Movatterモバイル変換


[0]ホーム

URL:


JPH01153453A - Pressure-and heat-resisting container and production thereof - Google Patents

Pressure-and heat-resisting container and production thereof

Info

Publication number
JPH01153453A
JPH01153453AJP62310813AJP31081387AJPH01153453AJP H01153453 AJPH01153453 AJP H01153453AJP 62310813 AJP62310813 AJP 62310813AJP 31081387 AJP31081387 AJP 31081387AJP H01153453 AJPH01153453 AJP H01153453A
Authority
JP
Japan
Prior art keywords
container
container body
heat
resin
parison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62310813A
Other languages
Japanese (ja)
Other versions
JPH0468217B2 (en
Inventor
Shigezo Nohara
野原 繁三
Sadao Hirata
平田 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha LtdfiledCriticalToyo Seikan Kaisha Ltd
Priority to JP62310813ApriorityCriticalpatent/JPH01153453A/en
Publication of JPH01153453ApublicationCriticalpatent/JPH01153453A/en
Publication of JPH0468217B2publicationCriticalpatent/JPH0468217B2/ja
Grantedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

PURPOSE:To enhance a storability of the content and a durability to heat sterilization process, by forming shoulder and body portions of the container from a laminated sheet comprising inner and outer oriented crystalline resin layers and a gas-impermeable intermediate layer while forming the bottom portion of the container which is partially heat-crystallized. CONSTITUTION:A container 2 is formed of a laminated sheet material which comprises inner and outer layers 1A, 1B made of oriented crystalline resin and an intermediate layer 1C made of gas-impermeable resin. Suitable oriented crystalline resins include polypropyrene resin, polyester resin, such as PET, and acrylic resin, while suitable gas-impermeable resins include ethylene/vinyl alcohol copolymer, meta-xylideneadipamide, and polyester-resins having a gas- impermeability. A container is constructed of a body portion 2A, a shoulder portion 2C, a neck portion 2D and semi-spherical bottom portion 2B which extends downwardly from the lower end of the body portion. The semi-spherical bottom portion 2B is formed of a heat-crystallized center portion 4 having a larger thickness and highly oriented remaining portion having a smaller thickness.

Description

Translated fromJapanese

【発明の詳細な説明】(産業上の利用分野)本発明は、例えば炭酸飲料等の内圧が加わる耐圧性の容
器に関し、特に内容物の加熱殺菌時の耐圧耐熱性を高め
ると共に常温において保存性を向上させた耐圧耐熱容器
及びその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a pressure-resistant container that is subjected to internal pressure, such as for carbonated beverages, and particularly improves pressure and heat resistance during heat sterilization of the contents, and improves storage stability at room temperature. The present invention relates to a pressure- and heat-resistant container with improved properties and a method for manufacturing the same.

(従来の技術)従来、炭酸飲料等の内圧が加わる容器としては、例えば
第10図および第11図に示すようなものがある。すな
わち、100は容器全体を示しており、概略内部中空の
容器本体101と容器本体101の底部101Aに被着
されるベースカップ102とから成っている。容器本体
101は内圧が加わるために、耐圧性を高めるべく底部
101Aが球殻状に丸められており、ベースカップ10
2によって容器100の立て置きを可能としている。こ
の容器本体101は、第12図に示すような熱可塑性樹
脂の単層構造より成る有底筒状のパリソン103を予備
成形しておき、このパリソン103を二軸延伸ブロー成
形することにより、樹脂材料に結晶配向を生じさせ、容
器本体101の耐圧、耐熱性を確保していた。
(Prior Art) Conventionally, there are containers such as those shown in FIGS. 10 and 11, to which internal pressure is applied, such as for carbonated drinks. That is, 100 indicates the entire container, which is composed of a container body 101 that is generally hollow inside and a base cup 102 that is attached to the bottom 101A of the container body 101. Since internal pressure is applied to the container body 101, the bottom 101A is rounded into a spherical shell shape to increase pressure resistance, and the base cup 10
2 allows the container 100 to be placed vertically. This container body 101 is made by preforming a bottomed cylindrical parison 103 made of a single layer structure of thermoplastic resin as shown in FIG. The material was made to have crystal orientation, and the pressure resistance and heat resistance of the container body 101 were ensured.

ところで、このような容器本体101への内容物の充填
作業は、容器本体101内に80〜95℃に加熱された
内容物を熱間充填し密封した後、窒素等のガス充填を行
う方法や容器本体101内に内容物を充填した後口頚部
101Bにキャッピングして密封し、その後容器本体1
01に熱湯を上から流して内容物の加熱殺菌処理を行な
う方法がある。後者のような場合には、炭酸飲料等の加
熱殺菌処理については法止65℃で10分以上行なうこ
とが義務付けられており、容器本体101は耐熱性と、
加熱時の内圧に耐え得るように耐圧性が要求されていた
By the way, filling the contents into the container body 101 as described above can be carried out by hot filling the contents heated to 80 to 95°C into the container body 101, sealing it, and then filling the container body 101 with a gas such as nitrogen. After filling the container body 101 with the contents, the rear opening neck 101B is capped and sealed, and then the container body 1 is sealed.
01, there is a method of heating and sterilizing the contents by pouring boiling water from above. In the latter case, heat sterilization of carbonated drinks, etc. is required by law to be carried out at 65° C. for 10 minutes or more, and the container body 101 must be heat resistant.
Pressure resistance was required to withstand internal pressure during heating.

(発明が解決しようとする問題点)しかしながら、斯かる従来技術において、容器本体10
1がポリエステルやポリプロピレン等の熱可塑性樹脂の
単層構造では、ガスバリヤ性(ガス遮断性能)が低く、
内容物によっては保存性が不十分であり、またエチレン
−ビニルアルコール共重合体や特殊ポリアミド等のガス
バリヤ性に優れた樹脂のみでは、延伸ブロー成形が困難
であるため、コスト高になってしまうという問題が新た
に発生する。上記のように、ポリエステルやポリプロピ
レン等の熱可塑性樹脂の単層構造では、充、言した内容
物が果汁飲料の場合、容器本体101内に酸素が侵入し
て内容物が酸化してしまい、果汁飲料の色から変化して
しまったり、味が損なわれてしまう。他方、内容物が炭
酸飲料の場合には、色の変化、味の低下に加えて炭酸ガ
スが次第に排出されてしまい、風味が著しく低下する。
(Problems to be Solved by the Invention) However, in such prior art, the container body 10
If 1 is a single layer structure of thermoplastic resin such as polyester or polypropylene, the gas barrier property (gas barrier performance) is low;
Depending on the contents, the shelf life may be insufficient, and it is difficult to stretch-blow mold using only resins with excellent gas barrier properties such as ethylene-vinyl alcohol copolymer or special polyamide, resulting in high costs. A new problem arises. As mentioned above, in a single-layer structure made of thermoplastic resin such as polyester or polypropylene, when the content is a fruit juice beverage, oxygen enters the container body 101 and the content oxidizes, causing the fruit juice to oxidize. The color of the drink may change or the taste may be impaired. On the other hand, when the content is a carbonated beverage, in addition to a change in color and a decrease in taste, carbon dioxide gas is gradually discharged, resulting in a significant decrease in flavor.

従って、従来の容器では保存性が悪いという問題点があ
った。
Therefore, conventional containers have a problem of poor storage stability.

また、上記従来技術にあっては、容器本体101を二輪
延伸ブロー成形することにより、樹脂材料が延伸され、
強度及び耐熱性を備えるに至るが、容器本体101の底
部101Aの中央付近は、パリソン103を射出成形し
た際のばつ等が存在し、ブロー成形時に十分延伸されず
、延伸による結晶配向の効果が小さい。そのため強度が
弱くなりがちで落下等の衝撃によって破損するおそれが
ある。また加熱殺菌時の熱によって容器本体101の底
部101A中央付近が軟化してしまい、底部101Aが
部分的に突出してしまい商品価値がなくなってしまうと
いう問題があった。第13図には樹脂のヤング率が延伸
状態と未延伸状態で温度によって変化する状態が示され
ており、未延伸部分では、65℃付近で強度が急激に低
下することがわかる。65℃付近は法規制の温度でもあ
り、容器本体101底部101Aの強化が要請されてい
る。
In addition, in the above-mentioned conventional technology, the resin material is stretched by two-wheel stretch blow molding of the container body 101,
Although it has good strength and heat resistance, the center of the bottom 101A of the container body 101 has blemishes when the parison 103 is injection molded, and is not sufficiently stretched during blow molding, so that the effect of crystal orientation due to stretching is small. Therefore, the strength tends to be weak and there is a risk of damage due to impact such as dropping. In addition, there was a problem in that the center area of the bottom 101A of the container body 101 was softened by the heat during heat sterilization, and the bottom 101A partially protruded, resulting in a loss of commercial value. FIG. 13 shows how the Young's modulus of the resin changes with temperature in a stretched state and an unstretched state, and it can be seen that the strength of the unstretched portion decreases rapidly at around 65°C. Around 65° C. is also a legally regulated temperature, and the bottom 101A of the container body 101 is required to be strengthened.

そこで第14図に示すようにパリソン103′の底壁部
103A’を予め部分的に加熱して熱結晶化させておき
、ブロー成形後の容器本体101の底部101A中央を
強化するものも提案されている(特開昭60−1484
41号公報参照)。
Therefore, as shown in FIG. 14, it has been proposed that the bottom wall 103A' of the parison 103' is partially heated in advance to thermally crystallize it to strengthen the center of the bottom 101A of the container body 101 after blow molding. (Unexamined Japanese Patent Publication No. 60-1484)
(See Publication No. 41).

しかし単にパリソン103をブロー成形すると、容器本
体101の底部101Aは、第15図に示すようにパリ
ソン103の底壁部103A′の結晶化領域αと延伸領
域βとの境界部において肉厚が連続的に薄くなり、境界
部に十分延伸されない低延伸領域γが存在することにな
る。そのため加熱殺菌時に低延伸領域が膨らんでしまう
おそれがあり、依然として耐圧、耐熱性に限界があった
However, when the parison 103 is simply blow-molded, the bottom wall 101A of the container body 101 has a continuous wall thickness at the boundary between the crystallized region α and the stretched region β of the bottom wall 103A' of the parison 103, as shown in FIG. This results in a low stretch region γ that is not sufficiently stretched at the boundary. Therefore, there is a risk that the low-stretch region may swell during heat sterilization, and there are still limits to pressure resistance and heat resistance.

本発明は上記した従来技術の問題点を解決するためにな
されたもので、その目的とするところは、保存性を向上
させるとともに、温度による加熱殺菌に耐え得る耐圧耐
熱容器及びその製造方法を提供することにある。
The present invention has been made in order to solve the problems of the prior art described above, and its purpose is to provide a pressure- and heat-resistant container that can improve storage stability and withstand heat sterilization at high temperatures, and a method for manufacturing the same. It's about doing.

(問題点を解決するための手段)上記目的を解決するために、本発明に係る耐圧耐熱容器
は、容器本体な二軸延伸ブロー成形によって内部中空に
構成した耐圧耐熱容器において、前記容器本体の少なく
とも胴部及び肩部を配向性結晶性樹脂製の内、外表面層
と少なくともガスバリヤ性樹脂を有する中間層とから成
る積層体で構成し、少なくとも前記容器本体の底部に部
分的に熱結晶化させた熱結晶化部を設けると共に、該底
部の熱結晶化部以外の領域の全て高延伸倍率によって延
伸することにより構成した。
(Means for Solving the Problems) In order to solve the above object, a pressure- and heat-resistant container according to the present invention is a pressure- and heat-resistant container whose interior is hollow by biaxial stretch blow molding. At least the body and shoulders are constructed of a laminate consisting of inner and outer surface layers made of oriented crystalline resin and at least an intermediate layer having gas barrier resin, and at least a portion of the bottom of the container body is thermally crystallized. The structure was constructed by providing a thermally crystallized portion and stretching the entire region other than the thermally crystallized portion at the bottom at a high stretching ratio.

また、本発明に係る耐圧耐熱容器の製造方法は、まず配
向性結晶性樹脂製の内、外表面層及び少なくともガスバ
リヤ性樹脂を有する中間層とから成る積層体で有底筒状
のパリソンを成形し、少なくとも該パリソンの底部を部
分的に熱結晶化させ、その後パリソンの熱結晶化領域以
外の領域を全て高延伸倍率によって延伸して容器本体を
成形するようにした。
Further, in the method for manufacturing a pressure- and heat-resistant container according to the present invention, first, a cylindrical parison with a bottom is formed from a laminate consisting of inner and outer surface layers made of oriented crystalline resin and an intermediate layer having at least a gas barrier resin. At least the bottom of the parison was partially thermally crystallized, and then the entire area of the parison other than the thermally crystallized area was stretched at a high stretching ratio to form a container body.

(作 用)上記の構成を有する本発明においては、容器本体の少な
くとも胴部及び肩部を配向性結晶性樹脂製の内、外表面
層と少なくともガスバリヤ性樹脂を有する中間層とから
成る積層体で構成したから、ガスバリヤ性が向上すると
共に耐眉間剥離性に優れ、容器本体内部に酸素等が侵入
することなく、かつ内部のガスが排出されることもない
。また、容器本体の底部が全て耐熱性、耐圧性に優れた
熱結晶化部と高延伸された高延伸領域としたので、加熱
殺菌時の高温雰囲気下において高い内圧が加わっても容
器本体底部の形状は保持される。
(Function) In the present invention having the above configuration, at least the trunk and shoulder portions of the container body are made of a laminate comprising inner and outer surface layers made of oriented crystalline resin and an intermediate layer having at least gas barrier resin. Because of this structure, the gas barrier property is improved and the glabella peeling resistance is excellent, and oxygen and the like do not enter the inside of the container body, and the gas inside is not discharged. In addition, the bottom of the container body has a thermally crystallized region with excellent heat resistance and pressure resistance, and a highly stretched region, so even if high internal pressure is applied in the high temperature atmosphere during heat sterilization, the bottom of the container body will remain intact. Shape is retained.

(実施例)以下に本発明を図示の実施例に基づいて説明する。第1
図乃至第4図には本発明の耐圧耐熱容器の一実施例を示
している。第1図(イ)において、■は容器全体を示し
ており、この容器1は内部中空に構成された容器本体2
と、この容器本体2の底部2Bに被着されるベースカッ
プ3とから構成されている。
(Example) The present invention will be explained below based on the illustrated example. 1st
An embodiment of the pressure- and heat-resistant container of the present invention is shown in FIGS. In FIG. 1(A), ■ indicates the entire container, and this container 1 has a container body 2 that is configured to have a hollow interior.
and a base cup 3 attached to the bottom 2B of the container body 2.

容器本体2は第1図(ロ)に示すように配向性結晶性樹
脂製の内、外表面層IA、IBとガスバリヤ性(ガス遮
断性)樹脂製の中間層ICとから成る積層体で構成され
ている。上記配向性結晶性樹脂としてはポリプロピレン
樹脂、ポリエステル樹脂(本実施例ではPET)アクリ
ル二トル(AN)系樹脂等から選定され、またガスバリ
ヤ性樹脂としてはエチレン−ビニルアルコール共重合体
(EVOH) 、メタキシリデンアジパミド(MXナイ
ロン)、バリヤ性ポリエステル(Bレジン)等から選定
される。そして、本実施例において内、外表面!IA、
IBはPETを、中間層ICはバリヤ性ポリエステルを
使用している。
As shown in FIG. 1 (B), the container body 2 is composed of a laminate consisting of inner and outer surface layers IA and IB made of oriented crystalline resin and an intermediate layer IC made of gas barrier resin. has been done. The above-mentioned oriented crystalline resin is selected from polypropylene resin, polyester resin (PET in this example), acrylic nitrile (AN) resin, etc., and the gas barrier resin is selected from ethylene-vinyl alcohol copolymer (EVOH), Selected from metaxylidene adipamide (MX nylon), barrier polyester (B resin), etc. In this example, the inner and outer surfaces! IA,
The IB uses PET, and the intermediate layer IC uses barrier polyester.

内、外表面層IA、IBは、容器本体2の全域に亘り面
方向に連続しており、中間層lCも容器本体2の全域に
亘り面方向に連続して構成されている。
The inner and outer surface layers IA and IB are continuous in the surface direction over the entire area of the container body 2, and the intermediate layer 1C is also configured to be continuous in the surface direction over the entire area of the container body 2.

また、容器本体2は円筒状の胴部2Aと、胴部2A上方
に連続して成形される肩部2C及び口頚部2Dと、胴部
2A下端に連続して設けられ下方に向かって球殻状に突
出する底部2Bとから構成されている。
The container body 2 includes a cylindrical body 2A, a shoulder 2C and a neck part 2D that are continuously formed above the body 2A, and a spherical shell that is continuously provided at the lower end of the body 2A and extends downward. It consists of a bottom part 2B that protrudes like a shape.

上記容器本体2の底部2Bは、第3図に示すようにその
中央部が熱によって部分的に結晶化されて熱結晶化部4
となっている。そして熱結晶化部4以外の領域が全て高
延伸倍率によって薄肉に延伸されて高延伸部5となって
いる。上記結晶化部4は底部2Bの中心点0(容器本体
2の中心軸線Xが底部2Bと交わる点)を中心として描
いた平面形状で、肉厚t1は高延伸部5の肉厚t2に比
べて厚肉になっている。熱結晶化部4は延伸されていな
い無配向の結晶状態で、強度が強く、安定した状態を保
持する。通常材料は約100℃〜140℃以上で結晶化
して球晶を生じ乳白色を呈する。
As shown in FIG. 3, the bottom part 2B of the container body 2 is partially crystallized by heat, resulting in a thermally crystallized part 4.
It becomes. All regions other than the thermally crystallized portion 4 are thinly stretched at a high stretching ratio to form a highly stretched portion 5. The crystallized portion 4 has a planar shape drawn around the center point 0 of the bottom portion 2B (the point where the central axis It's thick. The thermally crystallized portion 4 is in an unstretched, non-oriented crystalline state, has strong strength, and maintains a stable state. Normally, the material crystallizes to form spherulites at temperatures of about 100 DEG C. to 140 DEG C. or higher, giving it a milky white color.

また高延伸部5においては、材料の延伸作用によって材
料内部に結晶配向が生じ、強度を強く形状保持性も優れ
ている。通常70℃〜140℃、好ましくは90〜11
0℃に加熱した状態で延伸することにより結晶配向を生
じさせるようになっている。
In addition, in the highly stretched portion 5, crystal orientation occurs inside the material due to the stretching action of the material, resulting in strong strength and excellent shape retention. Usually 70°C to 140°C, preferably 90 to 11
Crystal orientation is caused by stretching while heated to 0°C.

本実施例にあっては熱結晶化部4の厚さt、が3.5[
mm] 、高延伸部5の厚さt2が0.35 [mm]
程度となっている。そして高延伸部5は胴部2Aに連続
しており、その厚みは胴部2Aより若干厚く形成されて
いる。
In this example, the thickness t of the thermally crystallized portion 4 is 3.5[
mm], the thickness t2 of the highly stretched portion 5 is 0.35 [mm]
It has become a degree. The highly stretched portion 5 is continuous with the body portion 2A, and is formed to be slightly thicker than the body portion 2A.

上記熱結晶化部4と高延伸部5との境界部においては、
高延伸部5は熱結晶化部4の側端部から延びており、結
合位置は熱結晶化部4の厚さ方向の外端位置となってい
る。従って熱結晶化部4は容器本体2の底部2B内周面
側に熱結晶化部4の厚さ分だけ突出することになり、熱
結晶化部4と高延伸部5の境界部に段差6が形成されて
いる。
At the boundary between the thermally crystallized part 4 and the highly stretched part 5,
The highly elongated portion 5 extends from the side end portion of the thermally crystallized portion 4, and the bonding position is the outer end position of the thermally crystallized portion 4 in the thickness direction. Therefore, the thermally crystallized portion 4 protrudes toward the inner peripheral surface of the bottom portion 2B of the container body 2 by the thickness of the thermally crystallized portion 4, and there is a step 6 at the boundary between the thermally crystallized portion 4 and the highly stretched portion 5. is formed.

この段差6を本実施例では極小にしである。This step 6 is minimized in this embodiment.

また、本実施例にあっては口頭部2Dも熱結晶化されて
いて、強度、耐熱性を高めである。すなわち、口頚部2
Dは厚肉の円筒状で、その下端面7の外側縁に胴部2A
から連続して高延伸された肩部2C上端縁が結合されて
いる。
Furthermore, in this embodiment, the mouth portion 2D is also thermally crystallized to increase strength and heat resistance. That is, the mouth and neck 2
D has a thick-walled cylindrical shape, and the body portion 2A is attached to the outer edge of the lower end surface 7.
The upper edge of the shoulder portion 2C, which is continuously and highly stretched, is connected to the shoulder portion 2C.

また、ベースカップ3は、概略有底円筒形状で、円周3
1の径が略容器本体2の胴部2Aの外径と同一になって
いる。そして底壁32には周壁31と同心状に形成され
容器本体2の底部2Bに接着固定される環状の台座部3
3が設けられている。一方、周壁31の上端部は容器本
体2の胴部2A下縁に係止されており、周壁31上端部
には、ベースカップ3と容器本体底部2Bとの間に形成
される空間Sに熱湯の流通を許容する通口部34が周方
向に複数設けられている。通口部34・・・は、周壁3
1に半径方向内方に窪ませた縦溝35・・・を周方向に
複数設けることによりペースシッフ3周壁31上端に凹
凸を形成し、この凹凸によって容器本体2との間に形成
される隙間によって構成されている。
Further, the base cup 3 has an approximately cylindrical shape with a bottom, and has a circumference of 3
1 is approximately the same as the outer diameter of the body 2A of the container body 2. The bottom wall 32 has an annular pedestal portion 3 formed concentrically with the peripheral wall 31 and adhesively fixed to the bottom portion 2B of the container body 2.
3 is provided. On the other hand, the upper end of the peripheral wall 31 is locked to the lower edge of the body 2A of the container body 2, and the upper end of the peripheral wall 31 is provided with boiling water in a space S formed between the base cup 3 and the bottom 2B of the container body. A plurality of openings 34 are provided in the circumferential direction to allow the flow of water. The opening portion 34... is the peripheral wall 3
By providing a plurality of longitudinal grooves 35 recessed radially inward in the circumferential direction of the pace shifter 3, an unevenness is formed on the upper end of the peripheral wall 31 of the pace shifter 3. It is configured.

尚、本実施例では、PETからなる内外表面層IA、I
B及びバリヤ性ポリエステルからなるガスバリヤ層IC
で構成される積層体を容器本体2の全域に亘り面方向に
連続するようにしたが、これ以外に口頚部2Dまたは底
部2Bの少なくとも一方を除いた容器本体2の胴部2A
及び肩部2Cを上記積層体で構成してもよい。
In this example, the inner and outer surface layers IA and I made of PET are
Gas barrier layer IC made of B and barrier polyester
The laminate is made to be continuous in the surface direction over the entire area of the container body 2, but in addition to this, the body 2A of the container body 2 excluding at least one of the neck and neck part 2D or the bottom part 2B.
The shoulder portion 2C may also be made of the above-mentioned laminate.

また、本実施例では積層体をPETからなる内、外表面
層IA、IB及びバリヤ性ポリエステルからなるガスバ
リヤ層ICの2種3層で構成したが、これ以外に例えば
内表面層IAをPETとし、その上にバリヤ性ポリエス
テル、PET又はリグラインド層、バリヤ性ポリエステ
ル及び外表面層IBであるPETを順に積層して2種5
層構造としても良く、また内表面i1AをPETとし、
その上に接着剤、エチレン−ビニルアルコール共重合体
又はメタキシリデンアジパミド、接着剤及び外表面層で
あるPETを順に積Mして3種5層構造でも良い。更に
、内表面層IAをPETとし、その上にリグラインド層
、接着剤、エチレン−ビニルアルコール共重合体又はメ
タキシリデンアジパミド、接着剤、リグラインド層及び
外表面層となるPETを順に積層して4種7暦構造でも
良く、この場合には外表面層側のりグラインド層を除い
て4種6層構造でも良い。ここで、上記接着剤としては
ポリアミド系などの接着剤が使用される。これらの積層
体の構造においてポリアミド系の接着剤を介在させるか
否かはPETと同族系か否かで決定される。即ち、ガス
バリヤ層ICにバリヤ性ポリエステルを使用した場合に
は、同族系であるので、層間接着性を有し接着剤が不要
となる。また、上記リグラインド層としてはパリ等を再
使用したものが用いられる。
In addition, in this example, the laminate was composed of three layers of two types: the inner and outer surface layers IA and IB made of PET, and the gas barrier layer IC made of barrier polyester. On top of that, barrier polyester, PET or regrind layer, barrier polyester, and PET as outer surface layer IB are laminated in order to form two kinds of 5
It may have a layered structure, and the inner surface i1A may be made of PET,
An adhesive, an ethylene-vinyl alcohol copolymer or metaxylidene adipamide, an adhesive, and PET as an outer surface layer may be laminated thereon in order to form a five-layer structure of three types. Further, the inner surface layer IA is made of PET, and a regrind layer, an adhesive, an ethylene-vinyl alcohol copolymer or metaxylidene adipamide, an adhesive, a regrind layer, and a PET to become an outer surface layer are sequentially formed thereon. It may be laminated to have a 4-type, 7-layer structure, or in this case, a 4-type, 6-layer structure may be used, excluding the glue grind layer on the outer surface layer side. Here, as the adhesive, a polyamide adhesive or the like is used. Whether or not a polyamide adhesive is used in the structure of these laminates is determined depending on whether the adhesive is homologous to PET or not. That is, when barrier polyester is used for the gas barrier layer IC, since it is a homologous polyester, it has interlayer adhesion and no adhesive is required. Further, as the regrind layer, a material made of recycled Paris or the like is used.

以上のように構成される本実施例の耐圧耐熱容器によれ
ば、容器本体2を多層構造としたためガスバリヤ性が向
上し、内容物を炭酸飲料とした場合には炭酸ガスが排出
されることなく風味が低下せず、色も変化しない。また
内容物を果汁飲料とした場合にあっても、酸化すること
なく果汁飲料本来の色、風味が長期にわたり維持される
According to the pressure-resistant and heat-resistant container of this embodiment configured as described above, the gas barrier property is improved because the container body 2 has a multilayer structure, and when the content is a carbonated beverage, carbon dioxide gas is not discharged. The flavor does not deteriorate and the color does not change. Moreover, even when the content is a fruit juice drink, the original color and flavor of the fruit juice drink are maintained for a long period of time without oxidation.

次に上記耐圧耐熱容器の製造方法について第5図乃至第
9図に基づいて説明する。
Next, a method for manufacturing the pressure-resistant and heat-resistant container will be explained based on FIGS. 5 to 9.

先ず、第6図に示すように配向性結晶性樹脂製の内、外
表面層LA、IB及びガスバリヤ性樹脂製の中間層IC
から成る積層体で延伸成形用パリソン10を予備成形す
る。パリソン10は上記容器本体2を二軸延伸ブロー成
形するために予備的に成形される素材であり、主として
容器本体2の胴部2Aとなるべき筒状部10Aと、容器
本体2の底部2Bとなるべき底壁部10Bと、筒状部1
0A上端に連なる口頚部2Dとからなる有底円筒状部材
により構成されている。
First, as shown in FIG. 6, inner and outer surface layers LA and IB made of oriented crystalline resin and an intermediate layer IC made of gas barrier resin are formed.
A parison 10 for stretch molding is preformed from a laminate consisting of the following. The parison 10 is a material that is preliminarily formed to biaxially stretch blow mold the container body 2, and mainly consists of a cylindrical portion 10A that will become the body 2A of the container body 2, and a bottom portion 2B of the container body 2. The desired bottom wall portion 10B and the cylindrical portion 1
It is constituted by a bottomed cylindrical member consisting of a mouth and neck portion 2D connected to the upper end of 0A.

パリソン10の製造は、例えば第7図に示すように射出
成形により製造される。すなわち、20は成形型であり
、型閉めした成形型20のキャビ ′ティ21内に、ゲ
ート22を介して図示しない射出ノズルから溶融樹脂を
注入し、硬化後型開きして成形品10’を取り出す。
The parison 10 is manufactured, for example, by injection molding as shown in FIG. That is, 20 is a mold, and molten resin is injected into the cavity 21 of the closed mold 20 from an injection nozzle (not shown) through a gate 22, and after hardening, the mold is opened to form a molded product 10'. Take it out.

次にパリソン10′の口頚部2D及び底壁部10B′を
加熱処理して熱結晶化し、熱結晶化領域Gl、G2を形
成する。口頚部2D”に設けた結晶化領域G1は口頚部
2D’全体に及び、底壁部10Bに設ける結晶化領域G
2も底壁部10Bの略全面にわたって形成されている。
Next, the mouth and neck portion 2D and bottom wall portion 10B' of the parison 10' are heat-treated to thermally crystallize, thereby forming thermally crystallized regions Gl and G2. The crystallized region G1 provided in the mouth and neck part 2D'' extends over the entire mouth and neck part 2D', and the crystallized region G1 provided in the bottom wall part 10B extends over the entire mouth and neck part 2D'.
2 is also formed over substantially the entire surface of the bottom wall portion 10B.

そしてこの結晶化領域G1、G2はそれぞれ全厚さにわ
たって加熱処理しである。
The entire thickness of each of the crystallized regions G1 and G2 is heat treated.

次に上記したパリソン10を用いて容器本体2をブロー
成形する成形工程について第8図(イ)及び(ロ)に基
づいて説明する。図において、11はブロー成形用の金
型であり、この金型11は概略容器本体2の胴部2Aを
成形するIIAと、容器本体底部2Bを成形する底型1
1Bと、容器の口頚部2Dを成形するネック型11Cか
ら成っている。一方12は、パリソン10をその軸線X
方向に延伸するための延伸棒であり、図示しない駆動源
によって金型11内に装着されたパリソン10内にその
口頚部2D側から出没自在に挿入される。そして、この
延伸棒12とパリソン10の内面との空間に圧縮空気等
の流体が通る流体通路13が設けられている。
Next, the molding process of blow molding the container body 2 using the parison 10 described above will be explained based on FIGS. 8(a) and 8(b). In the figure, 11 is a mold for blow molding, and this mold 11 generally includes an IIA for molding the body 2A of the container body 2, and a bottom mold 1 for molding the bottom 2B of the container body.
1B, and a neck mold 11C for forming the mouth and neck part 2D of the container. On the other hand, 12 refers to the parison 10 along its axis
It is a stretching rod for stretching in the direction, and is inserted into the parison 10 mounted in the mold 11 from the mouth and neck 2D side so as to be freely retractable by a drive source (not shown). A fluid passage 13 through which a fluid such as compressed air passes is provided in a space between the stretching rod 12 and the inner surface of the parison 10.

上記装置においてブロー成形は次のようにして行なわれ
る。先ず延伸温度(ポリエステルの場合、(本実施例で
は内外表面i1A、IBがPET)70−140 [’
C] )に加熱されたパリソン10を、第8図(イ)に
示すように延伸棒12を延ばして軸方向に延伸させる。
Blow molding is performed in the above apparatus as follows. First, the stretching temperature (in the case of polyester (in this example, the inner and outer surfaces i1A and IB are PET) is 70-140['
C]) The parison 10 heated to the temperature 1) is stretched in the axial direction by stretching the stretching rod 12 as shown in FIG. 8(a).

この状態では主としてパリソン10の筒状部10Aが軸
方向に延伸倍率2.2以上に延伸される。更に第8図(
ロ)に示すように延伸棒12の周囲の流体通路13を通
って圧縮空気が高圧下で吸込まれてパリソン10の筒状
部10Aが半径方向外方に膨らんで金型11内面に密着
する。一方、底壁部10Bもその中心点O′の近傍から
薄肉化されながら半径方向外方に拡がり、その外面が底
型11B内面に密着する。 この状態ではパリソン10
の筒状部10Aは主として周方向に延伸倍率3以上に延
伸される。また底壁部lOBは、その結晶化領域G1の
部分は温度によって殆ど変化せず、結晶化領域G1に連
続する非晶質の部分が延伸される。
In this state, mainly the cylindrical portion 10A of the parison 10 is stretched in the axial direction to a stretching ratio of 2.2 or more. Furthermore, Figure 8 (
As shown in b), compressed air is sucked under high pressure through the fluid passage 13 around the stretching rod 12, and the cylindrical portion 10A of the parison 10 expands radially outward and comes into close contact with the inner surface of the mold 11. On the other hand, the bottom wall portion 10B also expands outward in the radial direction while becoming thinner from the vicinity of its center point O', and its outer surface closely contacts the inner surface of the bottom mold 11B. In this state, parison 10
The cylindrical portion 10A is mainly stretched in the circumferential direction to a stretching ratio of 3 or more. Further, in the bottom wall portion IOB, the portion of the crystallized region G1 hardly changes depending on the temperature, and the amorphous portion continuous to the crystallized region G1 is stretched.

また口頭部2Dの結晶化領域も延伸されず、結晶化領域
G1に連なる非晶質部分が延伸される。こうしてパリソ
ン10の結晶化領域Gl、G2以外の非晶質の部分、本
実施例では主として筒状部10Aが加熱延伸されて十分
な結晶配向が生じ、容器本体2の胴部2A及び肩部2C
1更に底部2Bの結晶化部4以外の高延伸部5を構成す
る。
Further, the crystallized region of the mouth portion 2D is not stretched either, but the amorphous portion connected to the crystallized region G1 is stretched. In this way, the amorphous portions other than the crystallized regions Gl and G2 of the parison 10, mainly the cylindrical portion 10A in this embodiment, are heated and stretched to produce sufficient crystal orientation, and the body portion 2A and shoulder portion 2C of the container body 2 are heated and stretched.
1. Furthermore, a highly elongated portion 5 other than the crystallized portion 4 of the bottom portion 2B is configured.

第9図(イ)乃至(ハ)には、ブロー成形時におけるパ
リソン底壁部10Bの延伸状態を示している。すなわち
圧縮空気のガス圧によって結晶化領域G2に隣接する非
晶質の部分が延伸されていき、非晶質部分が結晶化領域
G2の縁に沿って外方に流動して結晶化領域G2の縁に
段差6が生じ、非晶質の部分は全て高延伸倍率でもって
延伸されて薄肉となる。ここで、段差6は極小にするこ
とが望ましい、而して容器本体2の底部2Bにおいて、
結晶化領域G2はブロー成形前のパリソン10の底壁部
10Bの形状のまま残存し、底部2B中央の結晶化部4
となる。そして底部2Bの結晶化部4以外の部分は容器
本体2の胴部2Aと略均−に高延伸され高延伸部5とな
る。
FIGS. 9A to 9C show the stretched state of the parison bottom wall portion 10B during blow molding. That is, the amorphous portion adjacent to the crystallized region G2 is stretched by the gas pressure of the compressed air, and the amorphous portion flows outward along the edge of the crystallized region G2. A step 6 is formed at the edge, and all the amorphous parts are stretched at a high stretching ratio and become thin. Here, it is desirable that the step 6 be made as small as possible, so that at the bottom 2B of the container body 2,
The crystallized region G2 remains in the shape of the bottom wall portion 10B of the parison 10 before blow molding, and the crystallized region G2 remains in the shape of the bottom wall portion 10B of the parison 10 before blow molding.
becomes. The portion of the bottom portion 2B other than the crystallized portion 4 is highly stretched approximately evenly with the body portion 2A of the container body 2 to form a highly stretched portion 5.

一方、パリソン10の口頚部2D下端と筒状部10Aと
の境界部も、ブロー成形時のブロー圧力によって筒状部
10Aの非晶質部分が結晶化領域G1の縁に沿って外方
に流動し、結晶化領域Glの縁に段差が生じて容器本体
2の口頚部2Dとなる肩部2Cは高延伸されて十分な結
晶配向が生じる。
On the other hand, at the boundary between the lower end of the mouth and neck part 2D of the parison 10 and the cylindrical part 10A, the amorphous part of the cylindrical part 10A flows outward along the edge of the crystallized region G1 due to the blow pressure during blow molding. However, a step is generated at the edge of the crystallized region Gl, and the shoulder portion 2C, which becomes the mouth and neck portion 2D of the container body 2, is highly stretched and sufficient crystal orientation occurs.

容器本体2の成形が完了すると、容器本体2底部2Bに
ベースカップ3を被着し、台座部33において接着固定
して容器1が完成する。
When the molding of the container body 2 is completed, the base cup 3 is attached to the bottom part 2B of the container body 2 and fixed with adhesive on the pedestal part 33, thereby completing the container 1.

尚、上記実施例では、パリソン10を射出成形により製
造したが、これ以外に押出成形により製造してもよい。
In the above embodiment, the parison 10 was manufactured by injection molding, but it may also be manufactured by extrusion molding.

次にこのようにして成形された容器1に、炭酸飲料等を
充填して内容物を加熱殺菌する場合について説明する。
Next, a case will be described in which the container 1 formed in this manner is filled with a carbonated beverage or the like and the contents are heated and sterilized.

内容物の加熱殺菌は、容器l内に内容物を充填してキャ
ッピングした後、熱湯を容器1上部から流すことにより
行なう。本実施例では容器1の上部において75℃の熱
湯を流す。熱湯は容器本体2の胴部2A外周面を伝って
下方に流れ、容器本体2の壁面を通じて内容物を加熱す
る。一方、胴部2A下端まで流れた熱湯はベースカップ
3に形成した通口部34からベースカップ3内側に侵入
し、容器本体底部2Bの球面状の外周面を伝って下方に
流れる。この底部2Bにおいて熱湯は65℃程度となる
。一方、加熱によって容器本体2内部のガス圧が高まり
、容器本体2は高温、高圧下にさらされるが、容器本体
2の底部2Bは十分結晶配向された高延伸部5と加熱に
よって結晶化された結晶化部4とからのみ構成されてい
るので、高温の熱湯を流しても軟化するおそれはなく、
耐熱性及び耐圧性は高まって温度による制約は低減され
る。因みに、このように結晶化した場合の耐熱温度は8
0〜95[’C]、耐圧性は、8〜10 Kg/ tr
d程度となる。従って、より高温での殺菌が可能となり
、使用範囲を拡大することができる。この際、容器本体
2を上述のように積層体で構成したためガスバリヤ性に
優れ長期にわたり殺菌状態が維持される。
Heat sterilization of the contents is performed by pouring boiling water from the top of the container 1 after filling the container 1 with the contents and capping the container 1. In this example, hot water at 75°C is poured into the upper part of the container 1. The hot water flows downward along the outer peripheral surface of the body 2A of the container body 2 and heats the contents through the wall surface of the container body 2. On the other hand, the hot water that has flowed to the lower end of the body 2A enters the inside of the base cup 3 through the opening 34 formed in the base cup 3, and flows downward along the spherical outer peripheral surface of the container body bottom 2B. The temperature of the hot water in this bottom portion 2B is about 65°C. On the other hand, the gas pressure inside the container body 2 increases due to heating, and the container body 2 is exposed to high temperature and high pressure. Since it consists only of the crystallized part 4, there is no risk of softening even if hot water is poured over it.
Heat resistance and pressure resistance are increased, and restrictions due to temperature are reduced. By the way, the heat resistance temperature when crystallized like this is 8
0~95 ['C], pressure resistance is 8~10 Kg/tr
It will be about d. Therefore, sterilization at higher temperatures becomes possible, and the range of use can be expanded. At this time, since the container body 2 is constructed of a laminate as described above, it has excellent gas barrier properties and maintains a sterilized state over a long period of time.

尚、上記実施例では容器本体2の耐圧性を高めるべく底
部2Bが球殻状に丸められてベースカップ3によって立
て置き可能とした容器に適用した例について説明したが
、本発明ではこれに限定されず、容器本体の底部の中央
部に断面円弧状の凹部が設けられ、この凹部を取囲む底
部の周辺部が正立時において載置面に環状に当接する耐
熱容器についても適用可能である。
In the above embodiment, the bottom part 2B is rounded into a spherical shell shape in order to improve the pressure resistance of the container body 2, and the present invention is limited to this. Instead, it is also applicable to a heat-resistant container in which a recess with an arcuate cross section is provided in the center of the bottom of the container body, and the peripheral part of the bottom surrounding the recess contacts the mounting surface in an annular manner when the container is erected.

(発明の効果)本発明は以上の構成及び作用からなるもので、容器本体
の少なくとも胴部及び肩部を、配向性結晶性樹脂製の内
、外表面層と少なくともガスバリヤ性樹脂を有する中間
層とから成る積層体で構成したから、ガスバリヤ性に優
れ、果汁飲料の場合に色、味が変化することなく、炭酸
飲料の場合にガスロスによる風味低下、味の変化がなく
、常温において保存性を大幅に向上させることができる
。加えて、延伸ブロー成形時に十分延伸されない容器底
部中央部を熱結晶化させて熱結晶化部とし、この熱結晶
化部以外の部分を全て高延伸倍率によって延伸させて低
延伸領域を無くしたので、耐熱、耐圧性を高めることが
でき、殺菌温度の高い種々の内容物の容器として用いる
ことが可能となって汎用性の高い耐圧耐熱容器を実現す
ることができる。そして、少なくとも肩部及び胴部は二
軸配向しているにも拘らず、耐層間剥離性に優れている
。更に本発明の容器の製造方法によれば、ガスバリヤ性
を向上させたにも拘らず、容器の製造を極めて簡単且つ
コストの低下を図ることができる。
(Effects of the Invention) The present invention has the above-described structure and operation, and comprises forming at least the body and shoulder portions of the container body into inner and outer surface layers made of oriented crystalline resin and an intermediate layer having at least gas barrier resin. Because it is composed of a laminate consisting of can be significantly improved. In addition, the central part of the bottom of the container, which is not sufficiently stretched during stretch blow molding, is thermally crystallized to form a thermally crystallized area, and all areas other than this thermally crystallized area are stretched at a high stretching ratio to eliminate low-stretching areas. , heat resistance and pressure resistance can be improved, and a highly versatile pressure and heat resistant container can be realized, which can be used as a container for various contents requiring high sterilization temperatures. In addition, although at least the shoulder portion and the body portion are biaxially oriented, the film has excellent delamination resistance. Further, according to the container manufacturing method of the present invention, the container can be manufactured extremely easily and at a reduced cost, even though the gas barrier properties are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明の一実施例に係る耐圧耐熱容器の
全体構造を示す一部破断拡大正面図、第1図(ロ)は第
1図(イ)のA部拡大断面図、第2図は第1図の容器の
本体底部を示す一部破断正面図、第3図は第1図の容器
底部の一部破断拡大正面図、第4図は第1図の容器の口
頚部の一部破断拡大正面図、第5図及び第6図は第1図
の容器本体を成形するために予備成形されたパリソンを
示しており、第5図は加熱結晶化処理前のパリソンの一
部を破断して示した正面図、第6図は加熱結晶化処理後
のパリソンの一部破断正面図、第7図は第5図のパリソ
ンを射出成形する状態を示す要部縦断面図、第8図(イ
)及び(ロ)は第6図のパリソンを用いて容器本体をブ
ロー成形する状態を示すブロー成形型の概略縦断面図、
第9図(イ)乃至(ハ)はブロー成形時のパリソン底壁
部の延伸状態を示す拡大断面図、第10図は従来の全体
構成を示す一部破断断面図、第11図は第10図の容器
のベースカップ付近の一部破断拡大正面図、第12図は
第10図の容器本体成形用のパリソンの縦断面図、第1
3図は樹脂の未延伸部と延伸部の強度の温度依存性を示
すグラフ、第14図は第12図のパリソンを加熱結晶化
処理をした例を示す縦断面図、第15図は第14図のパ
リソンの延伸ブロー後の容器底部の状態の拡大断面図で
ある。符号の説明1・・・容器       IA・・・内表面層IB・
・・外表面層    IC・・・中面層2・・・容器本
体     2A・・・胴部2B・・・底部     
 2C・・・肩部4・・・熱結晶化部    5・・・
高延伸部10・・・パリソン    11・・・金型G
1.G2・・・結晶化領域第1図rイノ′君5図    第6図第13図;五及I’CI第;0図第11図第12図   第14図第15図
FIG. 1(A) is a partially broken enlarged front view showing the overall structure of a pressure- and heat-resistant container according to an embodiment of the present invention, FIG. 1(B) is an enlarged sectional view of section A in FIG. 1(A), Fig. 2 is a partially cutaway front view showing the bottom of the main body of the container shown in Fig. 1, Fig. 3 is a partially cutaway enlarged front view of the bottom of the container shown in Fig. 1, and Fig. 4 is the neck and neck of the container shown in Fig. 1. 5 and 6 show a parison that has been preformed to form the container body shown in FIG. 1, and FIG. FIG. 6 is a partially cutaway front view of the parison after heating and crystallization treatment; FIG. 7 is a vertical cross-sectional view of the principal part showing the state of injection molding of the parison of FIG. 5; FIGS. 8(a) and 8(b) are schematic vertical sectional views of a blow molding die showing a state in which a container body is blow molded using the parison of FIG. 6;
9(a) to 9(c) are enlarged sectional views showing the stretched state of the bottom wall of the parison during blow molding, FIG. 10 is a partially cutaway sectional view showing the conventional overall structure, and FIG. Fig. 12 is a partially cutaway enlarged front view of the vicinity of the base cup of the container shown in Fig. 10;
Fig. 3 is a graph showing the temperature dependence of the strength of the unstretched part and the stretched part of the resin, Fig. 14 is a longitudinal cross-sectional view showing an example of the parison shown in Fig. 12 subjected to heating crystallization treatment, and Fig. 15 is the FIG. 2 is an enlarged cross-sectional view of the bottom of the container after the parison shown in the figure is stretched and blown. Explanation of symbols 1... Container IA... Inner surface layer IB.
...Outer surface layer IC...Inner surface layer 2...Container body 2A...Body part 2B...Bottom part
2C...shoulder part 4...thermal crystallization part 5...
Highly stretched part 10...Parison 11...Mold G
1. G2...Crystallization region Figure 1 r Ino'kun 5 Figure 6 Figure 13;

Claims (2)

Translated fromJapanese
【特許請求の範囲】[Claims](1)容器本体を二軸延伸ブロー成形によって内部中空
に構成した耐圧耐熱容器において、前記容器本体の少な
くとも胴部及び肩部を配向性結晶性樹脂製の内、外表面
層と少なくともガスバリヤ性樹脂を有する中間層とから
成る積層体で構成し、少なくとも前記容器本体の底部に
部分的に熱結晶化させた熱結晶化部を設けると共に、該
底部の熱結晶化部以外の領域の全て高延伸倍率によって
延伸することにより構成して成ることを特徴とする耐圧
耐熱容器。
(1) In a pressure- and heat-resistant container in which the container body is made hollow inside by biaxial stretch blow molding, at least the body and shoulder portions of the container body are formed of inner and outer surface layers made of oriented crystalline resin and at least gas barrier resin. a laminate comprising an intermediate layer having a heat crystallization layer, at least a thermally crystallized portion that is partially thermally crystallized at the bottom of the container body, and the entire area other than the thermally crystallized portion of the bottom portion is highly stretched. A pressure- and heat-resistant container characterized by being constructed by stretching according to a magnification.
(2)配向性結晶性樹脂製の内、外表面層及び少なくと
もガスバリヤ性樹脂を有する中間層とから成る積層体で
有底筒状のパリソンを成形し、少なくとも該パリソンの
底部を部分的に熱結晶化させ、その後パリソンの熱結晶
化領域以外の領域を全て高延伸倍率によって延伸して容
器本体を成形することを特徴とする耐圧耐熱容器の製造
方法。
(2) A cylindrical parison with a bottom is formed from a laminate consisting of inner and outer surface layers made of oriented crystalline resin and an intermediate layer having at least a gas barrier resin, and at least the bottom of the parison is partially heated. A method for producing a pressure- and heat-resistant container, which comprises crystallizing the parison, and then stretching the entire region of the parison other than the thermally crystallized region at a high stretching ratio to form a container body.
JP62310813A1987-12-101987-12-10Pressure-and heat-resisting container and production thereofGrantedJPH01153453A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP62310813AJPH01153453A (en)1987-12-101987-12-10Pressure-and heat-resisting container and production thereof

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP62310813AJPH01153453A (en)1987-12-101987-12-10Pressure-and heat-resisting container and production thereof

Publications (2)

Publication NumberPublication Date
JPH01153453Atrue JPH01153453A (en)1989-06-15
JPH0468217B2 JPH0468217B2 (en)1992-10-30

Family

ID=18009724

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP62310813AGrantedJPH01153453A (en)1987-12-101987-12-10Pressure-and heat-resisting container and production thereof

Country Status (1)

CountryLink
JP (1)JPH01153453A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH07149336A (en)*1993-11-241995-06-13Toyo Seikan Kaisha LtdBottle made of polyester and preform to be used for manufacture thereof
US5728347A (en)*1992-07-071998-03-17Continental Pet Technologies, Inc.Method of forming multi-layer preform and container with low crystallizing interior layer
EP0925915A4 (en)*1996-09-132001-05-30Kureha Chemical Ind Co LtdGas-barrier, multi-layer hollow container
WO2001039956A1 (en)*1999-11-302001-06-07Yoshino Kogyosho Co., Ltd.Polyester resin lamination vessel and molding method therefor
JP2002248675A (en)*2001-02-232002-09-03Toyo Seikan Kaisha Ltd Multilayer preform and method of manufacturing the same
JP2004034340A (en)*2002-06-282004-02-05Toyo Seikan Kaisha LtdMultilayered structure for packaging
JP2006082857A (en)*2004-09-172006-03-30Dainippon Printing Co Ltd Plastic container
KR100699180B1 (en)*1996-06-282007-07-09죤슨 앤드 죤슨 메디칼 인코포레이티드Instrument Sterilizaion Container formed of a liquid crystal palymer
JP2008018727A (en)*2007-08-142008-01-31Toyo Seikan Kaisha LtdMultilayered structure for packaging
EP1982829A1 (en)*2007-04-202008-10-22Aisapack Holding SAContainer for wine or a similar beverage
JP2010536673A (en)*2007-08-202010-12-02ザ プロクター アンド ギャンブル カンパニー Supportable pressurized container and bottom cup for the container
WO2021206083A1 (en)*2020-04-062021-10-14日精エー・エス・ビー機械株式会社Method and device for manufacturing delamination container

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS6239443A (en)*1985-08-141987-02-20株式会社吉野工業所Oriented molded bottle body
JPS62122935A (en)*1985-11-251987-06-04帝人株式会社Multilayer oriented polyester bottle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS6239443A (en)*1985-08-141987-02-20株式会社吉野工業所Oriented molded bottle body
JPS62122935A (en)*1985-11-251987-06-04帝人株式会社Multilayer oriented polyester bottle

Cited By (22)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5728347A (en)*1992-07-071998-03-17Continental Pet Technologies, Inc.Method of forming multi-layer preform and container with low crystallizing interior layer
JPH07149336A (en)*1993-11-241995-06-13Toyo Seikan Kaisha LtdBottle made of polyester and preform to be used for manufacture thereof
KR100699180B1 (en)*1996-06-282007-07-09죤슨 앤드 죤슨 메디칼 인코포레이티드Instrument Sterilizaion Container formed of a liquid crystal palymer
EP0925915A4 (en)*1996-09-132001-05-30Kureha Chemical Ind Co LtdGas-barrier, multi-layer hollow container
US6673403B1 (en)1996-09-132004-01-06Kureha Kagaku Kogyo K.K.Gas-barrier, multi-layer hollow container
AU758920B2 (en)*1999-11-302003-04-03Yoshino Kogyosho Co., Ltd.Polyester resin lamination vessel and molding method therefor
US7459119B2 (en)1999-11-302008-12-02Yoshino Kogyosho Co., Ltd.Laminated polyester resin container and method of molding such a container
WO2001039956A1 (en)*1999-11-302001-06-07Yoshino Kogyosho Co., Ltd.Polyester resin lamination vessel and molding method therefor
CN1299953C (en)*1999-11-302007-02-14株式会社吉野工业所Laminated polyester resin container and method of molding such a container
JP2002248675A (en)*2001-02-232002-09-03Toyo Seikan Kaisha Ltd Multilayer preform and method of manufacturing the same
JP2004034340A (en)*2002-06-282004-02-05Toyo Seikan Kaisha LtdMultilayered structure for packaging
JP2006082857A (en)*2004-09-172006-03-30Dainippon Printing Co Ltd Plastic container
US8210390B2 (en)2007-04-202012-07-03Aisapack Holding S.A.Container for wine or similar beverage
EP1982829A1 (en)*2007-04-202008-10-22Aisapack Holding SAContainer for wine or a similar beverage
WO2008129369A1 (en)*2007-04-202008-10-30Aisapack Holding S.A.Container for wine or similar beverage
JP2008018727A (en)*2007-08-142008-01-31Toyo Seikan Kaisha LtdMultilayered structure for packaging
JP2010536673A (en)*2007-08-202010-12-02ザ プロクター アンド ギャンブル カンパニー Supportable pressurized container and bottom cup for the container
WO2021206083A1 (en)*2020-04-062021-10-14日精エー・エス・ビー機械株式会社Method and device for manufacturing delamination container
JPWO2021206083A1 (en)*2020-04-062021-10-14
CN115427214A (en)*2020-04-062022-12-02日精Asb机械株式会社Method and apparatus for manufacturing peeling container
JP2024051121A (en)*2020-04-062024-04-10日精エー・エス・ビー機械株式会社 Method and device for manufacturing peeling container
US12304131B2 (en)2020-04-062025-05-20Nissei Asb Machine Co., Ltd.Manufacturing method and manufacturing apparatus for delamination container

Also Published As

Publication numberPublication date
JPH0468217B2 (en)1992-10-30

Similar Documents

PublicationPublication DateTitle
AU2010235995B2 (en)Polypropylene container and process for making it
US5759654A (en)Multiple layer preform
KR100742077B1 (en)Polyester resin lamination vessel and molding method therefor
JPS6071207A (en)Multilayer preform for elongation blow molding and its manufacture
JPH01153453A (en)Pressure-and heat-resisting container and production thereof
JP4292918B2 (en) Preforms for plastic bottle containers
EP1208957A1 (en)Stretch blow molded container
JP4333280B2 (en) Plastic bottle containers
JP4148065B2 (en) Stretch blow molding method of plastic bottle container and plastic bottle container formed by this molding method
JP2019072903A (en)Preform, plastic bottle and method for producing the same
JP3740968B2 (en) Method for producing biaxially stretched polyester container with whitening prevention at the bottom
JPH0298536A (en)Pressure tight heat resistant container and its manufacture
JPH0474619A (en)Method for forming multilayer structure and container produced by said method
JP3740955B2 (en) Method for producing biaxially stretched polyester container with whitening prevention at the bottom
JP2001150524A (en)Heat-resistant polyester resin laminated container and method for molding the same
JPH0323336B2 (en)
JPH07149336A (en)Bottle made of polyester and preform to be used for manufacture thereof
JP7068667B2 (en) Manufacturing method of composite preform, composite container and composite preform
JP4186431B2 (en) Stretch blow molded container
JPH05193636A (en)Preformed molding of resin with hollow wall and method for its manufacture and container produced therefrom by biaxially stretching blow molding
JPH0576897B2 (en)
JP6880473B2 (en) Beverage product manufacturing method
JPH02106317A (en)Heat and pressure resistant container and manufacture thereof
JP2021178519A (en) Manufacturing method of composite container
WO1998058790A1 (en)Manufacturing process for heat set multilayer containers

[8]ページ先頭

©2009-2025 Movatter.jp