【発明の詳細な説明】〔産業上の利用分野〕本発明は、低磁歪定数、高飽和磁束密度、高透磁率なら
びに高耐食性の特性を有する強磁性薄膜および上記強磁
性薄膜を用いた磁気ヘッドに関し。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a ferromagnetic thin film having the characteristics of a low magnetostriction constant, high saturation magnetic flux density, high magnetic permeability, and high corrosion resistance, and a magnetic head using the above ferromagnetic thin film. Regarding.
特に磁気ディスク装置、VTRなどに眉いる磁気ヘッド
および磁気ヘッドのコア材料に適した強磁性薄膜に関す
る。In particular, the present invention relates to a magnetic head used in magnetic disk drives, VTRs, etc., and a ferromagnetic thin film suitable as a core material of the magnetic head.
近年、磁気記録技術の発展は著しく、家庭用VTRの分
野では従来の装置を大幅に小型・軽量化した8 m V
T Rが開発され、また磁気ディスクの分野でも従来
の面内磁気記録方式と比較して大幅に記録密度を向上し
うる垂直磁気記録方式の研究が進められている。面内磁
気記録方式においては、記録密度を向上させるために高
保磁力の記録媒体を使用する必要があるが、その記録媒
体の性能を十分に生かすために高飽和磁束密度を有する
磁気ヘッド材料の開発が必要である。また垂直磁気記録
方式においても1例えば垂直磁気記録用単磁極型磁気ヘ
ッドの主磁極は0.2 μm程度と極めて薄いため、
記録・再生の際に磁気的に飽和しやすく、それを避ける
ためには高飽和磁束密度を有する磁気ヘッド材料の開発
が不可欠である。In recent years, the development of magnetic recording technology has been remarkable, and in the field of home VTRs, 8 mV, which is significantly smaller and lighter than conventional devices, has been developed.
TR has been developed, and in the field of magnetic disks, research is progressing on a perpendicular magnetic recording system that can significantly improve recording density compared to the conventional longitudinal magnetic recording system. In the longitudinal magnetic recording method, it is necessary to use a recording medium with high coercive force to improve the recording density, but in order to take full advantage of the performance of the recording medium, it is necessary to develop magnetic head materials with high saturation magnetic flux density. is necessary. Also, in the perpendicular magnetic recording system, for example, the main pole of a single-pole magnetic head for perpendicular magnetic recording is extremely thin, about 0.2 μm.
Magnetic saturation tends to occur during recording and reproduction, and in order to avoid this, it is essential to develop magnetic head materials with high saturation magnetic flux density.
また磁気ヘッド材料はヘッドの記録再生効率の面から高
透磁率を有することが必要であり、そのためには磁歪定
数が零に近いことが望ましい。このような材料としては
従来、N i −20w t%Fe合金(パーマロイ)
、Fe−AQ−8i系合金などが開発されており、ま
た非晶質磁性材料およびFs−6,7wt%Si合金の
磁気ヘッドへの適用も図られている。Further, the magnetic head material must have high magnetic permeability from the viewpoint of recording and reproducing efficiency of the head, and for this purpose, it is desirable that the magnetostriction constant be close to zero. Conventionally, such a material is Ni-20wt%Fe alloy (permalloy).
, Fe-AQ-8i alloys, etc. have been developed, and efforts are also being made to apply amorphous magnetic materials and Fs-6,7wt%Si alloys to magnetic heads.
一方、磁歪定数が零に近い強磁性材料は上記の他にも存
在し1例えば、アール・エム・ボゾルス(R,M、 B
ozorth)による1951年発行のフエロマグネテ
イズム(Ferrow+agnetis+i) 664
〜672ページに論じられているとおり、Fe−0,5
wt%Ni付近の組成の合金バルク材においても磁歪零
を実現することができる。On the other hand, there are other ferromagnetic materials with magnetostriction constants close to zero, such as R.M. Bosols (R, M, B
Ferrow+agnetis+i 664 published in 1951 by Ferrow+agnetis+i
As discussed on page ~672, Fe-0,5
Zero magnetostriction can also be achieved in an alloy bulk material with a composition near wt%Ni.
しかし、Ni−20wt%Fe合金(パーマロイ)およ
びF e −A Q −S i系合金は飽和磁束密度が
8〜10kGと低い、また、高透磁率を有する非晶質磁
性材料では飽和磁束密度が13kG以上になると熱安定
性が極めて悪く、磁気ヘッドの作製が困難であるという
欠点がある。さらに、Fe−6,7wt%Si合金は飽
和磁束密度が約18kGと高いが耐食性に問題があり、
Ruなとの添加により耐食性の改善を行うと飽和磁束密
度が14kg程度まで低下するという問題があった。However, the saturation magnetic flux density of Ni-20wt%Fe alloy (permalloy) and Fe-AQ-Si alloy is as low as 8 to 10 kG, and the saturation magnetic flux density of amorphous magnetic materials with high magnetic permeability is low. If it exceeds 13 kG, the thermal stability is extremely poor, making it difficult to manufacture a magnetic head. Furthermore, although the Fe-6,7wt%Si alloy has a high saturation magnetic flux density of about 18kG, it has problems with corrosion resistance.
When corrosion resistance was improved by adding Ru, there was a problem in that the saturation magnetic flux density decreased to about 14 kg.
一方、F e −N i系合金は前記アール・エム。On the other hand, the Fe-Ni alloy is manufactured by the above-mentioned RM.
ボゾルスによる文献に論じられているようにバルク材に
おいて磁歪定数が測定されている。しかし、磁気ヘッド
作製の面からはバルク材よりも薄膜であることが好まし
い。Magnetostriction constants have been measured in bulk materials as discussed in the article by Bosols. However, from the viewpoint of manufacturing a magnetic head, it is preferable to use a thin film rather than a bulk material.
また、磁気ヘッド材料は磁気テープ、磁気ディスクなど
の記録媒体との摺動摩耗が少ないことが要求される。Further, the magnetic head material is required to have little sliding wear with respect to recording media such as magnetic tapes and magnetic disks.
本発明の目的は、上述した従来技術の欠点を解消し、低
磁歪定数、高飽和磁束密度、高透磁率ならびに高耐食性
を有する強磁性薄膜および上記強磁性薄膜を用いた高密
度磁気記録用の磁気ヘッドを提供することにある。The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a ferromagnetic thin film having a low magnetostriction constant, high saturation magnetic flux density, high magnetic permeability, and high corrosion resistance, and a high-density magnetic recording using the above-mentioned ferromagnetic thin film. The purpose is to provide a magnetic head.
本発明者等は、蒸着法、スパッタリング法などの薄膜形
成技術によって作製したFe−Ni系合金薄膜について
鋭意研究を重ねた結果、高飽和密度を有するNi濃度が
10wt%以下の組成範囲において、その磁歪定数の組
成依存性が従来技術であるFe−Ni系合金バルク材の
磁歪定数の組成依存性と大きく異なることを見い出した
。すなわち、Fe−Ni系合金薄膜を蒸着法、スパッタ
リング法などの薄膜形成技術によって作製するとNi濃
度が10wt%以下の組成範囲において、低磁歪定数を
示す組成はバルク材と異なり、磁歪定数λSの絶対値1
λs1を2X10−B以下にするためには、Feおよび
微量な不可避の不純物からなるベースに対してNi組成
を、重量%で0.5〜2.6%にすることが必要であり
、さらに1λ、+をlXl0””以下にするためにはN
i組成を1重量%で1.1〜2.1 %にする必要があ
ることを知見し本発明を完成するに至った。As a result of intensive research on Fe-Ni alloy thin films fabricated by thin film forming techniques such as vapor deposition and sputtering, the present inventors have found that in a composition range where the Ni concentration is 10 wt% or less and has a high saturation density. It has been found that the composition dependence of the magnetostriction constant is significantly different from the composition dependence of the magnetostriction constant of Fe-Ni based alloy bulk material, which is a conventional technique. That is, when a Fe-Ni alloy thin film is produced by a thin film forming technique such as vapor deposition or sputtering, in a composition range where the Ni concentration is 10 wt% or less, the composition exhibiting a low magnetostriction constant is different from that of the bulk material, and the absolute value of the magnetostriction constant λS is value 1
In order to make λs1 2X10-B or less, it is necessary to increase the Ni composition to 0.5 to 2.6% by weight with respect to the base consisting of Fe and a small amount of unavoidable impurities, and furthermore, to , to make + less than lXl0"", N
The present invention was completed based on the finding that the i composition needs to be 1.1 to 2.1% by weight.
また本発明のF s −0、5〜2 、6 w t%N
i合金薄膜に、B、C,Hの群より選ばれる少なくとも
1種の元素を0.1〜5wt%添加することにより軟磁
気特性を向上させることができる。またA Q g S
ig P @ G a @ G e v A s t
I n ? S n +Sb、 Zn、Cu、Co
、Mn、Cr、Mo、W。Moreover, F s −0, 5 to 2, 6 wt%N of the present invention
The soft magnetic properties can be improved by adding 0.1 to 5 wt% of at least one element selected from the group of B, C, and H to the i-alloy thin film. Also A Q g S
ig P @ G a @ G e v A s t
In? S n +Sb, Zn, Cu, Co
, Mn, Cr, Mo, W.
V、Nb、Ta、Ti、Zr、Hf、Y、Au。V, Nb, Ta, Ti, Zr, Hf, Y, Au.
Agの群より選ばれる少なくとも1種の元素を0.1〜
3 w t%添加することにより耐食性を向上させるこ
とができる。At least one element selected from the group of Ag from 0.1 to
Corrosion resistance can be improved by adding 3 wt%.
またRu、Rh、Pd、Os、Ir、Ptの群から選ば
れる少なくとも1種の元素を2wt%以下添加すること
により、磁気特性をほとんど劣化させずに耐摩耗性を向
上させることができる。しかし、上記Ru、Rh、Pd
、Os、I r、Ptの群より選ばれる元素を2wt%
より多く添加すると保磁力の増加が著しくなるため、上
記元素の添加は2wt%以下が好ましい。Further, by adding 2 wt % or less of at least one element selected from the group of Ru, Rh, Pd, Os, Ir, and Pt, wear resistance can be improved without substantially deteriorating magnetic properties. However, the above Ru, Rh, Pd
2wt% of an element selected from the group of , Os, Ir, and Pt.
The addition of the above elements is preferably 2 wt % or less, since the coercive force increases significantly if a larger amount is added.
さらに本発明のFe−Ni系合金薄膜を、他の組成の磁
性薄膜あるいは非磁性薄膜を介して1層以上の積層構造
とすることによって、さらに高い透磁率を有する積層型
の強磁性薄膜とすることができる。Furthermore, by forming the Fe-Ni alloy thin film of the present invention into a laminated structure of one or more layers with magnetic thin films or non-magnetic thin films of other compositions interposed therebetween, a laminated ferromagnetic thin film having even higher magnetic permeability can be obtained. be able to.
また上記強磁性薄膜を磁気ヘッドの磁気回路に用いるこ
とにより記録・再生特性の優れた磁気ヘッドを得ること
ができる。Furthermore, by using the above-mentioned ferromagnetic thin film in the magnetic circuit of a magnetic head, a magnetic head with excellent recording and reproducing characteristics can be obtained.
上述したように、F e −N i系合金薄膜を蒸着法
、スパッタリング法などの薄膜形成技術によって作製す
ると、低磁歪定数を示す組成はバルク材と異なり1合金
組成を重量%で、Niが0.5〜2.6 %、残部Fe
および不純物とすることにより磁歪定数の絶対値1λs
1を2X10−6以下とすることができ、また上記組成
の合金薄膜は20kG以上の飽和磁束密度を有する。さ
らに合金組成を重量%で、Niが1.1〜2.1%、残
部F’ eおよび不純物とすることにより1λs1を1
×10−6以下とすることができる。さらに上記Fe−
Ni系合金薄膜にB、C,Nの群より選ばれる少なくと
も1種の元素を0.1 〜5wt%添加することにより
軟磁気特性を向上させることができる。またAl,Si
、P、Ga、Ge、As。As mentioned above, when a Fe-Ni alloy thin film is produced by a thin film forming technique such as vapor deposition or sputtering, the composition exhibiting a low magnetostriction constant is different from that of the bulk material, with the alloy composition being 1% by weight and Ni being 0%. .5-2.6%, balance Fe
and impurity, the absolute value of the magnetostriction constant is 1λs
The alloy thin film having the above composition can have a saturation magnetic flux density of 20 kG or more. Furthermore, by changing the alloy composition to 1.1 to 2.1% by weight of Ni and the remainder being F' e and impurities, 1λs1 can be reduced to 1.
x10-6 or less. Furthermore, the above Fe-
The soft magnetic properties can be improved by adding 0.1 to 5 wt % of at least one element selected from the group of B, C, and N to the Ni-based alloy thin film. Also, Al, Si
, P, Ga, Ge, As.
I n、Sn、Sb、Zn、Cu、Go、Mn。In, Sn, Sb, Zn, Cu, Go, Mn.
Cr、Mo、Ws V、Nb、Ta、Ti、Z r。Cr, Mo, Ws V, Nb, Ta, Ti, Zr.
Hf、Y、Au、Agの群より選ばれる少なくとも1種
の元素を0.1〜3 wt%添加することにより耐食
性を向上させることができる。さらに上記Fe−Ni系
合金薄膜にRu、Rh、Pd。Corrosion resistance can be improved by adding 0.1 to 3 wt% of at least one element selected from the group of Hf, Y, Au, and Ag. Furthermore, Ru, Rh, and Pd are added to the Fe-Ni alloy thin film.
Os、Ir、Ptの群より選ばれる少なくとも1種の元
素を2wt%以下添加することにより耐摩耗性を向上さ
せることができる。またさらに本発明のFe−Ni系合
金薄膜を積層構造とすることにより高透磁率の特性が得
られる。また上記強磁性薄膜を磁気ヘッドの磁気回路に
用いることにより記録・再生特性の優れた磁気ヘッドを
得ることができる。Wear resistance can be improved by adding 2 wt% or less of at least one element selected from the group of Os, Ir, and Pt. Furthermore, by forming the Fe--Ni alloy thin film of the present invention into a laminated structure, a high magnetic permeability characteristic can be obtained. Furthermore, by using the above-mentioned ferromagnetic thin film in the magnetic circuit of a magnetic head, a magnetic head with excellent recording and reproducing characteristics can be obtained.
なお、本発明の強磁性薄膜に微量な不可避の不純物が含
有していても、上述の作用が減じない。Note that even if the ferromagnetic thin film of the present invention contains a trace amount of unavoidable impurities, the above-mentioned effect will not be reduced.
以下に本発明の一実施例を挙げ、図表を参照しながらさ
らに具体的に説明する。An example of the present invention will be described below in more detail with reference to figures and tables.
〔実施例1〕F e −N i系強磁性薄膜の作製には高周波スパッ
タリング装置を用い、所定の合金組成の薄膜を得るため
に、150noφ×311のFe円板に5m+X5+m
X1++n’のNiペレットを貼りつけたターゲットを
用いた。なお、スパッタリングは以下の条件で行った。[Example 1] A high-frequency sputtering device was used to produce a Fe-Ni-based ferromagnetic thin film, and in order to obtain a thin film with a predetermined alloy composition, a 5m+X5+m
A target to which Ni pellets of X1++n' were attached was used. Note that sputtering was performed under the following conditions.
高周波電力密度・・・・・・2 、8 w / rxl
アルゴン圧力・・・・・・5 X 10−’Torr基
板 温 度・・・・・・300℃電極間距離・
・・・・・45nn基板として、磁歪定数の測定用にコーニング社製ホトセ
ラム基板を用い、それ以外の磁気特性および耐食性の測
定用にはコーニング社製7059ガラス基板を用いた。High frequency power density...2, 8 w/rxl
Argon pressure...5 x 10-'Torr substrate Temperature...300℃ Distance between electrodes
...45nn As the substrate, a Photoceram substrate made by Corning Co., Ltd. was used for measuring the magnetostriction constant, and a 7059 glass substrate made by Corning Co., Ltd. was used for measuring other magnetic properties and corrosion resistance.
また膜厚は1,5μrn一定とした。Further, the film thickness was kept constant at 1.5 μrn.
上記条件により作製したF e −N i二元前合金薄
膜の磁歪定数λSの組成依存性を測定したところ、第2
図における実線21のごとくなった。また同図にはアー
ル・エム・ボゾルス(R,M。When we measured the compositional dependence of the magnetostriction constant λS of the Fe-Ni binary pre-alloy thin film produced under the above conditions, we found that the second
It looks like the solid line 21 in the figure. Also shown in the same figure is R.M. Bosols (R,M.
Bozorth)によるF e −N i系合金バルク
材のλ8の測定結果も実線22で示しである。すなわち
同図に示すごとく、F e −N i二元前合金のNi
a度が10wt%以下の組成範囲において、本発明の薄
膜と従来例のバルク材とではそのλ8に大きな差異があ
り、薄膜において磁歪定数λSの絶対値1λs1を2
X 106以下にするためにはNi組成を0.5〜2.
6 w t%とすることが必要であり、さらに1λs1
をlXl0−6以下にするためにはNi組成を1.1〜
2.1vt%とすることが必要である6本発明のFe−
0,5〜2.6wt%Ni合金の磁気特性を第1表に示
す。The solid line 22 also shows the measurement results of λ8 of the F e -N i alloy bulk material by M. Bozorth. That is, as shown in the same figure, the Ni of the Fe-Ni binary pre-alloy
In the composition range where the a degree is 10 wt% or less, there is a large difference in λ8 between the thin film of the present invention and the conventional bulk material, and the absolute value of the magnetostriction constant λS of 1λs1 in the thin film is 2.
In order to make X 106 or less, the Ni composition should be 0.5 to 2.
6 wt%, and 1λs1
In order to make the
6 Fe- of the present invention, which needs to be 2.1vt%
The magnetic properties of the 0.5-2.6 wt% Ni alloy are shown in Table 1.
第1表第1表に示すごと<、Fe−Ni二元系合金薄膜はNi
が0.5〜2 、6 w t%の組成範囲において20
kG以上の飽和磁束密度を有する。また本実施例におい
て最も磁気特性に優れた合成組成は、Fe−1,6wt
%Niであり、その磁気特性値は磁歪定数λs=0.飽
和磁束密度Bs=20.9kG、保磁力Hc = 2
、1 0 e 、測定周波数5MHzでの初期透磁率μ
1=700であった。Table 1 As shown in Table 1, the Fe-Ni binary alloy thin film is Ni
20 in the composition range of 0.5 to 2,6 wt%
It has a saturation magnetic flux density of kG or more. In addition, in this example, the synthetic composition with the best magnetic properties was Fe-1,6wt
%Ni, and its magnetic property value is magnetostriction constant λs=0. Saturation magnetic flux density Bs = 20.9kG, coercive force Hc = 2
, 1 0 e , initial permeability μ at measurement frequency 5 MHz
1=700.
一方、耐食性を調査するために、上記Fe−1,6wt
%Ni合金の飽和磁化Moを測定し。On the other hand, in order to investigate the corrosion resistance, the above Fe-1,6wt
%Ni alloy saturation magnetization Mo was measured.
その後、膜表面に0.5 %N a CQ水溶液を噴
霧し、室温で24時間放置した後の飽和磁化M1を測定
した。腐食率は、腐食率(%)=(Mo−Ml)X10
0/MOで定義した。またこの際、比較のために従来よ
り磁気ヘッドへの適用が図られているFe−6,7wt
%Si合金薄膜(Bs=18kG)にも上記同様の耐食
性試験を行った。Thereafter, a 0.5% Na CQ aqueous solution was sprayed onto the film surface, and the saturation magnetization M1 was measured after being left at room temperature for 24 hours. Corrosion rate is Corrosion rate (%) = (Mo-Ml) x 10
Defined as 0/MO. At this time, for comparison, we used Fe-6,7w, which has been conventionally applied to magnetic heads.
%Si alloy thin film (Bs=18kG) was also subjected to the same corrosion resistance test as above.
この耐食性試験の結果を第2表に示す。The results of this corrosion resistance test are shown in Table 2.
第 2 表第2表に示すごとく、Fe−1,6wt%Ni合金の耐
食性は優れており、腐食率は0%であった。またFe−
1,6wt%Ni合金は塩水噴霧を行って3週間後にお
いても全く腐食せず、耐食性は非常に優れていることが
確認された。Table 2 As shown in Table 2, the corrosion resistance of the Fe-1,6wt%Ni alloy was excellent, and the corrosion rate was 0%. Also Fe-
It was confirmed that the 1.6 wt% Ni alloy did not corrode at all even 3 weeks after being sprayed with salt water, and had excellent corrosion resistance.
〔実施例2〕軟磁気特性に対するB、C,Nの添加の効果を調べるた
め、実施例1と同様のスパッタリング条件でF e −
N i −x (x = B 、 C、N )系合金薄
膜を作製した。組成はNiが1.6 wt%、添加元
素であるB、CあるいはNが0〜5wt%、残部をFe
とした。第1図にB、CあるいはNの添加量と5MHz
での比透磁率との関係を示す。[Example 2] In order to investigate the effect of adding B, C, and N on soft magnetic properties, Fe −
A N i -x (x = B, C, N) alloy thin film was produced. The composition is 1.6 wt% Ni, 0 to 5 wt% B, C, or N as additive elements, and the balance is Fe.
And so. Figure 1 shows the amount of B, C or N added and the frequency of 5MHz.
The relationship between the relative magnetic permeability and the relative magnetic permeability is shown.
同図の比透磁率のB′a度依存性(曲線11)。The dependence of relative magnetic permeability on degree B'a (curve 11) in the same figure.
Ce度依存性(曲線12)、N濃度依存性(曲線13)
に示すように、B、C,Nを0.1 wt%以上添加
すると比透磁率が向上する。TEMによる膜の断面観察
の結果、Fe−Ni系合金にB。Ce degree dependence (curve 12), N concentration dependence (curve 13)
As shown in Figure 2, when B, C, and N are added in an amount of 0.1 wt% or more, the relative magnetic permeability is improved. As a result of cross-sectional observation of the film using TEM, B was found in the Fe-Ni alloy.
C,Nを添加すると結晶粒径が小さくなることがわかっ
た。この結晶粒の微細化のため、比透磁率が向上してい
ると考えられる。またBおよびCを5wt%より多く添
加すると、膜の内部応力が大きくなり、膜が基板よりは
がれる。またNを5wt%より多く添加するとFe4N
ができ、飽和磁束密度が減少するという問題がある。It was found that the addition of C and N reduced the crystal grain size. It is thought that the relative magnetic permeability is improved due to the refinement of the crystal grains. Furthermore, if more than 5 wt % of B and C are added, the internal stress of the film increases and the film peels off from the substrate. Also, when N is added in an amount greater than 5 wt%, Fe4N
There is a problem in that the saturation magnetic flux density decreases.
従ってB。Therefore B.
C,Nを添加は0.1〜5 wt%の範囲とすること
が好ましい。It is preferable that C and N be added in a range of 0.1 to 5 wt%.
〔実施例3〕耐食性に対するAl,Si、P、Ga、Ge。[Example 3]Al, Si, P, Ga, Ge for corrosion resistance.
As、In、Sn、Sb、Zn、Cu、Go。As, In, Sn, Sb, Zn, Cu, Go.
Mn、Cr’、Mo、Wt V、Nb、Ta、Ti 。Mn, Cr', Mo, Wt V, Nb, Ta, Ti.
Zr、Hf、Y、Au、Agの添加の効果を調べた。耐
食性の評価はアノード分極曲線の測定によって行った。The effects of adding Zr, Hf, Y, Au, and Ag were investigated. Corrosion resistance was evaluated by measuring anode polarization curves.
緩衝液はホウ酸緩衝液に0.01+mol/QのNaC
Qを添加した緩衝液を用いた。Niが1.6 wt%
、上記添加元素が3 w t%、残部Feからなる組成
の合金薄膜の孔食を起こす電位をアノード分極曲線から
求めた。孔食電位は高い方が耐食性が優れていると考え
ることができる。The buffer solution is 0.01+mol/Q NaC in borate buffer.
A buffer solution containing Q was used. Ni is 1.6 wt%
The potential at which pitting corrosion occurs in an alloy thin film having a composition in which the above additive element is 3 wt % and the balance is Fe was determined from an anode polarization curve. It can be considered that the higher the pitting potential, the better the corrosion resistance.
第3表に添加元素と孔食電位との関係を示す。Table 3 shows the relationship between additive elements and pitting corrosion potential.
第3表第3表に示すごとく、Fe−Ni系合金に上記元素を添
加すると孔食電位が上昇し、耐食性が高まる。またこの
耐食性に対する効果は、添加元素の濃度が0.1 w
t%以上で生じる。また上記元素をawt%以上添加す
ると、co以外の元素では飽和磁束密度を大きく低下さ
せる。またGoの場合、保磁力を増大させてしまう、従
って上記元素の添加は0.1〜3wt%が好ましい、ま
たさらに上記合金薄膜にB、C,Ntto、1〜5wt
%添加すると軟磁気特性を向上させることができる。Table 3 As shown in Table 3, when the above elements are added to the Fe-Ni alloy, the pitting potential increases and the corrosion resistance increases. Moreover, this effect on corrosion resistance is due to the concentration of the added element being 0.1 w
Occurs at t% or more. Further, when awt% or more of the above elements are added, the saturation magnetic flux density of elements other than co is greatly reduced. In addition, in the case of Go, the coercive force increases. Therefore, the addition of the above elements is preferably 0.1 to 3 wt%, and the addition of B, C, Ntto, 1 to 5 wt% is further added to the above alloy thin film.
% can improve soft magnetic properties.
〔実施例4〕耐摩耗性に対するRu、Rh、Pd、Os。[Example 4]Ru, Rh, Pd, Os for wear resistance.
Ir、Ptなどの添加の効果を調べるためダミーヘッド
を作製し、耐摩耗性試験を行った。第3図(a)に示す
様な半径20mの曲面31および15閣の厚さを有する
フェライト基板32を用意し、曲面31に第3図(b)
に示す様に厚さ10μmのスパッタ膜33を形成するこ
とにより耐摩耗性測定用ダミーヘッド35を得た。この
際のスパッタリングには実施例1と同様のターゲットに
添加元素であるm Ru、Rh、Pd、Os、I r。In order to investigate the effects of adding Ir, Pt, etc., a dummy head was prepared and a wear resistance test was conducted. A curved surface 31 with a radius of 20 m and a ferrite substrate 32 with a thickness of 15 mm as shown in FIG.
A dummy head 35 for wear resistance measurement was obtained by forming a sputtered film 33 with a thickness of 10 μm as shown in FIG. For sputtering at this time, the same target as in Example 1 was used with additive elements mRu, Rh, Pd, Os, and Ir.
ptのペレット(5■×5■X1mt)を1回のスパッ
タリングにつき1種ずつ貼り付けたターゲットを用い、
スパッタ膜33の組成は実施例1で最も磁気特性の優れ
ていたFe−1,6wt%Niの合金組成に上記添加元
素を2wt%添加した組成とした。Using a target to which one type of PT pellet (5 x 5 x 1 mt) was attached for each sputtering,
The composition of the sputtered film 33 was such that 2 wt % of the above additive elements were added to the alloy composition of Fe-1, 6 wt % Ni, which had the best magnetic properties in Example 1.
耐摩耗性試験は第3図(b)に示すスパッタ膜の曲面3
4にメタルテープを30m/sの速度で200時間摺動
させ、摩耗量を測定することによった。この耐摩耗性試
験の結果を第4表に示す。The wear resistance test was carried out on the curved surface 3 of the sputtered film shown in Figure 3(b).
4, the metal tape was slid at a speed of 30 m/s for 200 hours, and the amount of wear was measured. The results of this abrasion resistance test are shown in Table 4.
第4表第4表に示すごとく、いずれかの1種の元素の添加によ
って、添加元素なしの場合よりも耐摩耗性が向上してい
る。Table 4 As shown in Table 4, the addition of any one type of element improves the wear resistance compared to the case without the added element.
また上記合金薄膜にB、C,Nを0.1〜5wt%添加
すると軟磁気特性を向上させることができる。Further, by adding 0.1 to 5 wt% of B, C, and N to the above alloy thin film, the soft magnetic properties can be improved.
〔実施例5〕実施例2と同様のターゲットを用いてスパッタリングを
行い、Ru、Rh、Pd、Os、I r。[Example 5] Sputtering was performed using the same target as in Example 2, and Ru, Rh, Pd, Os, Ir.
ptの添加が保磁力に与える影響について調べた。The effect of the addition of pt on coercive force was investigated.
スパッタリング条件、基板、膜厚なとは実施例1同様と
した。また合金薄膜の組成はFe−1,6wt%Niに
上記添加元素を2wt%ないし2.5wt%含有させた
ものとした。これらの試料の保磁力の測定結果を第5表
に示す。The sputtering conditions, substrate, and film thickness were the same as in Example 1. Further, the composition of the alloy thin film was such that Fe-1, 6 wt % Ni contained 2 wt % to 2.5 wt % of the above-mentioned additional elements. Table 5 shows the measurement results of the coercive force of these samples.
第5表第5表に示すごとく、上記添加元素を2 w t%添加
した時は、添加元素なしの場合の保磁力2.10sと比
較して保磁力の増加はあまりないが、2.5 wt%
添加する保磁力が大幅に増加する。Table 5 As shown in Table 5, when 2 wt% of the above additive elements are added, the coercive force does not increase much compared to the coercive force of 2.10 s without the additive element, but the coercive force increases by 2.5 s. wt%
The added coercive force increases significantly.
従って上記添加元素の添加は2wt%以下が好ましい。Therefore, the addition of the above-mentioned additional elements is preferably 2 wt % or less.
〔実施例6〕第4図に示すごとく、主磁性体膜としてFe−1,6w
t%Ni−2wt%C合金薄膜(膜厚0.1μm)41
を5insまたはパーマロイ(N i −19w t%
Fe)からなる中間層(膜厚30人)42を介して15
層積層(総膜厚1.5μm)した。Fe−N1−C系合
金薄膜41は上述の実施例1と同じ条件で巣バッタリン
グを行い、中間層42の形成は以下に示すスパッタリン
グ条件で行った。[Example 6] As shown in Fig. 4, Fe-1,6w was used as the main magnetic film.
t%Ni-2wt%C alloy thin film (film thickness 0.1μm) 41
5ins or permalloy (N i -19wt%
15 through an intermediate layer (film thickness: 30 layers) 42 consisting of Fe)
The layers were laminated (total film thickness 1.5 μm). The Fe--N1--C alloy thin film 41 was subjected to nest sputtering under the same conditions as in Example 1, and the intermediate layer 42 was formed under the sputtering conditions shown below.
高周波電力密度・・・・・・0 、5 w / alア
ルゴン圧力・・・・・・5 X 10−’Torr基
板 温 度・・・・・・300℃電極間距離・・
・・・・45Wn上記条件で作製した積層型の磁性薄膜の磁気特性を測定
した。その結果を第6表に示す。High frequency power density...0,5 w/al Argon pressure...5 x 10-'Torr group
Plate temperature...300℃ Distance between electrodes...
...45Wn The magnetic properties of the laminated magnetic thin film produced under the above conditions were measured. The results are shown in Table 6.
第6表第5表に示すごとく、本発明の強磁性薄膜を積層構造の
磁性薄膜とすることにより、保磁力Haならびに初期透
磁率μiが飛躍的に改善される。As shown in Table 6 and Table 5, by forming the ferromagnetic thin film of the present invention into a magnetic thin film having a laminated structure, the coercive force Ha and the initial magnetic permeability μi are dramatically improved.
〔実施例7〕本発明のFe−1,6wt%N i 〜2 w t%C
合金薄膜ないし従来の実用材料であるパーマロイ(Ni
−19wt%)合金薄膜を用いて第5図に示す構造の垂
直磁気記録用単磁極型磁気ヘッド71を作製した。この
磁気ヘッド71の隠製工程を以下に述べる。[Example 7] Fe-1,6wt%N i -2wt%C of the present invention
Permalloy (Ni) is a thin alloy film or a conventional practical material.
A single-pole type magnetic head 71 for perpendicular magnetic recording having the structure shown in FIG. 5 was manufactured using a thin alloy film (-19 wt%). The concealment process of this magnetic head 71 will be described below.
第5図(a)に示すM n −Z nフェライト61お
よび高融点ガラス62からなる基板63を用い、その表
面に第5図(b)に示すように膜厚0.2μmの上記合
金強磁性薄膜64を高周波スパッタリング法で作製した
。さらに、この上に接着用pb系ガラス膜を高周波スパ
ッタリングにより形成し、第5図(a)に示す基板63
を重ね合わせて450Cで30分間加熱し、上記pb系
ガラス膜を溶融固着させ、第5図(Q)に示す主磁極ブ
ロック65を作製した。そして、第5図(d)に示すM
n −Z nフェライト66および高融点ガラス67
からなる補助コアブロック68を用意し。A substrate 63 made of Mn-Zn ferrite 61 and high melting point glass 62 as shown in FIG. 5(a) is used, and the above alloy ferromagnetic film is coated on the surface with a film thickness of 0.2 μm as shown in FIG. 5(b). The thin film 64 was produced by high frequency sputtering method. Furthermore, a PB-based glass film for adhesion is formed on this by high frequency sputtering, and a substrate 63 shown in FIG. 5(a) is formed.
were piled up and heated at 450C for 30 minutes to melt and fix the PB-based glass film, thereby producing the main pole block 65 shown in FIG. 5(Q). Then, M shown in FIG. 5(d)
n-Z n ferrite 66 and high melting point glass 67
An auxiliary core block 68 consisting of:
接合面70に上記と同様の接着用pb系ガラス膜を形成
した後、主磁極ブロック65を補助コアブロック68の
接合面70によって挟み、450℃で30分間加熱する
ことバより、上記pb系ガラス膜を溶融固着させて接合
ブロック69を作製した1次に、第5図(d)に示す2
点鎖線部を切断し、第5図(e)に示す垂直磁気記録用
単磁極型磁気ヘッド71を得た。After forming an adhesive PB-based glass film similar to the above on the bonding surface 70, the main pole block 65 is sandwiched between the bonding surfaces 70 of the auxiliary core block 68 and heated at 450° C. for 30 minutes. The first step, in which the bonding block 69 was produced by melting and fixing the membrane, was followed by the second step shown in FIG. 5(d).
A dot-dashed line portion was cut to obtain a single-pole type magnetic head 71 for perpendicular magnetic recording shown in FIG. 5(e).
上述の工程によって作製したFe−1,6wt%Ni〜
2wt%C合金薄膜を用いたヘッドおよびパーマロイ薄
膜を用いたヘッドの記録、特性をG o −Cr垂直磁
気記録媒体を用いて測定した。Fe-1,6wt%Ni~ produced by the above process
The recording and characteristics of a head using a 2wt% C alloy thin film and a head using a permalloy thin film were measured using a Go-Cr perpendicular magnetic recording medium.
再生ヘッドにはパーマロイ薄膜を有するヘッドを用いた
。その結果、本発明のFe−1,6wt%Ni〜2wt
%C合金薄膜を用いたヘッドは従来の実用材料であるパ
ーマロイ合金薄膜を用いたヘッドと比較して約4dB高
い出力を示した。このように本発明の強磁性薄膜を用い
た磁気ヘッドは優れた記録特性を有することが明らかと
なった。A head having a permalloy thin film was used as the reproducing head. As a result, Fe-1,6wt%Ni~2wt of the present invention
The head using the %C alloy thin film exhibited approximately 4 dB higher output than the head using the permalloy alloy thin film, which is a conventional practical material. As described above, it has been revealed that the magnetic head using the ferromagnetic thin film of the present invention has excellent recording characteristics.
その他、Fe−1,6wt%−2wt%B。Others: Fe-1,6wt%-2wt%B.
Fe−1,6wt%−2wt%N合金薄膜を用いて上記
と同様の磁気ヘッドを作製したところ、パーマロイ合金
薄膜を用いたヘッドと比較して、それぞれ約3dB、約
4dB高い出方を示した。When a magnetic head similar to the above was fabricated using a Fe-1,6wt%-2wt%N alloy thin film, it showed approximately 3 dB and approximately 4 dB higher output, respectively, compared to a head using a permalloy alloy thin film. .
以上詳細な説明したごとく、本発明の強磁性薄膜は低磁
歪組成で高い飽和磁束密度を有し、また優れた耐食性、
耐摩耗性、低保磁力および高透磁率の特性を有する。ま
た、上記強磁性薄膜を磁気ヘッドの主磁極に適用すると
優れた記録特性を有する磁気ヘッドを得ることができる
。As described in detail above, the ferromagnetic thin film of the present invention has a low magnetostriction composition, high saturation magnetic flux density, and excellent corrosion resistance.
It has the characteristics of wear resistance, low coercive force and high magnetic permeability. Further, when the above-mentioned ferromagnetic thin film is applied to the main pole of a magnetic head, a magnetic head having excellent recording characteristics can be obtained.
第1図は本発明の実施例2におけるF e −N i−
(B、C,N)合金薄膜の比透磁率の組成依存性を示す
グラフ、第2図は本発明の実施例1にお−けるF a
−N i系合金薄膜および従来のFe−Ni系合金バル
ク材の磁歪定数の組成依存性を示すグラフ、第3図は本
発明の実施例4における耐摩耗性測定用ダミーヘッドの
作製工程を示す斜視図、第4図は本発明の実施例6にお
ける積層構造の強磁性薄膜の構造を示す断面図、第5図
は本発明の実施例7における垂直磁気記録用単磁極型磁
気ヘッドの作製工程を示す斜視図である。11・・・比透磁率のB濃度依存性、12・・・比透磁
率のC濃度依存性、13・・・比透磁率のB濃度依存性
、21・・・F e −N i系合金薄膜の磁歪定数の
組成依存性、22・・・Fe−Ni系合金バルク材の磁
歪定数の組成依存性、31・・・曲面、32・・・フェ
ライト基板、33・・・スパッタ膜、34・・・スパッ
タ膜の曲面、35・・・ダミーヘッド、41・・・F
e−PN i −C系合金薄膜、42・・・中間層、4
3・・・基板、61゜66・・・M n −Z nフェ
ライト、62.67・・・高融点ガラス、63・・・基
板、64・・・強磁性薄膜、65・・・主磁極ブロック
、68・・・補助コアブロック、69・・・接合ブロッ
ク、70・・・接合面、71・・・垂直1\第 I 口俸加厄#Jl (wt%つFIG. 1 shows F e -N i- in Example 2 of the present invention.
(B, C, N) A graph showing the composition dependence of the relative permeability of the alloy thin film.
- A graph showing the composition dependence of the magnetostriction constant of a Ni-based alloy thin film and a conventional Fe-Ni-based alloy bulk material. Figure 3 shows the manufacturing process of a dummy head for wear resistance measurement in Example 4 of the present invention. A perspective view, FIG. 4 is a sectional view showing the structure of a ferromagnetic thin film with a laminated structure in Example 6 of the present invention, and FIG. 5 is a manufacturing process of a single-pole magnetic head for perpendicular magnetic recording in Example 7 of the present invention. FIG. 11... B concentration dependence of relative magnetic permeability, 12... C concentration dependence of relative magnetic permeability, 13... B concentration dependence of relative magnetic permeability, 21... Fe-Ni alloy Composition dependence of magnetostriction constant of thin film, 22... Composition dependence of magnetostriction constant of Fe-Ni alloy bulk material, 31... Curved surface, 32... Ferrite substrate, 33... Sputtered film, 34... ...Curved surface of sputtered film, 35...Dummy head, 41...F
e-PN i -C alloy thin film, 42... intermediate layer, 4
3...Substrate, 61°66...Mn-Zn ferrite, 62.67...High melting point glass, 63...Substrate, 64...Ferromagnetic thin film, 65...Main magnetic pole block , 68... Auxiliary core block, 69... Joint block, 70... Joint surface, 71... Vertical 1
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28931387AJPH01132109A (en) | 1987-11-18 | 1987-11-18 | Ferromagnetic thin film and magnetic head using the same |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28931387AJPH01132109A (en) | 1987-11-18 | 1987-11-18 | Ferromagnetic thin film and magnetic head using the same |
| Publication Number | Publication Date |
|---|---|
| JPH01132109Atrue JPH01132109A (en) | 1989-05-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP28931387APendingJPH01132109A (en) | 1987-11-18 | 1987-11-18 | Ferromagnetic thin film and magnetic head using the same |
| Country | Link |
|---|---|
| JP (1) | JPH01132109A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0342806A (en)* | 1989-07-10 | 1991-02-25 | Fuji Photo Film Co Ltd | Soft magnetism thin film |
| JPH03188603A (en)* | 1989-09-25 | 1991-08-16 | Tdk Corp | Soft magnetic thin-film and magnetic head |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0342806A (en)* | 1989-07-10 | 1991-02-25 | Fuji Photo Film Co Ltd | Soft magnetism thin film |
| JPH03188603A (en)* | 1989-09-25 | 1991-08-16 | Tdk Corp | Soft magnetic thin-film and magnetic head |
| Publication | Publication Date | Title |
|---|---|---|
| JPH0744110B2 (en) | High saturation magnetic flux density soft magnetic film and magnetic head | |
| EP0234879B1 (en) | Ferromagnetic thin film and magnetic head using it | |
| US5585984A (en) | Magnetic head | |
| US4707417A (en) | Magnetic composite film | |
| JPH01132109A (en) | Ferromagnetic thin film and magnetic head using the same | |
| JP2508489B2 (en) | Soft magnetic thin film | |
| JPS6273604A (en) | ferromagnetic thin film | |
| JP3127075B2 (en) | Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film | |
| JPS58118015A (en) | Magnetic head | |
| JPS62183101A (en) | ferromagnetic thin film | |
| JPS58100412A (en) | Manufacture of soft magnetic material | |
| JPS62195105A (en) | ferromagnetic thin film | |
| JPS62279609A (en) | ferromagnetic thin film | |
| JPS6313256B2 (en) | ||
| JPS6260113A (en) | Magnetic head with ferromagnetic thin film | |
| JPS63197307A (en) | Ferromagnetic thin film and magnetic head using the same | |
| JP2797509B2 (en) | Magnetic thin film material | |
| JPH04252006A (en) | Corrosion-resistant magnetically soft film and magnetic head using the same | |
| JPH0562804B2 (en) | ||
| JPS6235604A (en) | Magnetically soft thin film | |
| JPS61290703A (en) | Soft magnetic thin film | |
| JP2551008B2 (en) | Soft magnetic thin film | |
| JPS63203746A (en) | Ferromagnetic alloy and magnetic head using the same | |
| JPS62212908A (en) | Magnetic head | |
| JPS6116002A (en) | Magnetic head |