (en) | Process for the production of cyclohexanone | |
| US3334149A (en) | Plural stage hydrogenation of dialkyl terephthalate using palladium and then copper chromite | |
| US7960593B2 (en) | Process for preparation of menthol by hydrogenation of isopulegol | |
| JP2000226348A (en) | Method for synthesizing methanol / dimethyl ether mixture from synthesis gas | |
| JPH0337545B2 (en) | ||
| US4010197A (en) | Process for producing diacetoxybutanes and butanediols | |
| JPH01275542A (en) | Catalytic hydrogenation of liquid fatty acid triglyceride | |
| JPS62192374A (en) | Manufacture of n-methylpiperazine | |
| KR860000751B1 (en) | Method for preparing cyclohexylamine | |
| JPH07258120A (en) | Hydrogenation catalyst and hydrogenation of benzene by using said catalyst | |
| JPH05378B2 (en) | ||
| US3972938A (en) | Manufacture of hexamethylene diamine | |
| EP2398754B1 (en) | Continuous process to produce hexafluoroisopropanol | |
| JPH01233236A (en) | Production of ethylene | |
| US4058571A (en) | Continuous process for the production of d,l'menthol | |
| US6476218B1 (en) | Method of preparing a mixture of mannitol and sorbitol by continuous hydrogenation of glucosone | |
| US4694112A (en) | Process for producing 2,2,2-trifluoroethanol | |
| US4150239A (en) | Process for producing 1,4-glycol diester | |
| JPS59106441A (en) | Preparation of aliphatic tertiary amine | |
| JP4321838B2 (en) | Method for producing isopropyl alcohol | |
| JPH02279657A (en) | Aniline production method | |
| US2413153A (en) | Process for catalytic hydrogenation of aliphatic nitrohydroxy compounds | |
| JP2585737B2 (en) | Method for producing terpene alcohol | |
| JPH10167997A (en) | Method for producing 2-methylnaphthalene | |
| JPS5883645A (en) | Manufacture of beta-phenylethyl alcohol |