【発明の詳細な説明】〔産業上の利用分野〕本発明は半導体装置に関し、特にバイポーラ型トランジ
スタの構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to the structure of a bipolar transistor.
従来半導体装置を構成する基本バイポーラトランジスタ
は、第5図に示すように、P型半導体基板S上に形成さ
れた不純物濃度の高いN+型埋込みコレクタNC1と、
その上の比較的不純物濃度の低いN−型半導体層C2の
表面に形成されたP形ベース領域Bと、このベース領域
中に形成されたエミッタ領域Eにより構成されていた。As shown in FIG. 5, a basic bipolar transistor constituting a conventional semiconductor device includes an N+ type buried collector NC1 with a high impurity concentration formed on a P type semiconductor substrate S, and
It consisted of a P-type base region B formed on the surface of an N-type semiconductor layer C2 having a relatively low impurity concentration thereon, and an emitter region E formed in this base region.
このトランジスタ素子において、N+型埋込みコレクタ
層C!はコレクタ直列抵抗を下げるために設けられてい
るものである。この埋込コレクタ層C1は、低抵抗化の
ために高不純物濃度(2102°cm−3)である必要
がある。In this transistor element, the N+ type buried collector layer C! is provided to reduce the collector series resistance. This buried collector layer C1 needs to have a high impurity concentration (2102[deg.]cm-3) in order to reduce the resistance.
また、通常基板電位は半導体装置の最低電位に設定され
ており、動作時には、コレクタ・基板間に数ボルトの電
圧が印加されている。この逆バイアスのほとんどは、コ
レクタ・基板間のPN接合面にかかり、接合面の空乏層
を広げ基板への漏れ電流を押える働きをする。しかし、
この空乏層は同時に、付加容量として働くので空乏層幅
は大きい方が望ましい。Further, the substrate potential is usually set to the lowest potential of the semiconductor device, and during operation, a voltage of several volts is applied between the collector and the substrate. Most of this reverse bias is applied to the PN junction between the collector and the substrate, and serves to spread the depletion layer at the junction and suppress leakage current to the substrate. but,
Since this depletion layer also functions as an additional capacitance, it is desirable that the width of the depletion layer be large.
第3図に従来のバイポーラトランジスタのP型半導体基
板の深さ方向に対する不純物濃度分布と空乏層の広がり
を示す。FIG. 3 shows the impurity concentration distribution and the spread of the depletion layer in the depth direction of the P-type semiconductor substrate of a conventional bipolar transistor.
第3図において空乏層の幅Xは、PN接合点X、を中心
にN型及びP型側に電荷量の積がつり合う点XA、XD
まで広がり、この和になっていることは周知のとおりで
ある。埋込コレクタ層の不純物濃度が高いためXAは小
さく、不純物濃度の比較的低い基板側のXDにより空乏
層の幅Xは決まってしまう。In Figure 3, the width X of the depletion layer is the point XA, XD where the product of charges is balanced on the N-type and P-type sides around the PN junction X.
As is well known, it has expanded to this sum. Since the impurity concentration of the buried collector layer is high, XA is small, and the width X of the depletion layer is determined by XD on the substrate side where the impurity concentration is relatively low.
上記した従来のバイポーラトランジスタにおいては、N
+型埋込みコレクタ層C1は、トランジスタ素子自体と
等しい大面積を有しており、埋込みコレクタ層と半導体
基板間のPN接合による付加容量は、他のPN接合のそ
れに比べ数倍になっている。この容量増加は、高周波特
性を劣化させトランジスタのスイッチング速度を遅らせ
る大きな原因となる。すなわち、エミッタからコレクタ
への少数キャリアの伝搬遅延速度を増加させてしまうの
である。In the conventional bipolar transistor mentioned above, N
The +-type buried collector layer C1 has an area as large as the transistor element itself, and the additional capacitance due to the PN junction between the buried collector layer and the semiconductor substrate is several times larger than that of other PN junctions. This increase in capacitance is a major cause of deteriorating high frequency characteristics and slowing down the switching speed of the transistor. In other words, the propagation delay speed of minority carriers from the emitter to the collector increases.
上記のことよりトランジスタ動作の高速化を考えたとき
、素子自体の面積縮少化が考えられるが、これは、トラ
ンジスタ製造上のマスクバタンマージンの縮少化が必要
なため、また、扱える電力レベルの確保のため容易では
ない。Based on the above, when considering speeding up transistor operation, it is possible to reduce the area of the element itself, but this is because it is necessary to reduce the mask button margin in transistor manufacturing, and also because it requires a reduction in the power level that can be handled. It is not easy to ensure that
本発明の目的は、素子自体の面積を変えることなく埋込
コレクタ層と半導体基板間の付加容量を低減させたバイ
ポーラトランジスタを有する半導体装置を提供すること
にある。An object of the present invention is to provide a semiconductor device having a bipolar transistor in which additional capacitance between a buried collector layer and a semiconductor substrate is reduced without changing the area of the element itself.
本発明の半導体装置は、−導電型半導体基板上に形成さ
れた逆導電型低濃度不純物を含む第1の埋込層と、該第
1の埋込層上に形成された逆導電型高濃度不純物を含む
第2の埋込層と、該第2の埋込層上に形成された逆導電
型半導体層とを含んで構成される。The semiconductor device of the present invention includes: a first buried layer containing a low concentration impurity of opposite conductivity type formed on a semiconductor substrate of conductivity type; and a high concentration impurity of opposite conductivity type formed on the first buried layer; The semiconductor device includes a second buried layer containing impurities and an opposite conductivity type semiconductor layer formed on the second buried layer.
次に、本発明について図面を参照して説明する。第1図
は本発明の第1の実施例の断面図である。Next, the present invention will be explained with reference to the drawings. FIG. 1 is a sectional view of a first embodiment of the invention.
第1図において、比較的低濃度のP型半導体基板S上に
はコレクタ領域となるN−型埋込層C3とN+型埋込み
コレクタ層C1とエピタキシャル層からなるN型半導体
層C2が形成されており、この半導体層表面にP型ベー
ス領域Bと、さらにその中にN+型エミッタ領域Eが形
成されている。そしてこれらの埋込みコレクタ、ベース
、エミッタの各領域にそれぞれ金属電極り、、D2゜D
3が設けである。尚、Ilは半導体表面と金属配線との
絶縁層、■2は素子間絶縁体である。In FIG. 1, an N-type buried layer C3 serving as a collector region, an N+-type buried collector layer C1, and an N-type semiconductor layer C2 consisting of an epitaxial layer are formed on a relatively lightly doped P-type semiconductor substrate S. A P type base region B is formed on the surface of this semiconductor layer, and an N+ type emitter region E is further formed therein. Then, metal electrodes are placed on each of these buried collector, base, and emitter regions, respectively.D2゜D
3 is a provision. Note that Il is an insulating layer between the semiconductor surface and metal wiring, and 2 is an inter-element insulator.
このように構成された第1の実施例においては、実質的
なコレクタ部分であるN−型半導体層C2の下層に位置
するコレクタ直列抵抗低減用のN+型埋込みコレクタK
J Ctと、P型半導体基板Sとの間に、N−型埋込み
層C3が設けであるため、コレクタ・基板間の付加容量
は減少する。この領域の深さ方向に対する不純物濃度分
布の様子を第4図に示す。In the first embodiment configured in this manner, an N+ type buried collector K for reducing collector series resistance is located below the N- type semiconductor layer C2 which is a substantial collector portion.
Since the N-type buried layer C3 is provided between J Ct and the P-type semiconductor substrate S, the additional capacitance between the collector and the substrate is reduced. FIG. 4 shows the impurity concentration distribution in the depth direction of this region.
第4図において、N=型埋込み層C3は、基板不純物濃
度より一桁程度高い不純物濃度で基板側に向って緩やか
に減少するように作られている。In FIG. 4, the N= type buried layer C3 is formed to have an impurity concentration that is about one order of magnitude higher than the substrate impurity concentration and gradually decreases toward the substrate side.
このような低濃度での緩やかな不純物分布IIは、N−
型半導体層C2をエピタキシャル成長により形成する前
に、基板中にイオン注入法により高エネルギー(〜数1
00keV)、低注入量で不純物をドープし、その後の
熱処理工程での拡散により形成することができる。イオ
ン注入のエネルギーは、極めて大きいため基板表面付近
での結晶ダメージはほとんどない。このことは、エピタ
キシャル成長工程において重要である。The gradual impurity distribution II at such a low concentration is due to N-
Before forming the type semiconductor layer C2 by epitaxial growth, a high energy (~several 1
00 keV), the impurity can be doped at a low dose and then diffused in a subsequent heat treatment process. Since the energy of ion implantation is extremely high, there is almost no crystal damage near the substrate surface. This is important in the epitaxial growth process.
このように構成された第1の実施例のコレクタ・基板間
に逆バイアスが印加される動作時においては、コレクタ
・基板間におけるPN接合での空乏層の広がりは、接合
点X、より基板方向へのXDは従来型とほとんど変らな
いが、埋込みコレクタ方向へのXAは、N−型埋込層C
8が緩やかな濃度匂配で存在するため大きく広がり、空
乏層の幅Xは増加し、コレクタ・基板間の付加容量は減
少する。。During operation in which a reverse bias is applied between the collector and the substrate of the first embodiment configured as described above, the depletion layer at the PN junction between the collector and the substrate spreads from the junction point X toward the substrate. The XD toward the buried collector is almost the same as the conventional type, but the XA toward the buried collector is due to the N-type buried layer C.
8 exists with a gentle concentration gradient, it widens greatly, the width X of the depletion layer increases, and the additional capacitance between the collector and the substrate decreases. .
第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.
本第2の実施例ではN−型埋込み層C8が素子間分離用
の絶縁体重2の近傍に形成されていない所以外は第1の
実施例と同じである。The second embodiment is the same as the first embodiment except that the N-type buried layer C8 is not formed near the insulating weight 2 for isolation between elements.
N−型埋込層C3をこの絶縁体重2に接触する大きさ、
つまりN−型埋込コレクタ層C1直下全面に形成した場
合、素子自体の深さが増すため素子間絶縁体I2の深さ
もそれに準じて深くしなければならない。この第2の実
施例では、素子間絶縁体I2近傍でコレクタ領域はc、
、、C2だ°けとなり、従来型と変らなくなるため、こ
の絶縁体■2の深さは従来型と同程度でよく、かつ、コ
レクタ・基板間の付加容量を充分小さくできる利点があ
る。The size of the N-type buried layer C3 to be in contact with this insulating weight 2,
In other words, when it is formed over the entire surface directly under the N-type buried collector layer C1, the depth of the element itself increases, and therefore the depth of the inter-element insulator I2 must be increased accordingly. In this second embodiment, the collector region near the inter-element insulator I2 is c,
, C2, which is the same as that of the conventional type, the depth of the insulator 2 may be the same as that of the conventional type, and there is an advantage that the additional capacitance between the collector and the substrate can be sufficiently small.
以上説明したように本発明は、−導電型半導体基板と逆
導電型高濃度不純物を含む埋込層との間に逆導電型低濃
度不純物を含む埋込み層を形成することにより、コレク
タ・基板間のPN接合により生じる空乏層のコレクタ側
への広がりを増加させ、コレクタ・基板間付加容量の低
減を実現できる。このことは、トランジスタ動作のスイ
ッチング速度の高速化に効果がある。特に素子の高集積
化を図り多数のトランジスタを動作させる場合の効果は
大きくなる。As explained above, the present invention provides a structure between the collector and the substrate by forming a buried layer containing low concentration impurities of opposite conductivity type between a semiconductor substrate of conductivity type and a buried layer containing high concentration impurities of opposite conductivity type. By increasing the spread of the depletion layer generated by the PN junction toward the collector side, it is possible to reduce the additional capacitance between the collector and the substrate. This has the effect of increasing the switching speed of transistor operation. In particular, the effect becomes greater when the elements are highly integrated and a large number of transistors are operated.
第1図及び第2図は、本発明の第1及び第2の実施例の
断面図、第3図及び第4図は従来の半導体装置及び本発
明の実施例における埋込みコレクタ層付近での深さ方向
に対する不純物濃度の分布及び空乏層の広がりを表わし
た図、第5図は従来の半導体装置の断面図である。工1・・・絶縁層、I2・・・素子間絶縁体、S・・・
P型半導体基板、C1・・・N+型埋込みコレクタ層、
C2・・・N−型半導体層、C3・・・N−型埋込み層
、B・・・P型ベース領域、E・・・N+型エミッタ領
域、D、、D2.D、・・・金属電極、X、・・・コレ
クタ・基板間のPN接合の深さ、X・・・コレクタ基板
間の空乏層幅、Ns・・・基板不純物濃度1、XA・・
・X」よりN型半導体中への空乏層の広がり、xD・・
・XJよりP型半導体中への空乏層の広がり、II・・
・N−型埋込み層中の不純物の分布。1 and 2 are cross-sectional views of the first and second embodiments of the present invention, and FIGS. 3 and 4 are cross-sectional views of the conventional semiconductor device and the depth near the buried collector layer in the embodiment of the present invention. FIG. 5, which is a diagram showing the impurity concentration distribution and the spread of the depletion layer in the horizontal direction, is a cross-sectional view of a conventional semiconductor device. Process 1... Insulating layer, I2... Inter-element insulator, S...
P-type semiconductor substrate, C1...N+ type buried collector layer,
C2...N- type semiconductor layer, C3...N- type buried layer, B...P type base region, E...N+ type emitter region, D,, D2. D,... Metal electrode, X,... Depth of PN junction between collector and substrate, X... Depletion layer width between collector and substrate, Ns... Substrate impurity concentration 1, XA...
・Spreading of the depletion layer into the N-type semiconductor from ``X'', xD...
・Spreading of the depletion layer from XJ into the P-type semiconductor, II...
- Distribution of impurities in the N-type buried layer.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62308140AJPH01149464A (en) | 1987-12-04 | 1987-12-04 | semiconductor equipment |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62308140AJPH01149464A (en) | 1987-12-04 | 1987-12-04 | semiconductor equipment |
| Publication Number | Publication Date |
|---|---|
| JPH01149464Atrue JPH01149464A (en) | 1989-06-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62308140APendingJPH01149464A (en) | 1987-12-04 | 1987-12-04 | semiconductor equipment |
| Country | Link |
|---|---|
| JP (1) | JPH01149464A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000079584A1 (en) | 1999-06-23 | 2000-12-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Semiconductor and manufacturing method for semiconductor |
| JP2001135719A (en)* | 1999-11-01 | 2001-05-18 | Denso Corp | Element isolation structure of semiconductor device |
| US7402231B2 (en) | 2003-09-17 | 2008-07-22 | Nippon Platec Co., Ltd. | Method and apparatus for partially plating work surfaces |
| JP2010522986A (en)* | 2007-03-28 | 2010-07-08 | アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド | Isolated isolated integrated circuit device |
| JP2010212367A (en)* | 2009-03-09 | 2010-09-24 | Toshiba Corp | Semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000079584A1 (en) | 1999-06-23 | 2000-12-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Semiconductor and manufacturing method for semiconductor |
| EP1188185A1 (en)* | 1999-06-23 | 2002-03-20 | Infineon Technologies AG | Semiconductor and manufacturing method for semiconductor |
| JP2001135719A (en)* | 1999-11-01 | 2001-05-18 | Denso Corp | Element isolation structure of semiconductor device |
| US7402231B2 (en) | 2003-09-17 | 2008-07-22 | Nippon Platec Co., Ltd. | Method and apparatus for partially plating work surfaces |
| JP2010522986A (en)* | 2007-03-28 | 2010-07-08 | アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド | Isolated isolated integrated circuit device |
| JP2010212367A (en)* | 2009-03-09 | 2010-09-24 | Toshiba Corp | Semiconductor device |
| Publication | Publication Date | Title |
|---|---|---|
| US7271067B2 (en) | Voltage sustaining layer with opposite-doped islands for semiconductor power devices | |
| KR101745776B1 (en) | Power Semiconductor Device | |
| JP3413250B2 (en) | Semiconductor device and manufacturing method thereof | |
| US4062699A (en) | Method for fabricating diffusion self-aligned short channel MOS device | |
| US5895249A (en) | Integrated edge structure for high voltage semiconductor devices and related manufacturing process | |
| KR100886883B1 (en) | Method for fabricating forward and reverse blocking devices | |
| US4151540A (en) | High beta, high frequency transistor structure | |
| US20030040144A1 (en) | Trench DMOS transistor with embedded trench schottky rectifier | |
| US4060821A (en) | Field controlled thyristor with buried grid | |
| JPH037149B2 (en) | ||
| EP0071335B1 (en) | Field effect transistor | |
| EP0685891B1 (en) | Integrated semiconductor diode | |
| CA1157961A (en) | Hot electron or hot hole transistor | |
| KR0163875B1 (en) | Semiconductor device and manufacturing method | |
| JPH0332234B2 (en) | ||
| KR20040071722A (en) | Semiconductor devices with localized reduced lifetime regions and their manufacture | |
| US4236169A (en) | Thyristor device | |
| JPH01149464A (en) | semiconductor equipment | |
| JP2024109061A (en) | Silicon carbide power MOSFET device with improved performance and manufacturing process thereof | |
| JPH0888357A (en) | Lateral IGBT | |
| KR100505562B1 (en) | Insulated Gate Bipolar Transistor with Multi-Layer Buffer Structure and Manufacturing Method Thereof | |
| JP4275763B2 (en) | Power semiconductor device employing field plate and method of manufacturing the same | |
| JPH10335630A (en) | Semiconductor device and manufacturing method thereof | |
| JPH04363068A (en) | semiconductor equipment | |
| KR100264729B1 (en) | Horizontal Silicon On Insulator Power MOSFET and Manufacturing Method Thereof |