【発明の詳細な説明】〔産業上の利用分野〕本発明はα−Ijルン酸のほかにリノール酸やオレイン
酸を主成分として含む脂肪酸混合物からα−リノレン酸
を分離する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating α-linolenic acid from a fatty acid mixture containing linoleic acid and oleic acid as main components in addition to α-Ij phosphoric acid.
リルン酸は、種々の生理活性作用を有し、近年では、抗
ガン作用、薬物の吸収促進作用のあることも明らかにな
っており、食品、健康食品、化粧品、医薬品など、さま
ざまな用途に使用されつつある。このリルン酸にはα−
リノレン酸とγ−リノレン酸とがあり、このうち特にα
−リノレン酸がより多彩な生理活性作用を持っているこ
とが明らかになりつつあり、その研究が進められている
。Rilunic acid has various physiologically active effects, and in recent years it has also been revealed that it has anticancer effects and drug absorption promoting effects, and is used for a variety of purposes such as foods, health foods, cosmetics, and pharmaceuticals. It is being done. This lylunic acid has α-
There are linolenic acid and γ-linolenic acid, of which α-linolenic acid is especially
- It is becoming clear that linolenic acid has a wide variety of physiologically active effects, and research into this is progressing.
α−リノレン酸は、エノ油、アマニ油、トウハゼ核油、
キャンデルナツツ油、シソ実油、シア種子油などの天然
油脂に含まれ、これらの天然油脂を常法により加水分解
することにより得られている。この方法で得られるα−
リノレン酸は、α−リノレン酸のほかにリノール酸やオ
レイン酸を主成分として含む炭素数18の不飽和脂肪酸
の混合物であって、通常はα−リノレン酸の含有量が5
0〜65重量%程度とされたものであり、従来では、こ
のような混合物の状態で使用に供されている。α-Linolenic acid includes eno oil, linseed oil, corn goby kernel oil,
It is contained in natural oils and fats such as candelnut oil, perilla seed oil, and shea seed oil, and is obtained by hydrolyzing these natural oils and fats by conventional methods. α− obtained by this method
Linolenic acid is a mixture of unsaturated fatty acids with 18 carbon atoms that mainly contains linoleic acid and oleic acid in addition to α-linolenic acid, and the content of α-linolenic acid is usually 5.
The content is about 0 to 65% by weight, and conventionally, such a mixture is used.
しかるに、α−リノレン酸が持つ種々の固有の生理活性
を生かすためには、α−リノレン酸を90重量%以上の
高純度で得ることが好ましい。このため、加水分解後の
脂肪酸混合物からα−リノレン酸を分離する方法が種々
試みられたが、現在のところ工業的に効率良くしかも高
純度で分離する方法は未だ確立されていない。However, in order to take advantage of the various unique physiological activities of α-linolenic acid, it is preferable to obtain α-linolenic acid with a high purity of 90% by weight or more. For this reason, various methods have been attempted to separate α-linolenic acid from the hydrolyzed fatty acid mixture, but at present no method has yet been established for industrially efficient separation with high purity.
したがって、本発明は、α−リノレン酸のほかにリノー
ル酸やオレイン酸を主成分として含む脂肪酸混合物から
高純度のα−リノレン酸を工業的に効率良く分離する方
法を提供することを目的としている。Therefore, an object of the present invention is to provide a method for industrially and efficiently separating highly purified α-linolenic acid from a fatty acid mixture containing linoleic acid and oleic acid as main components in addition to α-linolenic acid. .
本発明者らは、上記の目的を達成するために鋭意検討し
た結果、担体および溶離液として特定のものを使用した
逆相分配クロマトグラフィーにより、高純度のα−リノ
レン酸を効率良く分離できることを知り、本発明を完成
するに至った。As a result of intensive studies to achieve the above object, the present inventors have found that highly pure α-linolenic acid can be efficiently separated by reversed phase partition chromatography using specific carriers and eluents. This led to the completion of the present invention.
すなわち、本発明は、α−リノレン酸のほかにリノール
酸やオレイン酸を主成分として含む脂肪酸混合物から、
担体としてオクタデシル基結合型シリカゲルまたはスチ
レン−ジビニルベンゼン系共重合体を用い、かつ溶離液
として溶解度パラメーターが11〜18の有機溶剤を用
いた逆相分配クロマトグラフィーにより、α−リノレン
酸を分離することを特徴とするα−リノレン酸の分離法
に係るものである。That is, the present invention provides a method for preparing fatty acid mixtures containing linoleic acid and oleic acid as main components in addition to α-linolenic acid.
Separation of α-linolenic acid by reverse phase partition chromatography using octadecyl group-bonded silica gel or styrene-divinylbenzene copolymer as a carrier and an organic solvent with a solubility parameter of 11 to 18 as an eluent. The present invention relates to a method for separating α-linolenic acid characterized by the following.
本発明に適用される脂肪酸混合物は、炭素数18の直鎖
不飽和脂肪酸であるα−リノレン酸、リノール酸および
オレイン酸を主成分とするものであって、既述のとおり
、エノ油、アマニ油、トウハゼ核油、キャンデルナツツ
油、シソ実油、シア種子油などのα−リノレン酸を多量
に含有する天然油脂を常法により加水分解することによ
り得られるものである。The fatty acid mixture applied to the present invention is mainly composed of α-linolenic acid, linoleic acid, and oleic acid, which are straight chain unsaturated fatty acids having 18 carbon atoms. It is obtained by hydrolyzing natural oils and fats containing a large amount of α-linolenic acid, such as oil, corn goby kernel oil, candy nut oil, perilla seed oil, and shea seed oil, by a conventional method.
この脂肪酸混合物の組成は、原料の天然油脂の種類およ
び加水分解、蒸留などの条件により異なるため、一定で
はないが、−aにはα−リノレン酸が45〜65重量%
、リノール酸が10〜20重量%、オレイン酸が10〜
20重量%で、これら三成分以外の脂肪酸としてステア
リン酸やパルミチン酸などの直鎖飽和脂肪酸およびその
他の脂肪酸がその合計で約10重量%程度である。The composition of this fatty acid mixture is not constant because it varies depending on the type of natural oil and fat used as a raw material and the conditions of hydrolysis, distillation, etc., but -a contains 45 to 65% by weight of α-linolenic acid.
, linoleic acid 10-20% by weight, oleic acid 10-20% by weight
The total amount of fatty acids other than these three components, such as linear saturated fatty acids such as stearic acid and palmitic acid, and other fatty acids is about 10% by weight.
もちろん、本発明では、α−リノレン酸、リノール酸お
よびオレイン酸を主成分とする脂肪酸混合物から高純度
のα−リノレン酸を分離することを目的としているため
、脂肪酸混合物の原料組成は特に限定されるものではな
く、上記以外の脂肪酸組成を有していてもよい。また、
本発明の方法で分離した高純度のα−リノレン酸を再度
本発明に適用しても差し支えない。Of course, since the present invention aims to separate highly purified α-linolenic acid from a fatty acid mixture whose main components are α-linolenic acid, linoleic acid, and oleic acid, the raw material composition of the fatty acid mixture is not particularly limited. It may have a fatty acid composition other than the above. Also,
There is no problem in applying the highly purified α-linolenic acid separated by the method of the present invention to the present invention again.
本発明の逆相分配クロマトグラフィーにおいて、カラム
内に充填する担体としては、化学結合型シリカゲル系担
体であるオクタデシル基結合型シリカゲルか、あるいは
合成高分子系担体であるスチレン−ジビニルベンゼン系
共重合体が用いられる。In the reverse phase partition chromatography of the present invention, the carrier packed in the column is octadecyl group-bonded silica gel, which is a chemically bonded silica gel carrier, or styrene-divinylbenzene copolymer, which is a synthetic polymer carrier. is used.
前者は疎水性の大きいオクタデシル基を化学結合させた
ものであるため、また後者は極性の小さい高分子である
ため、疎水性の脂肪酸混合物を吸着させる担体として適
している。Since the former is a chemically bonded octadecyl group with high hydrophobicity, and the latter is a polymer with low polarity, it is suitable as a carrier for adsorbing hydrophobic fatty acid mixtures.
脂肪酸混合物中のα−1〕ルン酸、リノール酸およびオ
レイン酸は、いずれも炭素数18の不飽和脂肪酸である
が、二重結合の数が異なるため、疎水性に差があり、α
−リノレン酸くリノール酸くオレイン酸の順に疎水性が
大きくなる。このため、これらを上記の担体に吸着させ
た状態で所定の?8離液を注入すると、疎水性の小さい
順、つまりα−リノレン酸、リノール酸、オレイン酸の
順に流出してくることになり、その初期の流出液を分取
すれば高純度のα−リノレン酸が分離されることになる
。本発明は、このような炭素数の同じ脂肪酸における疎
水性の大小を利用してα−リノレン酸を分離しようとす
るものである。[alpha-1]lunic acid, linoleic acid, and oleic acid in the fatty acid mixture are all unsaturated fatty acids with 18 carbon atoms, but because they have different numbers of double bonds, they have different hydrophobicities.
- Hydrophobicity increases in the order of linolenic acid, linoleic acid, and oleic acid. For this reason, when these are adsorbed on the above-mentioned carrier, the predetermined ? 8 When syneresis is injected, α-linolenic acid, linoleic acid, and oleic acid flow out in the order of decreasing hydrophobicity, and if the initial effluent is fractionated, high-purity α-linolenic acid can be obtained. The acid will be separated. The present invention attempts to separate α-linolenic acid by utilizing the hydrophobicity of fatty acids having the same number of carbon atoms.
オクタデシル基結合型シリカゲルとしては、粒径が5〜
150μm、特に30〜74μmで、比゛表面積が20
0〜500 n?/gであるものが好適である。市販品
の例としては、たとえばMCI −GEL(三菱化成工
業−の登録商標〕商品名ODS−IMY、IMA、IM
B、あるいはYMC−GELC■山村化学研究所の登録
商標〕商品名ODS−3−30150,5−15/30
.5−15などがある。The octadecyl group-bonded silica gel has a particle size of 5~
150 μm, especially 30 to 74 μm, with a specific surface area of 20
0~500n? /g is preferred. Examples of commercially available products include MCI-GEL (registered trademark of Mitsubishi Chemical Industries, Ltd.) with product names ODS-IMY, IMA, and IM.
B or YMC-GELC ■Registered trademark of Yamamura Chemical Research Institute] Product name ODS-3-30150, 5-15/30
.. 5-15 etc.
スチレン−ジビニルベンゼン系共重合体としては、粒径
が10〜500μm1特に50〜200μmで、比表面
積が300〜a o o n?/gであるものが好適で
ある。市販品の例としては、たとえばMCI−GEL
(前出)CHP−20P、ダイヤイオン〔三菱化成工業
−の登録商標)HP−10,20,21,40,50,
20SS、セパビーズ〔三菱化成工業−の登録商標)S
P−206,207、アンバーライト 〔ロームアンド
ハース社の登録商標)XAD−2,4などがある。The styrene-divinylbenzene copolymer has a particle size of 10 to 500 μm, especially 50 to 200 μm, and a specific surface area of 300 to 300 μm. /g is preferred. Examples of commercially available products include MCI-GEL
(Previously) CHP-20P, Diaion (registered trademark of Mitsubishi Chemical Industries) HP-10, 20, 21, 40, 50,
20SS, Sepa beads (registered trademark of Mitsubishi Chemical Industries) S
P-206, 207, Amberlite (registered trademark of Rohm and Haas) XAD-2, 4, etc.
本発明の逆相分配クロマトグラフィーにおいて、溶離液
としては、溶解度パラメーター(δ)が11〜18の有
機溶剤が用いられる。このような特定の有機溶剤を使用
することにより、前記脂肪酸の疎水性の大小を利用した
α−リノレン酸の分離が効率的に行えるのであり、上記
パラメーターが11未満となると溶離液の疎水性が太き
(なって分離性能が低下し、18を超えると分離性能は
良いが実用的な溶出速度が得られない。なお、上記の溶
解度パラメーター(δ)とは、次式で定義されるもので
ある。In the reverse phase partition chromatography of the present invention, an organic solvent having a solubility parameter (δ) of 11 to 18 is used as the eluent. By using such a specific organic solvent, α-linolenic acid can be efficiently separated by utilizing the hydrophobicity of the fatty acid, and when the above parameter is less than 11, the hydrophobicity of the eluent becomes If it exceeds 18, the separation performance is good but a practical elution rate cannot be obtained.The above solubility parameter (δ) is defined by the following formula. be.
δ = (Δ E/v) 盟/2ΔE:液体分子の凝集エネルギー(ca 1 )■=分
子容(cd)本発明に使用できる溶離液の具体例としては、N−N−
ジメチルホルムアミド(δ=11.8)、メタノール(
δ=14.5)、ジメチルスルホキシド(δ=13.0
)、アセトニトリル(δ=11.8)、ニトロメタン(
δ=12.5)、テトラヒドロフラン(δ=9.3)、
アセトン(δ= 9.7 )などを互いに混合したり、
あるいは水を加えたりなどして、溶解度パラメーターを
11〜18に調整したものが挙げられ、分離能や経済性
を考慮して適宜溶離液組成を決定すればよい。なお、こ
の溶離液はあらかじめ不活性ガス雰囲気中で加熱還流し
て溶存ガスを除去しておくと、脂肪酸の酸化を防止でき
るため好ましい。δ = (ΔE/v) /2 ΔE: Cohesive energy of liquid molecules (ca 1 ) ■ = molecular volume (cd) Specific examples of eluents that can be used in the present invention include N-N-
Dimethylformamide (δ=11.8), methanol (
δ=14.5), dimethyl sulfoxide (δ=13.0
), acetonitrile (δ=11.8), nitromethane (
δ=12.5), tetrahydrofuran (δ=9.3),
Mixing acetone (δ = 9.7) etc. with each other,
Alternatively, the solubility parameter may be adjusted to 11 to 18 by adding water, etc., and the composition of the eluent may be appropriately determined in consideration of separation ability and economic efficiency. Note that it is preferable to heat the eluent to reflux in an inert gas atmosphere in advance to remove dissolved gases, since oxidation of fatty acids can be prevented.
本発明によるα−リノレン酸の分離法は、逆相分配クロ
マトグラフィーの常法に準じて、上記の担体の所定量を
カラム内に充填したのち、前記の脂肪酸混合物を適宜の
有機溶剤、好ましくは溶離液と同種の有機溶剤に溶解さ
せた溶液として注入し、ついで上記の溶離液を所定速度
で注入することにより、実施される。In the method for separating α-linolenic acid according to the present invention, a predetermined amount of the above-mentioned carrier is packed into a column, and then the above-mentioned fatty acid mixture is mixed with an appropriate organic solvent, preferably This is carried out by injecting a solution dissolved in the same type of organic solvent as the eluent, and then injecting the eluent at a predetermined rate.
この際の操作条件は、担体の分離能と経済性を考慮して
適宜選択すればよい。一般に、同一の担体では、脂肪酸
混合物の注入量が少ないほど高純度の分離を行えるが、
分取量や溶離液の回収コストを考慮すると、上記注入量
はある程度多い方がよい。また、溶離液の注入速度は小
さいほど分離効率は良くなるが、作業性の点からすれば
ある程度大きい方がよい。これらのことから、脂肪酸混
合物の注入量は担体iz当たり脂肪酸混合物が3〜50
gとなる範囲、溶離液の注入速度は充填層における空間
速度S V (Space Velocity)が0.
4〜6.07時間の範囲となるようにするのが好適であ
る。The operating conditions at this time may be appropriately selected in consideration of the separation ability and economic efficiency of the carrier. In general, with the same carrier, the smaller the amount of fatty acid mixture injected, the higher the purity of the separation.
Considering the amount of fractionation and the cost of recovering the eluent, it is better that the amount of injection is a certain amount. Furthermore, the lower the eluent injection rate, the better the separation efficiency, but from the viewpoint of workability, it is better to have a higher rate to some extent. Based on these facts, the injection amount of the fatty acid mixture is 3 to 50 per carrier iz.
g, the injection rate of the eluent is such that the space velocity S V (Space Velocity) in the packed bed is 0.
It is preferable that the time is in the range of 4 to 6.07 hours.
このようにしてカラムから流出させた初期の流出液を分
取することにより、α−リノレン酸を90重量%以上の
高純度でしかも効率良く分離することができる。α−リ
ノレン酸の分取後は、使用した溶離液よりも溶解度パラ
メーターの小さな別の溶離液、たとえば溶離液として有
機溶剤の水溶液を用いた場合その水含有量を少なくした
ものなどを用いて、リノール酸やオレイン酸などの他の
脂肪酸をカラムから早く溶出させ、作業効率を高めると
よい。By separating the initial effluent from the column in this manner, α-linolenic acid can be efficiently separated at a high purity of 90% by weight or more. After separating α-linolenic acid, use another eluent with a smaller solubility parameter than the used eluent, for example, if an aqueous solution of an organic solvent is used as the eluent, use one with a lower water content. It is good to elute other fatty acids such as linoleic acid and oleic acid from the column quickly to increase work efficiency.
以上のように、本発明によれば、天然油脂の加水分解に
て得られるα−リノレン酸含有の脂肪酸混合物から、工
業的実施が容易である逆相分配クロマトグラフィーによ
り、高純度のα−リノレン酸を効率良く分離することが
できるから、種々の生理活性作用を有するα−リノレン
酸の各種用途への利用価値を著しく高めることができる
。As described above, according to the present invention, highly purified α-linolenic acid can be obtained from a fatty acid mixture containing α-linolenic acid obtained by hydrolysis of natural fats and oils by reverse phase partition chromatography, which is easy to implement industrially. Since acids can be efficiently separated, the utility value of α-linolenic acid, which has various physiologically active effects, for various purposes can be significantly increased.
以下に、本発明の実施例を記載して、より具体的に説明
する。なお、以下において、LVとあるは溶離液の注入
速度として充填層における線速度(Liniar Ve
locity)を意味する。EXAMPLES Below, examples of the present invention will be described and explained more specifically. In addition, in the following, LV refers to the linear velocity in the packed bed (Linear Ve) as the injection rate of the eluent.
location).
実施例1α−リノレン酸を分離するべき脂肪酸混合物として、つ
ぎの第1表に示される脂肪酸組成のものを使用した。Example 1 A fatty acid mixture having a fatty acid composition shown in Table 1 below was used as a fatty acid mixture from which α-linolenic acid was to be separated.
第 1 表上記の脂肪酸混合物を78−/−%N−N−ジメチルホ
ルムアミド(以下、DMFという)水溶液(δ=13.
3)に全脂肪酸濃度が4 w/v%となるように溶解し
た溶液を、担体としてのHP−20SS(三菱化成工業
側製;スチレンージビニルベンゼン系共重合体、粒径5
0〜200μm〕を直径20mmxiさ1,000nの
ステンレスカラムに充填した分離カラムに、393m/
(担体ltl当たりの脂肪酸量が50gに相当)注入し
たのち、78w/w%DMF水溶液を溶離液として流速
125 m It 7時間(LV=0.4m/時間、S
V−0,4/時間)で注入して溶離した。Table 1 The above fatty acid mixture was prepared in a 78-/-% N-N-dimethylformamide (hereinafter referred to as DMF) aqueous solution (δ=13.
3) with a total fatty acid concentration of 4 w/v%, HP-20SS (manufactured by Mitsubishi Chemical Corporation; styrene-divinylbenzene copolymer, particle size 5) was added as a carrier.
0 to 200 μm] was packed in a stainless steel column with a diameter of 20 mm x 1,000 nm.
After injection (equivalent to 50 g of fatty acid per liter of carrier), the flow rate was 125 m It for 7 hours (LV = 0.4 m/hour, S
V-0.4/h) and eluted.
流出液のα−リノレン酸、リノール酸、オレイン酸の濃
度をガスクロマトグラフィーにより分析し、流出液量に
対する各脂肪酸の濃度の変化を調べた結果は、第1図に
示されるとおりであった。The concentrations of α-linolenic acid, linoleic acid, and oleic acid in the effluent were analyzed by gas chromatography, and the changes in the concentration of each fatty acid with respect to the amount of effluent were examined. The results were as shown in FIG.
なお、ガスクロマトグラフィーの分析条件は以下のとお
りである。The analysis conditions for gas chromatography are as follows.
カラム :DEGS、2%、 1mカラム温度
=180℃検出器 :FID検出器温度 :350℃キャリヤーガス:Heエステル化 :テトラメチルアンモニウムヒドロキサ
イド溶液を用いて注入口でエステル化初期の流出液として第1図中の破線で囲まれた部分を分
取し、これを分析した結果、α−リノレン酸の純度は9
6.2重量%、回収率は85.7重量%であった。Column: DEGS, 2%, 1m Column temperature = 180°C Detector: FID Detector temperature: 350°C Carrier gas: He Esterification: Using tetramethylammonium hydroxide solution at the inlet as the initial effluent of esterification The area surrounded by the broken line in Figure 1 was collected and analyzed, and the purity of α-linolenic acid was 9.
The recovery rate was 85.7% by weight.
実施例2実施例1と同じ脂肪酸混合物を85v/v%メタノール
水溶液(δ= 14.1 )に全脂肪酸濃度が5w/v
%となるように溶解した溶液を、担体としてのHP−2
0SSを直径8龍×高さ300關のステンレスカラムに
充填した分離カラムに、1m1(担体11当たりの脂肪
酸量が3.3gに相当)注入したのち、85v/v%メ
タノール水溶液を溶離液として流速90ml/時間(L
V=1.8m/時間、S V = 6.07時間)で注
入して溶離した。Example 2 The same fatty acid mixture as in Example 1 was added to an 85 v/v% methanol aqueous solution (δ = 14.1) at a total fatty acid concentration of 5 w/v.
% of HP-2 as a carrier.
After injecting 1 ml (equivalent to 3.3 g of fatty acid per carrier 11) of 0SS into a stainless steel column with a diameter of 8 mm and a height of 300 mm, the flow rate was adjusted using 85 v/v% methanol aqueous solution as the eluent. 90ml/hour (L
V = 1.8 m/h, S V = 6.07 h).
流出液のα−リノレン酸、リノール酸、オレイン酸の濃
度を実施例1と同様にしてガスクロマトグラフィーによ
り分析し、流出液量に対する各脂肪酸の濃度の変化を調
べた結果は、第2図に示されるとおりであった。なお、
オレイン酸は420m2まで?8離しても流出しなかっ
た。The concentrations of α-linolenic acid, linoleic acid, and oleic acid in the effluent were analyzed by gas chromatography in the same manner as in Example 1, and the changes in the concentration of each fatty acid with respect to the amount of effluent were investigated. The results are shown in Figure 2. It was as shown. In addition,
Is oleic acid up to 420m2? It did not leak even after 8 minutes of separation.
初期の流出液として第2図中の破線で囲まれた部分を分
取し、これを分析した結果、α−リノレン酸の純度は9
5.3重量%、回収率は73.9重量%であった。As a result of separating the initial effluent from the area surrounded by the broken line in Figure 2 and analyzing it, the purity of α-linolenic acid was 9.
The recovery rate was 73.9% by weight.
実施例3実施例1と同じ脂肪酸混合物を80−/−%DMF水溶
液(δ=13.3)に全脂肪酸濃度が5&4/ν%とな
るように溶解した溶液を、担体としてのODS−IMY
(三菱化成工業01製;オクタデシル基結合型シリカゲ
ル系担体、粒径30〜50μm〕を直径20龍×高さ5
00fiのステンレスカラムに充填した分離カラムに、
io、5mj!(担体11当たりの脂肪酸量が3.33
gに相当)注入したのち、80iy/w%DMF水溶
液を溶離液として流速942mJ/時間(LV=3.0
m/時間、SV= 6.07時間)で注入して溶離した
。Example 3 A solution in which the same fatty acid mixture as in Example 1 was dissolved in an 80-/-% DMF aqueous solution (δ = 13.3) so that the total fatty acid concentration was 5 & 4/ν% was added to ODS-IMY as a carrier.
(manufactured by Mitsubishi Chemical Industries 01; octadecyl group-bonded silica gel carrier, particle size 30 to 50 μm) was 20 mm in diameter x 5 mm in height.
In the separation column packed in 00fi stainless steel column,
io, 5mj! (The amount of fatty acids per carrier 11 is 3.33
After injection (corresponding to
m/h, SV = 6.07 h).
流出液のα−リノレン酸、リノール酸、オレイン酸の濃
度を実施例1と同様にしてガスクロマトグラフィーによ
り分析し、流出液量に対する各脂肪酸の濃度の変化を調
べた結果は、第3図に示されるとおりであった。The concentrations of α-linolenic acid, linoleic acid, and oleic acid in the effluent were analyzed by gas chromatography in the same manner as in Example 1, and the changes in the concentration of each fatty acid with respect to the amount of effluent were investigated. The results are shown in Figure 3. It was as shown.
初期の流出液として第3図中の破線で囲まれた部分を分
取し、これを分析した結果、α−リノレン酸の純度は9
9.8重量%、回収率は99.7重量%であった。As a result of separating the initial effluent from the area surrounded by the broken line in Figure 3 and analyzing it, the purity of α-linolenic acid was 9.
The recovery rate was 99.7% by weight.
実施例4実施例1と同じ脂肪酸混合物を90−7判%ジメチルス
ルホキシド(以下、DMSOという)水溶液(δ=13
.7)に15御/ν%となるように?8解した溶液を、
担体としての5P−207’(三菱化成工業■製;スチ
レンージビニルベンゼン系共重合体、粒径250〜59
0crm)100m/を直径17mX1t%さ500
mmのガラスカラムに充填した分離カラムに、Lome
(担体11当たりの脂肪酸量が15gに相当)注入した
のち、90w/w%DMSO水溶液を溶離液として流速
100mj2/時間(LV=0.48m/時間、S V
1.0 /時間)で注入して溶離した。Example 4 The same fatty acid mixture as in Example 1 was added to a 90-7% dimethyl sulfoxide (hereinafter referred to as DMSO) aqueous solution (δ=13
.. 7) so that it becomes 15/ν%? 8.The solved solution is
5P-207' (manufactured by Mitsubishi Chemical Corporation; styrene-divinylbenzene copolymer, particle size 250-59) as a carrier
0crm) 100m/diameter 17m x 1t% 500
Lome was added to the separation column packed in a mm glass column.
After injection (equivalent to 15 g of fatty acid per carrier 11), a flow rate of 100 mj2/hour (LV = 0.48 m/hour, S V
1.0/h) and eluted.
流出液のα−リノレン酸、リノール酸、オレイン酸の濃
度を実施例1と同様にしてガスクロマトグラフィーによ
り分析し、流出液量に対する各脂肪酸の濃度の変化を調
べた結果は、第4図に示されるとおりであった。なお、
オレイン酸は1,150m1まで溶離しても流出しなか
った。The concentrations of α-linolenic acid, linoleic acid, and oleic acid in the effluent were analyzed by gas chromatography in the same manner as in Example 1, and the results of examining changes in the concentration of each fatty acid with respect to the amount of effluent are shown in Figure 4. It was as shown. In addition,
Oleic acid did not flow out even when eluted up to 1,150 ml.
初期の流出液として第4図中の破線で囲まれた部分を分
取し、これを分析した結果、α−リノレン酸の純度は9
2.6重世%、回収率は92.5重世%であった。As a result of separating the initial effluent from the area surrounded by the broken line in Figure 4 and analyzing it, the purity of α-linolenic acid was 9.
The recovery rate was 92.5%.
比較例1実施例1と同じ脂肪酸混合物をアセトン(δ=9.7)
に全脂肪酸濃度が5 w/v%となるように溶解した溶
液を、アセトンを溶離液として溶離するようにした以外
は、実施例2と同様に行った。しかし、流出液の組成は
原液組成とほぼ同じであり、α−リノレン酸の分離はで
きなかった。Comparative Example 1 The same fatty acid mixture as in Example 1 was mixed with acetone (δ=9.7).
The same procedure as in Example 2 was carried out, except that a solution in which the total fatty acid concentration was 5 w/v% was eluted using acetone as the eluent. However, the composition of the effluent was almost the same as that of the stock solution, and α-linolenic acid could not be separated.
比較例2実施例1と同じ脂肪酸混合物を、担体としてFP−OT
13.(三菱化成工業側堰;オクチル基結合型ポリビニ
ル系ポリマー、粒径100〜120μm)を用いて溶離
するようにした以外は、実施例2と同様に行った。しか
し、流出液の組成は原液組成とほぼ同じであり、α−リ
ノレン酸の分離はできなかった。Comparative Example 2 The same fatty acid mixture as in Example 1 was used as a carrier in FP-OT.
13. (Mitsubishi Chemical Industries side weir; octyl group-bonded polyvinyl polymer, particle size 100 to 120 μm) was used for elution, but the same procedure as Example 2 was carried out. However, the composition of the effluent was almost the same as that of the stock solution, and α-linolenic acid could not be separated.
第1図〜第4図はそれぞれ実施例1〜4の方法で得た流
出液の流出液量に対する各脂肪酸の濃度の変化を示す特
性図である。特許出願人 日本油脂株式会社(外1名)春宙遣翳趣
ど″FIGS. 1 to 4 are characteristic diagrams showing changes in the concentration of each fatty acid with respect to the amount of effluent obtained by the methods of Examples 1 to 4, respectively. Patent applicant: Nippon Oil & Fats Co., Ltd. (1 other person)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63032190AJPH01207257A (en) | 1988-02-15 | 1988-02-15 | Separation method of α-linolenic acid |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63032190AJPH01207257A (en) | 1988-02-15 | 1988-02-15 | Separation method of α-linolenic acid |
| Publication Number | Publication Date |
|---|---|
| JPH01207257Atrue JPH01207257A (en) | 1989-08-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63032190APendingJPH01207257A (en) | 1988-02-15 | 1988-02-15 | Separation method of α-linolenic acid |
| Country | Link |
|---|---|
| JP (1) | JPH01207257A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991010371A1 (en)* | 1990-01-09 | 1991-07-25 | Kabushiki Kaisha Advance | Acat enzyme inhibiting composition |
| US5672726A (en)* | 1994-12-09 | 1997-09-30 | Republic Of Korea Represented By Rural Development Administration | Method for separating and purifying α-linolenic acid from perilla oil |
| WO1998051656A1 (en)* | 1997-05-12 | 1998-11-19 | Ymc Co., Ltd. | Method for the separation and purification of polyunsaturated fatty acid esters |
| JP2010222365A (en)* | 2002-12-11 | 2010-10-07 | Bristol Myers Squibb Co | METHOD FOR PRODUCING ANTIVIRAL AGENT [1S-(1alpha, 3alpha, 4beta)]-2-AMINO-1,9-DIHYDRO-9-[4-HYDROXY-3-(HYDROXYMETHYL)-2-METHYLENECYCLOPENTYL]-6H-PURIN-6-ONE |
| EP2251410A3 (en)* | 1996-03-28 | 2011-09-28 | DSM IP Assets B.V. | Preparation of microbial polyunsaturated fatty acid containing oil from pasteurised biomass |
| WO2012161654A1 (en)* | 2011-05-20 | 2012-11-29 | National Central University | Peptide chromatographic purification assisted by combining of solubility parameter and solution conformation energy calculations |
| JP2015158382A (en)* | 2014-02-21 | 2015-09-03 | 日本ポリプロ株式会社 | Method for quantitative analysis of sorbitol compound in polyolefin |
| US9457108B2 (en) | 2002-06-19 | 2016-10-04 | Dsm Ip Assets B.V. | Pasteurisation process for microbial cells and microbial oil |
| CN106496021A (en)* | 2016-10-24 | 2017-03-15 | 烟台燕园科玛健康产业有限公司 | A kind of high-purity alpha linolenic acid separating technology |
| CN112533484A (en)* | 2018-06-21 | 2021-03-19 | 纽希得私人有限公司 | ALA-enriched polyunsaturated fatty acid compositions |
| US11872201B2 (en) | 2018-06-21 | 2024-01-16 | Nuseed Nutritional Us Inc. | DHA enriched polyunsaturated fatty acid compositions |
| WO2025005168A1 (en)* | 2023-06-30 | 2025-01-02 | 株式会社ニッスイ | Composition containing polyunsaturated fatty acid or ester derivative thereof, and method for producing same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991010371A1 (en)* | 1990-01-09 | 1991-07-25 | Kabushiki Kaisha Advance | Acat enzyme inhibiting composition |
| US5672726A (en)* | 1994-12-09 | 1997-09-30 | Republic Of Korea Represented By Rural Development Administration | Method for separating and purifying α-linolenic acid from perilla oil |
| EP2251410A3 (en)* | 1996-03-28 | 2011-09-28 | DSM IP Assets B.V. | Preparation of microbial polyunsaturated fatty acid containing oil from pasteurised biomass |
| EP2251412A3 (en)* | 1996-03-28 | 2011-09-28 | DSM IP Assets B.V. | Preparation of microbial polyunsaturated fatty acid containing oil from pasteurised biomass |
| EP2280062A3 (en)* | 1996-03-28 | 2011-09-28 | DSM IP Assets B.V. | Preparation of microbial polyunsaturated fatty acid containing oil from pasteurised biomass |
| EP2251411A3 (en)* | 1996-03-28 | 2011-10-12 | DSM IP Assets B.V. | Preparation of microbial polyunsaturated fatty acid containing oil from pasteurised biomass |
| WO1998051656A1 (en)* | 1997-05-12 | 1998-11-19 | Ymc Co., Ltd. | Method for the separation and purification of polyunsaturated fatty acid esters |
| US10493174B2 (en) | 2002-06-19 | 2019-12-03 | Dsm Ip Assets B.V. | Pasteurisation process for microbial cells and microbial oil |
| US9457108B2 (en) | 2002-06-19 | 2016-10-04 | Dsm Ip Assets B.V. | Pasteurisation process for microbial cells and microbial oil |
| JP2010222365A (en)* | 2002-12-11 | 2010-10-07 | Bristol Myers Squibb Co | METHOD FOR PRODUCING ANTIVIRAL AGENT [1S-(1alpha, 3alpha, 4beta)]-2-AMINO-1,9-DIHYDRO-9-[4-HYDROXY-3-(HYDROXYMETHYL)-2-METHYLENECYCLOPENTYL]-6H-PURIN-6-ONE |
| US8933196B2 (en) | 2011-05-20 | 2015-01-13 | National Central University | Peptide chromatographic purification assisted by combining of solubility parameter and solution conformation energy calculations |
| TWI510276B (en)* | 2011-05-20 | 2015-12-01 | Univ Nat Central | An optimization method for purifying the peptide program by column chromatography by solubility parameter and solution structure energy calculation |
| WO2012161654A1 (en)* | 2011-05-20 | 2012-11-29 | National Central University | Peptide chromatographic purification assisted by combining of solubility parameter and solution conformation energy calculations |
| JP2015158382A (en)* | 2014-02-21 | 2015-09-03 | 日本ポリプロ株式会社 | Method for quantitative analysis of sorbitol compound in polyolefin |
| CN106496021A (en)* | 2016-10-24 | 2017-03-15 | 烟台燕园科玛健康产业有限公司 | A kind of high-purity alpha linolenic acid separating technology |
| CN112533484A (en)* | 2018-06-21 | 2021-03-19 | 纽希得私人有限公司 | ALA-enriched polyunsaturated fatty acid compositions |
| JP2021527745A (en)* | 2018-06-21 | 2021-10-14 | ヌシード ピーティーワイ リミテッド | Polyunsaturated fatty acid composition enriched with ALA |
| US11872201B2 (en) | 2018-06-21 | 2024-01-16 | Nuseed Nutritional Us Inc. | DHA enriched polyunsaturated fatty acid compositions |
| US12137701B2 (en) | 2018-06-21 | 2024-11-12 | Nuseed Nutritional Us Inc. | ALA enriched polyunsaturated fatty acid compositions |
| WO2025005168A1 (en)* | 2023-06-30 | 2025-01-02 | 株式会社ニッスイ | Composition containing polyunsaturated fatty acid or ester derivative thereof, and method for producing same |
| Publication | Publication Date | Title |
|---|---|---|
| EP1065196B1 (en) | Process of selectively separating and purifying eicosapentaenoic and docosahexaenoic acids or their esters | |
| ES2733599T3 (en) | Improved chromatography process to recover a substance or group of substances from a mixture | |
| KR970002037B1 (en) | PROCESS FOR PREPARING Ñß-LINOLEIC ACID FROM PERILLA | |
| JP3739494B2 (en) | Chromatographic method | |
| JPH01207257A (en) | Separation method of α-linolenic acid | |
| US4529551A (en) | Process for separating oleic acid from linoleic acid | |
| US9163198B2 (en) | Process for purification of EPA (eicosapentanoic acid) ethyl ester from fish oil | |
| JPH0225447A (en) | Production of highly unsaturated fatty acids | |
| EP0429995B1 (en) | Process for hydrogenation of oils | |
| EP3029021A1 (en) | Method for separating fat-soluble material by simulated moving bed chromatography, and device for same | |
| AU2009290334B2 (en) | Method for acquiring highly unsaturated fatty acid derivatives | |
| CN105873893A (en) | Chromatographic method for the production of polyunsaturated fatty acids | |
| US4524029A (en) | Process for separating fatty acids | |
| WO2009063500A2 (en) | Novel methods of isolation of poly unsaturated fatty acids | |
| JP2009190989A (en) | Method for simultaneous production of tocotrienol and biodiesel fuel from fats and oils | |
| CN105848747B (en) | Chromatographic process purifies aliphatic acid | |
| JP4089306B2 (en) | Capsinoid extract production method and capsinoid extract obtained by the method | |
| JPH0692595B2 (en) | Separation method of fatty acid and triglyceride | |
| JP3340182B2 (en) | Method for producing triglyceride containing docosahexaenoic acid | |
| JPH04243849A (en) | Purification of highly unsaturated fatty acid and its derivative | |
| JPH04159398A (en) | How to obtain highly unsaturated fatty acids | |
| JPH0142933B2 (en) | ||
| JPH09151390A (en) | Purification of highly unsaturated fatty acid and its derivative | |
| JP6256981B2 (en) | Selective continuous recovery method of vitamin E from oil | |
| US6316647B1 (en) | Cation-exchanged clay mineral, packing material for chromatography using the same and method of producing the same |