【発明の詳細な説明】産業上の利用分野本発明は、野菜、果実等の生鮮物を生産地あるいは流通
段階等において長期間の貯蔵を可能とする生鮮物貯蔵装
置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a fresh produce storage device that allows fresh produce such as vegetables and fruits to be stored for a long period of time at the production site or at the distribution stage.
従来の技術生鮮物を貯蔵する手段としては冷蔵貯蔵が一般的である
が、これに加えてよシ長期にわたる貯蔵手段として、貯
蔵庫内の空気成分を変える貯蔵がある。つまり、貯蔵庫
内の酸素(o2)濃度を減少せしめ、炭酸ガス(Co2
)濃度を増加せしめることで生鮮物の呼吸作用を抑制し
、また微生物による変質9分解や酸化等の化学反応も防
止することができることが知られている。BACKGROUND OF THE INVENTION Refrigerated storage is a common means of storing perishables, but in addition to this, another long-term storage method is storage that changes the air composition within the storage room. In other words, the concentration of oxygen (O2) in the storage chamber is reduced, and the concentration of carbon dioxide (Co2) is reduced.
) It is known that by increasing the concentration, it is possible to suppress the respiration of fresh foods and also to prevent chemical reactions such as decomposition and oxidation caused by microorganisms.
以下図面を参照しながら、上述した従来の生鮮物貯蔵装
置の一例について説明する。An example of the above-mentioned conventional fresh food storage device will be described below with reference to the drawings.
第3図は従来の生鮮物貯蔵装置の系統図を示すものであ
る。1は貯蔵庫であり、蒸発器2′、コンデンシングユ
ニット3′から成る冷却装置4′を設はテイル。6′ハ
プロパンガスボンベであり、炭酸ガス発生装置6′で前
記貯蔵庫1′より導入管7′で導入した空気を供して燃
焼させC3H8+502→3CO2+4H20+531
の反応で発生した燃焼排ガス、すなわち炭酸ガスC○2
を排出管8′で前記貯蔵庫1′に排出している。9′は
炭酸ガス吸着装置で、前記貯蔵庫1′より導入管10’
で導入し、過剰の炭酸ガスCo2 を吸着した後、排出
管11′で貯蔵庫1′に戻している。12′はガスモニ
ターであり貯蔵庫1′内のガス濃度を検知して炭酸ガス
発生装置6′及び炭酸ガス吸着装置9′を適時コントロ
ールしている。FIG. 3 shows a system diagram of a conventional fresh food storage device. Reference numeral 1 is a storage, and a cooling device 4' consisting of an evaporator 2' and a condensing unit 3' is installed in the tail. It is a 6' hapropane gas cylinder, and is combusted by the carbon dioxide gas generator 6' using the air introduced from the storage 1' through the introduction pipe 7' to produce C3H8+502→3CO2+4H20+531.
The combustion exhaust gas generated by the reaction, that is, carbon dioxide C○2
is discharged into the storage 1' through a discharge pipe 8'. 9' is a carbon dioxide adsorption device, which is connected to the inlet pipe 10' from the storage 1'.
After the excess carbon dioxide gas is adsorbed, it is returned to the storage 1' through a discharge pipe 11'. Reference numeral 12' denotes a gas monitor which detects the gas concentration in the storage 1' and controls the carbon dioxide gas generator 6' and the carbon dioxide adsorption device 9' in a timely manner.
発明が解決しようとする問題点しかしながら、上記のような構成では、炭酸ガス発生装
置6′から発生するガスの成分としては炭酸ガスC02
以外にエチレンやプロピレン等の青果物の貯蔵に有害な
ガスが多量に含有されており、そのガスが直接、貯蔵庫
1′内に放出されるため、貯蔵物にしばしば悪影響を与
えるという欠点を有していた。Problems to be Solved by the Invention However, in the above configuration, the component of the gas generated from the carbon dioxide gas generating device 6' is carbon dioxide gas C02.
In addition, it contains large amounts of gases such as ethylene and propylene that are harmful to the storage of fruits and vegetables, and because these gases are directly released into the storage 1', they often have a negative effect on the stored products. Ta.
本発明は、上記問題点に鑑み、貯蔵庫に有害なガスの出
ない生鮮物貯蔵装置を提供するものである。In view of the above-mentioned problems, the present invention provides a fresh food storage device that does not emit harmful gases into the storage.
問題点を解決するだめの手段上記問題点を解決するための本発明の生鮮物貯蔵装置は
、炭素を含有する燃料を燃焼させる燃焼炉と、燃焼に供
する空気を循環せしめる送風機と、過剰な炭酸ガスを吸
着すべく吸着材を入れた吸着器と、これらの配管に設け
た複数の風路切替バルブと、貯蔵庫のガス雰囲気を検知
し各部を動作させる手段と、任意に設定できる濃度設定
機能と、設定濃度で動作する接点と濃度設定機能に設定
した設定値より任意の濃度だけ高い濃度値と、それから
低い濃度値で動作する接点を有したガスモニターを備え
たものである。Means for Solving the Problems The perishables storage device of the present invention for solving the above problems includes a combustion furnace that burns fuel containing carbon, a blower that circulates air for combustion, and An adsorber containing adsorbent to adsorb gas, multiple air path switching valves installed in these pipes, a means to detect the gas atmosphere in the storage chamber and operate each part, and a concentration setting function that can be set arbitrarily. , a gas monitor that has a contact point that operates at a set concentration, a contact point that operates at a concentration value that is an arbitrary concentration higher than the set value set in the concentration setting function, and a concentration value that is lower than the set value.
作 用本発明は、上記構成によって炭素を含有する燃料を燃焼
させるので、貯蔵に有害なガスは発生せずクリーンな空
気中に貯蔵できる。さらに、貯蔵庫のガス雰囲気が設定
濃度からはずれた場合でも、ガスモニターにより検知し
安易設定値にもどす事ができ生鮮物を安定したガス雰囲
気状態に保つことができる。Function: Since the present invention burns carbon-containing fuel with the above configuration, it can be stored in clean air without generating gases harmful to storage. Furthermore, even if the gas atmosphere in the storage room deviates from the set concentration, it can be detected by the gas monitor and returned to the easily set value, making it possible to maintain the perishables in a stable gas atmosphere.
実施例以下本発明の一実施例の生鮮物貯蔵装置について図面を
参照しながら説明する。EXAMPLE Hereinafter, a fresh food storage apparatus according to an embodiment of the present invention will be described with reference to the drawings.
第1図は、本発明の一実施例における生鮮物貯蔵装置の
構成を示すものである。FIG. 1 shows the configuration of a fresh produce storage device in one embodiment of the present invention.
第1図において1は生鮮物を貯蔵するプレファプ冷蔵庫
の如き貯蔵庫であり、圧縮機2.凝縮器3、蒸発器4.
送風機6,6より成る冷却装置7を上部に載架している
。前記貯蔵庫1には庫内に炭酸ガスCo2を充填するた
めの炭酸ガス発生装置8と、燃焼ガスの中の過剰な炭酸
ガスCo2を吸着して除去する炭酸ガス吸着装置9が接
続されている。炭酸ガス発生装置8は、貯蔵庫1内の空
気を導入する導入管1oと、ここで発生した燃焼ガスを
炭酸ガス吸着装置9に導く、連結管11との間に構成さ
れ、燃焼炉12及び燃焼ガスの冷一部器13で構成され
ている。14は送風機であり、冷却器13と炭酸ガス吸
着装置9との間の連結管11に設け、導入管10より貯
蔵庫1内の空気を燃焼炉12に導き、更に燃焼炉12で
発生した燃焼ガスを冷却器13で冷却した後、連結管1
1によシ炭酸ガス吸着装置9に導く。燃焼炉12は、内
面に断熱管15を備えた内ケーシング16と、燃焼2次
空気を供給するために内ケーシング16との間に風路1
了を形成した外ケーシング18と、断熱管16内で固形
燃料19を載置する火格子20と、燃焼空気を加熱して
固形燃料19を燃焼させるための着火用ヒータ21より
構成されている。In FIG. 1, 1 is a storage such as a pre-fabricated refrigerator for storing perishables, and a compressor 2. Condenser 3, evaporator 4.
A cooling device 7 consisting of blowers 6, 6 is mounted on the top. Connected to the storage 1 are a carbon dioxide gas generating device 8 for filling the interior of the storage with carbon dioxide gas Co2, and a carbon dioxide gas adsorption device 9 for adsorbing and removing excess carbon dioxide gas Co2 in the combustion gas. The carbon dioxide gas generator 8 is configured between an introduction pipe 1o that introduces air in the storage 1 and a connecting pipe 11 that leads the combustion gas generated here to the carbon dioxide adsorption device 9, and is connected to a combustion furnace 12 and a combustion chamber 12. It consists of a gas cooling unit 13. Reference numeral 14 denotes a blower, which is installed in the connecting pipe 11 between the cooler 13 and the carbon dioxide adsorption device 9, guides the air in the storage 1 through the introduction pipe 10 to the combustion furnace 12, and further blows the combustion gas generated in the combustion furnace 12. After cooling with the cooler 13, the connecting pipe 1
1 is led to a carbon dioxide adsorption device 9. The combustion furnace 12 has an inner casing 16 equipped with a heat insulating pipe 15 on the inner surface, and an air passage 1 between the inner casing 16 and the inner casing 16 for supplying secondary combustion air.
It is composed of an outer casing 18 in which a solid fuel 19 is placed inside a heat insulating pipe 16, a grate 20 on which a solid fuel 19 is placed, and an ignition heater 21 for heating combustion air to combust the solid fuel 19.
固形燃料19は、純度の高い炭素であり燃焼によりC+
02十N2→Co2千N2の反応で、燃焼カスハ炭酸ガ
スCo2と窒素(N2)になる。The solid fuel 19 is highly pure carbon and becomes C+ by combustion.
By the reaction of 020 N2→Co2,000 N2, the combustion scum becomes carbon dioxide gas Co2 and nitrogen (N2).
一方炭酸ガス吸着装置9は、燃焼ガスの中の過剰な炭酸
ガスCO2を吸着し、貯蔵庫1外に排出するためのもの
である。2基の吸着器22 、23に対し、燃焼ガスが
交互に循環するように導入管24 、25 、排出管2
6 、27 、風路切替バルブ28.29で構成されて
いる。吸着器22 、23内には、吸着材30.31が
充填されており、炭酸ガスCO2を吸着し、吸着能力が
低下すると、送風機32によって外気を風路切替バルブ
33゜排出管26.27に接続している導入管34ある
いは35を通して吸着器22あるいは23に送風し、炭
酸ガスを脱着し、導入管24あるいは25に接続してい
る排出管36 、37 、風路切替バルブ38を通して
排気管39より大気に排気されるよう構成している。On the other hand, the carbon dioxide adsorption device 9 is for adsorbing excess carbon dioxide CO2 in the combustion gas and discharging it outside the storage 1. The inlet pipes 24 and 25 and the discharge pipe 2 are connected to the two adsorbers 22 and 23 so that the combustion gas alternately circulates.
6, 27, and air path switching valves 28 and 29. The adsorbers 22 and 23 are filled with adsorbents 30 and 31, which adsorb carbon dioxide gas CO2, and when the adsorption capacity decreases, the blower 32 directs outside air to the air path switching valve 33 and the exhaust pipe 26 and 27. Air is blown to the adsorber 22 or 23 through the connected inlet pipe 34 or 35 to desorb carbon dioxide gas, and then through the exhaust pipe 39 through the exhaust pipes 36, 37 connected to the inlet pipe 24 or 25 and the air path switching valve 38. The structure is designed to allow more air to be exhausted into the atmosphere.
例えば、吸着器22が吸着作用、吸着器23が脱着作用
をしている時は、風路切替バルブ28゜29は、燃焼ガ
スが導入管24.吸着器22.排出管26を通過して流
れる方向に開いており、また、風路切替バルブ33.3
8は、外気が送風機32によって、導入管36.吸着器
23.排出管3了を通過して流れる方向に開いて、排気
管39より大気に排気される。排気管40は、風路切替
バルブ29と貯蔵庫を接続している。41.42は風路
切替バルブであり、各々、貯蔵庫1と燃焼炉12.冷却
器13と送風機14との間に設けられている。For example, when the adsorber 22 is acting as an adsorbent and the adsorber 23 is acting as a desorber, the air path switching valves 28 and 29 are set so that the combustion gas is transferred to the inlet pipe 24. Adsorber 22. It passes through the discharge pipe 26 and is open in the direction of flow, and also includes an air path switching valve 33.3.
8, outside air is supplied to the inlet pipe 36 by the blower 32. Adsorber 23. It passes through the exhaust pipe 3, opens in the flow direction, and is exhausted to the atmosphere through the exhaust pipe 39. The exhaust pipe 40 connects the air path switching valve 29 and the storage. Reference numerals 41 and 42 indicate air path switching valves, respectively, for the storage 1 and the combustion furnace 12. It is provided between the cooler 13 and the blower 14.
44は送風機14の風量を制御するコントローラーであ
り、貯蔵庫1内のガス濃度を検知するガスモニター45
の信号によって風量は決定する。44 is a controller that controls the air volume of the blower 14, and a gas monitor 45 that detects the gas concentration in the storage 1.
The air volume is determined by the signal.
46はチャンバーであり、貯蔵庫1と風路切替バルブ4
1の間の導入管1oに設けられた容器であり、ガスモニ
ター45のサンプリングチューブぐを接続している。4
8は燃焼炉8からの燃焼ガス温度を検知する温度検知手
段であり、49は燃焼炉8に大気を導入する風路切替バ
ルブである。46 is a chamber, which includes a storage 1 and an air passage switching valve 4.
This is a container provided in the introduction pipe 1o between the gas monitors 1 and 1, and is connected to the sampling tube of the gas monitor 45. 4
8 is a temperature detection means for detecting the temperature of the combustion gas from the combustion furnace 8, and 49 is an air passage switching valve for introducing the atmosphere into the combustion furnace 8.
次に第3図、生鮮物貯蔵装置の電気回路図について説明
する。53は商用の交流電源、46はガスモニター、4
8は前記ガスモニター内部にある酸素濃度が設定濃度で
動作する接点、61は設定濃度より1%酸素濃度が高い
濃度で動作する接点、62は設定濃度より1%酸素濃度
が低い濃度で動作する接点である。66は炭酸ガス濃度
が設定濃度で動作する接点であり前記内部接点48.前
記内部接点61.前記内部接点62.前記内部接点65
からなり、各部を動作させる手段(以後シーケンサ)5
0の入力に接続されている。また56は燃焼ガス温度検
知手段であり、これも入力に接続されている。44は前
記ガスモニターからの信号によって前記送風機14の風
量を決定するインバータ等のコントローラで、2は圧縮
機、6.6は送風機であり、貯蔵庫内温度サーモ54を
介して並列接続されている。シーケンサ50の出力端に
は、Ylに着火用ヒータ21.Y2に送風機32゜Y3
に風路切替バルブ2B、Y4に風路切替バルブ29.Y
5に風路切替バルブ33.Y6に風路切替バルブ38.
Y7に風路切替バルブ41゜Y8に風路切替バルブ42
、Y9に風路切替バルブ49 、Yl 0にインバー
タ44が接続されている。Next, FIG. 3, an electric circuit diagram of the fresh produce storage device, will be explained. 53 is a commercial AC power supply, 46 is a gas monitor, 4
8 is a contact that operates at a set oxygen concentration inside the gas monitor, 61 is a contact that operates at a concentration that is 1% higher than the set concentration, and 62 is a contact that operates at a concentration that is 1% lower than the set concentration. It is a point of contact. Reference numeral 66 is a contact that operates when the carbon dioxide gas concentration is set, and is similar to the internal contact 48. The internal contact 61. The internal contact 62. The internal contact 65
A means for operating each part (hereinafter referred to as a sequencer) 5
Connected to the 0 input. Further, 56 is a combustion gas temperature detection means, which is also connected to the input. 44 is a controller such as an inverter that determines the air volume of the blower 14 based on the signal from the gas monitor, 2 is a compressor, and 6.6 is a blower, which are connected in parallel via a storage temperature thermostat 54. At the output end of the sequencer 50, an ignition heater 21. Air blower 32°Y3 in Y2
The air passage switching valve 2B is placed on Y4, and the air passage switching valve 29 is placed on Y4. Y
5 is the air passage switching valve 33. Air path switching valve 38 on Y6.
Air path switching valve 41° on Y7 Air path switching valve 42 on Y8
, Y9 are connected to an air path switching valve 49, and Yl0 is connected to an inverter 44.
以上のように構成された生鮮物貯蔵装置について、第1
図、第2図、第3図を用いてその動作を説明する。Regarding the fresh food storage device configured as described above, the first
The operation will be explained using FIG. 2, FIG. 3, and FIG.
貯蔵庫1内の雰囲気は、最初N2ア9%、0221%で
あり、炭酸ガス発生装置8が運転されると、庫内空気は
、送風機14によって導入管1゜より、チャンバー46
、切替バルブ41を通って燃焼炉12へ導入され、着火
用ヒータ21で加熱され、固形燃焼19の燃焼に供され
る。Initially, the atmosphere inside the storage 1 was 9% N2A and 0221%, and when the carbon dioxide generator 8 was operated, the air inside the storage was passed through the introduction pipe 1° by the blower 14 to the chamber 46.
The fuel is introduced into the combustion furnace 12 through the switching valve 41, heated by the ignition heater 21, and is used for combustion of the solid combustion 19.
C+ 02 十N 2→C02+N2の反応で燃焼ガス
は炭酸ガスCQ2 と窒素N2になって、冷却器13で
冷却した後、連結管11により、切替バルブ42.送風
機14を通過し、更に、切替バルブ28.導入管24を
通過して吸着器22に入る。ここで炭酸ガスC02は、
吸着材3oによって吸着され窒素N2だけが、排出管2
6.切替バルブ29を通過して排気管4oにより、貯蔵
庫1へ循環する。−定時間が経過すると、燃焼ガスが循
環する吸着器が、22から23に切替わるべく、切替バ
ルブ28゜29が切替わり、切替バルブ28.導入管2
5を通過して吸着器23に入る。ここで再び炭酸ガスC
O2は、吸着材31によって吸着され窒素N2だけが排
出管27.切替バルブ29を通過して排気管40により
貯蔵庫1へ循環する。再び一定時間が経過すると吸着器
22.23が切替わり、交互に燃焼ガスが循環する。By the reaction of C+ 02 10N 2→C02+N2, the combustion gas becomes carbon dioxide CQ2 and nitrogen N2, and after being cooled by the cooler 13, it is passed through the connecting pipe 11 to the switching valve 42. It passes through the blower 14 and further passes through the switching valve 28 . It passes through the introduction pipe 24 and enters the adsorber 22. Here, carbon dioxide gas C02 is
Only nitrogen N2 adsorbed by the adsorbent 3o flows into the exhaust pipe 2.
6. It passes through the switching valve 29 and circulates to the storage 1 through the exhaust pipe 4o. - After a certain period of time has elapsed, the switching valves 28 and 29 are switched so that the adsorber through which combustion gas circulates is switched from 22 to 23; Introductory tube 2
5 and enters the adsorber 23. Here again carbon dioxide C
O2 is adsorbed by the adsorbent 31, and only nitrogen N2 is discharged from the exhaust pipe 27. It passes through the switching valve 29 and circulates to the storage 1 through the exhaust pipe 40. After a certain period of time has elapsed again, the adsorbers 22 and 23 are switched, and the combustion gas is alternately circulated.
この間に吸着器22.23の中に充填された吸着材30
.31は、炭酸ガスCQ2の吸着能力の限界に達し、燃
焼ガスの中の炭酸ガスC02は吸着しきれなくなり、排
気管4oを通って貯蔵庫1内に排気され、貯蔵庫1内の
炭酸ガスCO2濃度は徐々に増加し始める。7577/
の大きさの貯蔵庫1で運転開始後約2時間の状態である
。この間にも、貯蔵庫1内の酸素02濃度は、最初21
%より減少し続ける。貯蔵庫1内のガス濃度を、酸素(
Q2)=5%、炭酸ガス(CO2)=5%、窒素(N2
)=90%を所定の値とすると、貯蔵庫1内の炭酸ガス
が増加して5%に達したことを、ガスモニター45が、
チャンバー46内のガスサンプリングを行うことによっ
て検知すると内部接点55からN4に入力されたシーケ
ンサ5oにより、炭酸ガス吸着装置9の脱着用の送風機
32が運転され、吸着器内の吸着材の再生が開始される
。例えば、吸着器22が、燃焼ガスが循環して炭酸ガス
CQ2を吸着していると、吸着器23は、送風機32に
よって外気が切替バルブ33.導入管35゜排出管27
を通過し、吸着材31に送風されることによって炭酸ガ
スC02が脱着され再生される。During this time, the adsorbent 30 filled in the adsorber 22, 23
.. 31 reaches the limit of its adsorption capacity for carbon dioxide CQ2, and the carbon dioxide C02 in the combustion gas can no longer be adsorbed and is exhausted into the storage 1 through the exhaust pipe 4o, and the carbon dioxide CO2 concentration in the storage 1 decreases. It starts to increase gradually. 7577/
This is the state about 2 hours after the start of operation in a storage warehouse 1 with a size of . During this time, the oxygen 02 concentration in storage 1 was initially 21
% continues to decrease. The gas concentration in storage 1 is changed to oxygen (
Q2) = 5%, carbon dioxide (CO2) = 5%, nitrogen (N2)
) = 90% as a predetermined value, the gas monitor 45 indicates that the carbon dioxide gas in the storage 1 has increased and reached 5%.
When it is detected by sampling the gas in the chamber 46, the sequencer 5o input to N4 from the internal contact 55 operates the blower 32 for desorption of the carbon dioxide adsorption device 9, and the regeneration of the adsorbent in the adsorber starts. be done. For example, when the adsorber 22 is adsorbing carbon dioxide CQ2 through circulation of combustion gas, the adsorber 23 is moved to the outside air by the blower 32 through the switching valve 33. Inlet pipe 35° Discharge pipe 27
The carbon dioxide gas C02 is desorbed and regenerated by being blown onto the adsorbent 31.
これが一定時間毎に交互に行われるため、貯蔵庫1内の
炭酸ガスCO2濃度は所定の5%を維持する。Since this is performed alternately at regular intervals, the concentration of carbon dioxide CO2 in the storage 1 is maintained at a predetermined 5%.
一方酸素o2濃度は、その間も燃焼に供せられているた
め、減少し続け、1Q時間後に所定の6%に達し、これ
をガスモニター45が検知し、内部接点48からxlを
入力されたシーケンサ6oにより炭酸ガス発生装置8及
び炭酸ガス吸着装置9を停止させる。これで、貯蔵庫1
内が所定のガス濃度酸素(0)=s%、炭酸ガス(CO
2)=5%。On the other hand, the oxygen O2 concentration continues to decrease as it is being used for combustion, and reaches the predetermined 6% after 1Q time.The gas monitor 45 detects this, and the sequencer receives xl from the internal contact 48. 6o, the carbon dioxide gas generator 8 and carbon dioxide adsorption device 9 are stopped. Now storage 1
The inside is the predetermined gas concentration oxygen (0) = s%, carbon dioxide (CO
2) = 5%.
窒素(N2)=90%となり、貯蔵を開始する。酸素0
2濃度が所定の5%に達したのを検知すると同時に、風
路切替バルブ41.42が、導入管10゜連結管43.
連結管11を連通ずるように切替わる。以後、一定時間
毎に送風機14を運転し、チャンバー46内のガスをガ
スモニター45で検知することによって、貯蔵庫1内に
貯蔵している生鮮物の呼吸作用によって発生する炭酸ガ
スC○2が所定の6%を越えると炭酸ガス吸着装置9が
働き、所定の濃度になるまで炭酸ガスCO2を吸着する
。この動作を説明すると、ガスモニター45が所定の濃
度を越えたことを検知すると、内部接点56からN4を
入力されたシーケンサ5oにより送風機14が運転され
、貯蔵庫1内のガスが導入管10.切替バルブ41.連
結管43.切替バルブ42.送風機14.連結管11.
切替バルブ28、導入管24を通過して吸着器22に導
入され、過剰の炭酸ガスCo2が吸着材30に吸着され
て、更に、排出管26.切替バルブ29.排気管4oを
通過して、貯蔵庫1に循環する。一方吸着器23は、送
風機32によって外気が切替バルブ33.導入管36.
排気管27を通過し、吸着材31に送風されることによ
って炭酸ガスCo2が脱着され再生される。これが一定
時間毎に交互に行われるため、貯蔵庫1内の炭酸ガスC
O2濃度は、所定の濃度にもどる。また、貯蔵中に貯蔵
庫1内の酸素02濃度が61%以上になったことをガス
モニター45が検知すると、内部接点61が動作しシー
ケンサ50のN2に信号が入力される。Nitrogen (N2) becomes 90% and storage begins. Oxygen 0
At the same time when it is detected that the concentration of 5% has been reached, the air passage switching valve 41.42 switches between the 10° inlet pipe and the connecting pipe 43.
Switching is performed so that the connecting pipe 11 is communicated. Thereafter, by operating the blower 14 at regular intervals and detecting the gas in the chamber 46 with the gas monitor 45, the amount of carbon dioxide C○2 generated by the respiration of the perishables stored in the storage 1 is controlled at a predetermined level. When the concentration exceeds 6%, the carbon dioxide gas adsorption device 9 operates and adsorbs carbon dioxide gas CO2 until a predetermined concentration is reached. To explain this operation, when the gas monitor 45 detects that a predetermined concentration has been exceeded, the blower 14 is operated by the sequencer 5o to which N4 is input from the internal contact 56, and the gas in the storage 1 is transferred to the inlet pipe 10. Switching valve 41. Connecting pipe 43. Switching valve 42. Blower14. Connecting pipe 11.
Excess carbon dioxide Co2 is introduced into the adsorber 22 through the switching valve 28 and the inlet pipe 24, and is adsorbed by the adsorbent 30, and then passed through the discharge pipe 26. Switching valve 29. It passes through the exhaust pipe 4o and circulates to the storage 1. On the other hand, the adsorber 23 is supplied with outside air by the blower 32 through the switching valve 33. Introductory tube 36.
The carbon dioxide gas Co2 is desorbed and regenerated by passing through the exhaust pipe 27 and being blown onto the adsorbent 31. Since this is done alternately at regular intervals, the carbon dioxide C in the storage 1
The O2 concentration returns to the predetermined concentration. Further, when the gas monitor 45 detects that the oxygen 02 concentration in the storage 1 becomes 61% or more during storage, the internal contact 61 operates and a signal is input to N2 of the sequencer 50.
N2が入力されたシーケンサ6oはYl、Y3゜Y 、
Ye 、Ysを出力し、着火用ヒータはONされ、風路
切替バルブ49が大気を燃焼炉12に導入するように切
替わシ、風路切替バルブ28.38は連結管11と導入
管26と排出管37.排気管39が連通ずるように切替
わる。そして、風路切替バルブ49から導入された大気
は燃焼炉12を通り排気管39から大気に放出されなが
ら固形燃料が燃焼していく。そして、燃焼ガス温度検知
手段66が燃焼ガス温度500℃を検知し、シーケンサ
50のN6に入力する。N5を入力されたシーケンサ6
oは、Y3 、Ye 、Ye(7)出力を切り、風路切
替バルブ49.28.38は、燃焼炉8と吸着装置9と
貯蔵庫1が連通ずるように切替わり、貯蔵庫1の酸素o
2濃度が6%に達するまで燃焼し、6%に達すると、入
力x1が入力されシーケンサ6oにより風路切替バルブ
41.42が導入管43.連続管43.連結管11を連
通ずるように切替わり貯蔵に戻る。The sequencer 6o to which N2 is input is Yl, Y3゜Y,
Ye, Ys are output, the ignition heater is turned on, the air passage switching valve 49 is switched to introduce atmospheric air into the combustion furnace 12, and the air passage switching valves 28 and 38 are connected to the connecting pipe 11 and the introduction pipe 26 Discharge pipe 37. The exhaust pipes 39 are switched so as to be in communication with each other. Then, the atmosphere introduced from the air path switching valve 49 passes through the combustion furnace 12 and is discharged to the atmosphere from the exhaust pipe 39, while the solid fuel is burned. Then, the combustion gas temperature detection means 66 detects the combustion gas temperature of 500° C. and inputs it to N6 of the sequencer 50. Sequencer 6 inputted with N5
o turns off the output of Y3, Ye, Ye (7), and the air path switching valves 49, 28, and 38 are switched so that the combustion furnace 8, adsorption device 9, and storage 1 are in communication with each other, and the oxygen o in the storage 1 is switched off.
2 concentration reaches 6%, when it reaches 6%, input x1 is input and the sequencer 6o switches the air path switching valves 41.42 to the introduction pipes 43. Continuous pipe 43. The connecting pipe 11 is switched to open communication and returns to storage.
また、貯蔵中に貯蔵庫1内の酸素02濃度が4%以下に
なったことをガスモニター45が検知すると、内部接点
48.52が動作しシーケンサ50のxlとN3に信号
が入力される。xlとN3が入力されたシーケンサ50
はY3 、 Y4 、 Y6 。Further, when the gas monitor 45 detects that the oxygen 02 concentration in the storage 1 has become 4% or less during storage, the internal contacts 48 and 52 operate and signals are input to xl and N3 of the sequencer 50. Sequencer 50 to which xl and N3 are input
are Y3, Y4, Y6.
Y6.Y7.Y8.Yloを出力し、風路切替バルブ2
8.38は連結管11と導入管25と排出管37.排気
管39が連通ずるように切替わり、風路切替バルブ29
.33は脱着用送風機32と排出管26と排気管4oが
連通ずるように切替わり、風路切替バルブ41,42は
貯蔵庫1と連結管43と送風吸14が連通ずるように切
替わる。Y6. Y7. Y8. Output Ylo and switch the air path switching valve 2
8.38 is the connection pipe 11, the introduction pipe 25, and the discharge pipe 37. The exhaust pipe 39 is switched to communicate with the air passage switching valve 29.
.. 33 is switched so that the air blower 32 for removal and removal, the discharge pipe 26, and the exhaust pipe 4o are communicated with each other, and the air path switching valves 41 and 42 are switched so that the storage 1, the connecting pipe 43, and the air intake 14 are communicated with each other.
そして送風機14により貯蔵庫1内のガスは排気管39
を通り大気に放出され、貯蔵庫1は脱着用送風機32よ
り大気が導入されることで酸素濃度o2は設定値5%ま
で増加する。貯蔵庫1が設定値6%まで増加すると内部
接点62からの入力廼が切れ、シーケンサ60により、
風路切替バルブ28.33が排気管4oと排出管26と
吸着器22と導入管24と連結管11が連通ずるように
切替わり貯蔵に戻る。Then, the gas in the storage 1 is exhausted by the blower 14 to the exhaust pipe 39.
The oxygen is released into the atmosphere through the desorption blower 32, and the oxygen concentration o2 increases to the set value of 5%. When the storage 1 increases to the set value of 6%, the input from the internal contact 62 is cut off, and the sequencer 60
The air path switching valves 28 and 33 are switched so that the exhaust pipe 4o, the discharge pipe 26, the adsorber 22, the inlet pipe 24, and the connecting pipe 11 are in communication with each other, and the system returns to storage.
以上のように本実施例によれば、炭素を含有する燃料を
燃焼させる燃焼炉12と、燃焼に供する空気を循環せし
める送風機14と、過剰な炭酸ガスを吸着すべく吸着材
を入れた吸着器22 、23と、これらの配管に設けた
風路切替バルブ28゜29.33,38,41.42.
49と貯蔵庫1のガス雰囲気を検知し各部を動作させる
シーケンサ50と任意に設定できる濃度設定機能と、設
定濃度で動作する接点48と、濃度設定機能に設定した
設定値より任意の濃度だけ高い濃度値と低い濃度値で動
作する接点51.52を有したガスモニター45を備え
たものであるから、生鮮物をクリーンなガス中に貯蔵で
き、さらに、貯蔵中、貯蔵庫1の酸素0゜及び炭酸ガス
Co2濃度が設定濃度からはずれた場合でも容易に濃度
を設定濃度までもどすことができる。また、ガスモニタ
ー46に酸素o2.炭酸ガスCo21度設定するだけで
酸素濃度の制御幅が自動的に決まるので、入力ミスによ
る酸素濃度制御の誤動作がないので生鮮物を安定した状
態で貯蔵する事ができる。As described above, according to this embodiment, there is a combustion furnace 12 that burns fuel containing carbon, a blower 14 that circulates air for combustion, and an adsorber that contains an adsorbent to adsorb excess carbon dioxide gas. 22, 23, and air path switching valves 28°29.33, 38, 41.42. installed on these pipes.
49, a sequencer 50 that detects the gas atmosphere in the storage chamber 1 and operates each part, a concentration setting function that can be set arbitrarily, a contact 48 that operates at the set concentration, and a concentration higher than the set value set in the concentration setting function by an arbitrary concentration. Since it is equipped with a gas monitor 45 having contacts 51 and 52 that operate at high and low concentration values, perishables can be stored in clean gas, and furthermore, during storage, oxygen and carbon dioxide in the storage 1 are kept at 0°. Even if the gas Co2 concentration deviates from the set concentration, the concentration can be easily returned to the set concentration. Also, the gas monitor 46 displays oxygen o2. Since the control range of oxygen concentration is automatically determined by simply setting the carbon dioxide gas Co21 degrees, there is no malfunction of oxygen concentration control due to input errors, so perishables can be stored in a stable state.
発明の効果以上のように本発明は、炭素を含有する燃料を燃焼させ
生鮮物を貯蔵する貯蔵庫と、この貯蔵庫内へ炭酸ガスを
導入すべく炭素を含有する燃料を燃焼させる燃焼炉と、
この燃焼炉に前記燃料の燃焼に供する空気を前記貯蔵庫
より循環せしめる送風機と、前記燃焼炉から発生するガ
スの過剰な炭酸ガスを吸着すべく吸着材を入れた吸着器
と、これらを接続する配管に設けた複数の風格切替バル
ブと、貯蔵庫のガス雰囲気を検知し、各部を動作させる
手段と、任意に設定できる濃度設定機能と、設定濃度で
動作する接点と、前記濃度設定機能に設定した設定値よ
シ任意の濃度だけ高い濃度値で動作する接点と、前記濃
度設定機能に設定した設定値より任意の濃度だけ低い濃
度値で動作する接点を有したガスモニターを備えたもの
であるから、炭素を含有する燃料を燃焼させ貯蔵庫内ガ
スの酸素02を炭酸ガスCo2 に変えるので生鮮物に
有害なガスは発生せずクリーンなガス中に生鮮物を貯蔵
できる。さらに、ガスモニターに酸素02濃度を設定す
るだけで、酸素02濃度制御幅が自動的に決定するので
入力ミスが少なく、また安易に貯蔵庫ガスが設定濃度以
外になっても設定濃度にもどす事ができるので、生鮮物
を安定した状態で保存することができる。Effects of the Invention As described above, the present invention provides a storage for storing perishables by burning fuel containing carbon, a combustion furnace for burning fuel containing carbon to introduce carbon dioxide into the storage,
A blower that circulates air from the storage to be used for combustion of the fuel in the combustion furnace, an absorber containing an adsorbent to adsorb excess carbon dioxide gas generated from the combustion furnace, and piping that connects these. a plurality of style switching valves provided in the storage chamber, a means for detecting the gas atmosphere in the storage chamber and operating each part, a concentration setting function that can be set arbitrarily, a contact point that operates at the set concentration, and a setting set for the concentration setting function. Since the gas monitor is equipped with a contact that operates at a concentration value higher than the value by an arbitrary concentration, and a contact that operates at a concentration value lower by an arbitrary concentration than the set value set in the concentration setting function, Since carbon-containing fuel is combusted and oxygen 02 in the storage gas is converted to carbon dioxide CO2, no gas harmful to fresh food is generated and fresh food can be stored in clean gas. Furthermore, by simply setting the oxygen 02 concentration on the gas monitor, the oxygen 02 concentration control width is automatically determined, reducing input errors and making it easy to return to the set concentration even if the storage gas falls outside the set concentration. This allows perishables to be stored in a stable state.
第1図は本発明の一実施例における生鮮物貯蔵装置の構
成図、第2図は同装置による庫内ガス成分の変化図、第
3図は同装置の空気回路図、第4図は従来の生鮮物貯蔵
装置の系統図である。1・・・・・・貯蔵庫、12・・・・・・燃焼炉、14
・・・・・・送風機、22.23・・・・・・吸着器、
48,51.52・・・・・・内部接点、45・・・・
・・ガスモニター、5o・・・・・・各部を動作させる
手段、28 、29 、33 、38 。41.42.49・・・・・・風路切替バルブ。代理人の氏名 弁理士 中 尾 敏 男 ほか1名m2
図第4図Fig. 1 is a configuration diagram of a fresh food storage device according to an embodiment of the present invention, Fig. 2 is a diagram of changes in internal gas components due to the same device, Fig. 3 is an air circuit diagram of the same device, and Fig. 4 is a conventional one. FIG. 2 is a system diagram of a fresh produce storage device. 1...Storage, 12...Combustion furnace, 14
...Blower, 22.23...Adsorption device,
48, 51.52... Internal contact, 45...
...Gas monitor, 5o...Means for operating each part, 28, 29, 33, 38. 41.42.49... Air path switching valve. Name of agent: Patent attorney Toshio Nakao and 1 other person m2
Figure 4
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63004235AJPH01179628A (en) | 1988-01-12 | 1988-01-12 | Installation for storing perishables |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63004235AJPH01179628A (en) | 1988-01-12 | 1988-01-12 | Installation for storing perishables |
| Publication Number | Publication Date |
|---|---|
| JPH01179628Atrue JPH01179628A (en) | 1989-07-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63004235APendingJPH01179628A (en) | 1988-01-12 | 1988-01-12 | Installation for storing perishables |
| Country | Link |
|---|---|
| JP (1) | JPH01179628A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20190069176A (en)* | 2017-12-11 | 2019-06-19 | 한국식품연구원 | Cellar and operation process of the same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20190069176A (en)* | 2017-12-11 | 2019-06-19 | 한국식품연구원 | Cellar and operation process of the same |
| Publication | Publication Date | Title |
|---|---|---|
| JPH01179628A (en) | Installation for storing perishables | |
| JP2502629B2 (en) | Fresh food storage device | |
| JPH01179622A (en) | Apparatus for preservation of perishable material | |
| JPH02177817A (en) | Preserving chamber of fresh material | |
| JPH01104112A (en) | Perishable food storage apparatus | |
| JPH01179624A (en) | Apparatus for preservation of perishable material | |
| JPH02203716A (en) | Apparatus for storing perishables | |
| JPH01117717A (en) | Perishable food storage apparatus | |
| JPH04187025A (en) | Apparatus for preserving perishable material | |
| JPH04210522A (en) | Storage device of fresh material | |
| JPH02177816A (en) | Preserving chamber of fresh material | |
| JPH01153014A (en) | Apparatus for preservation of perishable material | |
| JPH01157312A (en) | Preservation apparatus for perishable good | |
| JPH01117718A (en) | Perishable food storage apparatus | |
| JPH01265827A (en) | Fresh food-storage unit | |
| JPH01300827A (en) | Device for storing perishables | |
| JPH01153015A (en) | Apparatus for preservation of perishable material | |
| JPH01179623A (en) | Apparatus for preservation of perishable material | |
| JPS63126426A (en) | perishable storage equipment | |
| JPH01179621A (en) | Apparatus for preservation of perishable material | |
| JPS63129923A (en) | Apparatus for storing perishables | |
| JPS63129926A (en) | Apparatus for storing perishables | |
| JPH01179625A (en) | Installation for storing perishables | |
| JPS63192321A (en) | Perishables storage apparatus | |
| JPH0315316A (en) | Perishable food storing device |