【発明の詳細な説明】〔概要〕基板加熱装置に係り、特に分子線結晶成長装置における
基板加熱装置に関し。DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a substrate heating device, particularly to a substrate heating device in a molecular beam crystal growth device.
基板を均一に加熱することを目的とし。The purpose is to uniformly heat the substrate.
基板1と、該基板1の一面に対し部分的な領域のみ対向
して配置され、該基板1を加熱するヒータ2と、該基板
1と該ヒータ2の間に該基板1と平行に配置された均熱
板3とを有し、該均熱板3は表面に凹凸が形成され、該
基板1を均一に加熱するように構成されてなることを特
徴とする基板加熱装置をもって構成とする。A heater 2 is arranged parallel to the substrate 1 between the substrate 1 and the heater 2, and is arranged to face only a partial region of one surface of the substrate 1 and heat the substrate 1. The substrate heating apparatus is characterized in that the heating plate 3 has an uneven surface and is configured to heat the substrate 1 uniformly.
本発明は基板加熱装置に係り、特に分子線結晶成長装置
における基板加熱装置に関する。The present invention relates to a substrate heating device, and particularly to a substrate heating device in a molecular beam crystal growth device.
分子線結晶成長装置において均一な特性の結晶を成長す
るために基板を均一に加熱することが要求される。In order to grow a crystal with uniform characteristics in a molecular beam crystal growth apparatus, it is required to uniformly heat the substrate.
分子線結晶成長装置における基板加熱部の従来例を第4
図に示す。円筒状のブロック6の内部にスペーサ5を介
して基板1と均熱板3が配置される。この均熱板3を通
して基板1を加熱するし−タ2が配置される。基板1の
中心部の上部にはヒータが無く、その部分に基板温度を
制御する熱雷対4が配置される。A conventional example of a substrate heating section in a molecular beam crystal growth apparatus is shown in the fourth example.
As shown in the figure. A substrate 1 and a heat equalizing plate 3 are placed inside a cylindrical block 6 with a spacer 5 in between. A heater 2 is arranged to heat the substrate 1 through the heat equalizing plate 3. There is no heater above the center of the substrate 1, and a thermal lightning pair 4 for controlling the substrate temperature is arranged in that portion.
ヒータがこのような配置であるため、基板温度はヒータ
の直下で最高となり、中心部及び端部では低くなる。か
かる状況は第3図(基板の温度分布)の従来例に示す通
りである。Because of this arrangement of the heaters, the substrate temperature is highest directly below the heater and lower at the center and edges. Such a situation is as shown in the conventional example in FIG. 3 (substrate temperature distribution).
基板温度の不均一は基板上に成長する結晶の特性を不均
一にするという問題がある。本発明の目的は基板を均一
に加熱する装置を提供することにある。There is a problem in that non-uniform substrate temperature makes the characteristics of crystals grown on the substrate non-uniform. An object of the present invention is to provide an apparatus that uniformly heats a substrate.
第1図は本発明の原理説明図である。FIG. 1 is a diagram explaining the principle of the present invention.
基板加熱装置に係り、特に分子線結晶成長装置における
基板加熱装置に関し。The present invention relates to a substrate heating device, and particularly to a substrate heating device in a molecular beam crystal growth device.
基板を均一に加熱することを目的とし。The purpose is to uniformly heat the substrate.
基板1と、該基板1の一面に対し部分的な領域のみ対向
して配置され、該基板1を加熱するヒータ2と、該基板
1と該ヒータ2の間に該基板1と平行に配置された均熱
板3とを有し、該均熱板3は表面に凹凸が形成され、該
基板1を均一に加熱するように構成されてなることを特
徴とする基板加熱装置によって上記問題点は解決される
。A heater 2 is arranged parallel to the substrate 1 between the substrate 1 and the heater 2, and is arranged to face only a partial region of one surface of the substrate 1 and heat the substrate 1. The above-mentioned problems can be solved by a substrate heating apparatus characterized in that the heating plate 3 has an uneven surface and is configured to uniformly heat the substrate 1. resolved.
第1図に示す如く、均熱板はヒータからの輻射熱を吸収
し再放射する。また熱輻射の一部は均熱板の中を屈折透
過して基板面に達する。As shown in FIG. 1, the heat equalizing plate absorbs radiant heat from the heater and re-radiates it. Further, a part of the thermal radiation is refracted and transmitted through the heat equalizing plate and reaches the substrate surface.
均熱板が厚い場合は、基板の加熱は屈折透過の熱輻射に
よるよりも再放射による寄与が大きく。If the heat equalizing plate is thick, the heating of the substrate will be contributed more by re-radiation than by refraction-transmission thermal radiation.
均熱板の温度分布を均一・にすることが問題解決の鍵で
ある。そこで均熱板に肉厚変化部をもたせるごとによっ
て部分的に熱吸収、再放射の大きさを変えることにする
。即ち従来例に見られたヒータ直下の高温部では均熱板
に入った輻射熱を両側に分散させ均熱板の温度分布をで
きるだけ一様になるようにする。The key to solving the problem is to ensure uniform temperature distribution on the heating plate. Therefore, we decided to partially change the magnitude of heat absorption and re-radiation by providing the heat-uniforming plate with varying thickness parts. That is, in the high-temperature section directly below the heater, which is seen in the conventional example, the radiant heat that has entered the heat-uniforming plate is dispersed to both sides, so that the temperature distribution on the heat-uniforming plate is made as uniform as possible.
また、均熱板が薄<、屈折透過の熱輻射が再放射よりも
優先する場合は、均熱板の表面形状を変化させて、均熱
板内部で熱輻射の屈折に変化を与えて透過する熱輻射の
分布を変え、基板面において熱輻射の分布が一様となる
ようにすることもできる。In addition, if the heat equalizing plate is thin and heat radiation through refraction and transmission has priority over re-radiation, change the surface shape of the heat equalizing plate to change the refraction of heat radiation inside the heat equalizing plate and transmit it. It is also possible to change the distribution of thermal radiation so that the distribution of thermal radiation becomes uniform on the substrate surface.
以上述べたようにヒータの配置に応じて均熱板の厚ざ及
び表面形状に変化を与え、再放射及び屈折透過する熱輻
射を制御して基板面に達する熱輻射を一様にして基板温
度の均一性を高めることができる。As mentioned above, the thickness and surface shape of the heat equalizing plate are changed according to the arrangement of the heaters, and the heat radiation that is re-radiated, refracted and transmitted is controlled, and the heat radiation that reaches the substrate surface is made uniform, thereby increasing the temperature of the substrate. uniformity can be improved.
以下添付図により本発明の実施例について説明するが1
本発明はこれに限定されるものでない。Examples of the present invention will be explained below with reference to the attached drawings.
The present invention is not limited to this.
第2図は本発明の一実施例であり、ヒータと対する面を
加工してフレネルレンズを形成した均熱板を示す。この
実施例は屈折透過する熱輻射による基板加熱に主眼をお
くもので、熱輻射(赤外線)の方向を変えて基板面で熱
輻射が一様になるようにしたものである。即ちヒータ直
下の熱輻射を両側に分散させ、中心部と端部に集めるよ
うにレンズが構成されている。FIG. 2 is an embodiment of the present invention, and shows a heat equalizing plate whose surface facing the heater is processed to form a Fresnel lens. This embodiment focuses on substrate heating by refracted and transmitted thermal radiation, and the direction of thermal radiation (infrared rays) is changed to make the thermal radiation uniform on the substrate surface. That is, the lens is configured to disperse thermal radiation directly under the heater to both sides and concentrate it at the center and ends.
この均熱板を用いて3インチ径のGaAs1板を加熱し
た時の基板の温度分布を第3図に示す。3インチ径全体
にわたり750℃プラスマイナス5°Cが保たれている
。同図に従来例も示すが1本発明によれば従来例よりも
広い範囲にわたって温度が一様になることが判る。FIG. 3 shows the temperature distribution of the substrate when a 3 inch diameter GaAs plate was heated using this heat soaking plate. A temperature of 750°C plus or minus 5°C is maintained over the entire 3-inch diameter. Although the conventional example is also shown in the same figure, it can be seen that according to the present invention, the temperature becomes uniform over a wider range than in the conventional example.
以上説明した様に2本発明によれば1分子線結晶成長装
置において基板温度を一様にする基板加熱装置を提供で
きる。As explained above, according to the present invention, it is possible to provide a substrate heating device that makes the substrate temperature uniform in a single molecular beam crystal growth device.
第1図は本発明の原理説明図。第2図は実施例。第3図は基板の温度分布。第4図は従来例である。図において。1は基板。2ばヒータ。3は均熱板54は熱電対。5はスペーサ。6はブロックを表ず。FIG. 1 is a diagram explaining the principle of the present invention.Figure 2 shows an example.Figure 3 shows the temperature distribution of the board.Figure 4 is a conventional exampleIt is. In fig.1 is the board.2ba heater.3 is a heating plate 54 is a thermocouple.5 is a spacer.6 is blockdoes not represent.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32181587AJPH01164793A (en) | 1987-12-18 | 1987-12-18 | Heater for substrate |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32181587AJPH01164793A (en) | 1987-12-18 | 1987-12-18 | Heater for substrate |
| Publication Number | Publication Date |
|---|---|
| JPH01164793Atrue JPH01164793A (en) | 1989-06-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP32181587APendingJPH01164793A (en) | 1987-12-18 | 1987-12-18 | Heater for substrate |
| Country | Link |
|---|---|
| JP (1) | JPH01164793A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5452396A (en)* | 1994-02-07 | 1995-09-19 | Midwest Research Institute | Optical processing furnace with quartz muffle and diffuser plate |
| US5504831A (en)* | 1993-11-10 | 1996-04-02 | Micron Semiconductor, Inc. | System for compensating against wafer edge heat loss in rapid thermal processing |
| US6310328B1 (en)* | 1998-12-10 | 2001-10-30 | Mattson Technologies, Inc. | Rapid thermal processing chamber for processing multiple wafers |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5504831A (en)* | 1993-11-10 | 1996-04-02 | Micron Semiconductor, Inc. | System for compensating against wafer edge heat loss in rapid thermal processing |
| US5719991A (en)* | 1993-11-10 | 1998-02-17 | Micron Technology, Inc. | System for compensating against wafer edge heat loss in rapid thermal processing |
| US5452396A (en)* | 1994-02-07 | 1995-09-19 | Midwest Research Institute | Optical processing furnace with quartz muffle and diffuser plate |
| US5577157A (en)* | 1994-02-07 | 1996-11-19 | Midwest Research Institute | Optical processing furnace with quartz muffle and diffuser plate |
| US6310328B1 (en)* | 1998-12-10 | 2001-10-30 | Mattson Technologies, Inc. | Rapid thermal processing chamber for processing multiple wafers |
| Publication | Publication Date | Title |
|---|---|---|
| US3836751A (en) | Temperature controlled profiling heater | |
| US4101759A (en) | Semiconductor body heater | |
| GB1021849A (en) | Gas tempered glass sheets | |
| ATE139720T1 (en) | SELECTIVE LASER SINTERING DEVICE WITH RADIATION HEATING | |
| CN101506112A (en) | Process and apparatus for thermal edge finishing a glass sheet with reduced residual stress | |
| ES492355A0 (en) | HEATING DEVICE FOR A PARTICULAR KITCHEN UNIT A RADIATION HEATING UNIT FOR VITREA CERAMIC COOKING SURFACES | |
| JPH0415087B2 (en) | ||
| JPH01164793A (en) | Heater for substrate | |
| JP2007227461A (en) | Device and method for heat treatment | |
| US4432727A (en) | Gas-fired infrared projection heater | |
| JPS5737848A (en) | Heating apparatus for wafer | |
| GB1026917A (en) | Improvements in and relating to the treatment of glass | |
| JPS63112495A (en) | Vapor growth apparatus | |
| JPS61219130A (en) | Vapor growth equipment | |
| JPS5654033A (en) | Heater for substrate and chemical evaporation using said heater | |
| GB1087182A (en) | Tempering of glass sheets | |
| JPH01238116A (en) | heating device | |
| KR102115289B1 (en) | Heating apparatus for metal plate | |
| JPS61262521A (en) | Radiation heating device | |
| JPH07260648A (en) | Temperature regulator for microplate | |
| JPS63241921A (en) | Substrate heating device for molecular beam epitaxy equipment | |
| JPH025295B2 (en) | ||
| JPS63100713A (en) | Substrate heating device for molecular beam epitaxial system | |
| JP3128600B2 (en) | Substrate heating method for film forming equipment | |
| JPS6473613A (en) | Furnace for heat-treating semiconductor substrate |