【発明の詳細な説明】〔発明の目的〕(産業上の利用分野)本発明は加熱装置に関するものであり、特に半導体装置
の製造工程において広く利用することができる、半導体
基板を加熱する加熱装置に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a heating device, and in particular to a heating device for heating a semiconductor substrate, which can be widely used in the manufacturing process of semiconductor devices. Regarding.
(従来の技術)半導体装置の製造工程において、半導体基板を可視光線
、赤外光線等を用いて急速に加熱する工程は、近年重要
なものになりつつある。この工程では周囲の温度が半導
体基板自体の温度よりも低い、いわゆる非平衡状態で行
うことになる。このため周囲の温度ではなく半導体基板
自体の温度を測定する必要があり、さらに高速でこの温
度を測定しながらフィードバック制御により加熱しなけ
ればならない。ところでこの温度測定は、不純物汚染等
を極力避けなければならない半導体装置の製造工程にお
いて行なわれるため、半導体基板に対し非接触で行なう
必要がある。このため、このような温度の測定には基板
からの赤外放射強度を比較的高速で測定できる放射温度
計が最も一般的に用いられている。(Prior Art) In recent years, in the manufacturing process of semiconductor devices, the process of rapidly heating a semiconductor substrate using visible light, infrared light, etc. has become important. This process is performed in a so-called non-equilibrium state where the ambient temperature is lower than the temperature of the semiconductor substrate itself. For this reason, it is necessary to measure the temperature of the semiconductor substrate itself rather than the ambient temperature, and furthermore, it is necessary to measure this temperature at high speed and heat it by feedback control. By the way, since this temperature measurement is carried out in the manufacturing process of a semiconductor device in which impurity contamination and the like must be avoided as much as possible, it is necessary to carry out the measurement without contacting the semiconductor substrate. For this reason, radiation thermometers that can measure the infrared radiation intensity from the substrate at a relatively high speed are most commonly used to measure such temperatures.
従来の加熱装置について、第3図を参照し説明する。半
導体基板1が被加熱物であり、支持台2によって支持さ
れている。ハロゲンランプ3は半導体基板1を加熱する
ためのものであり、棒状のランプが配列されている。反
射板4はこのハロゲン・ランプの光を反射し加熱効率を
高めるためのものである。放射温度計5は、半導体基板
1から放射される赤外線の強度を測定するものであり、
この測定値に基づいて温度測定装置6は半導体基板1の
温度を求める。温度測定装置6が求めた半導体基板1の
温度の値に基づいて、ハロゲンランプ制御系7はハロゲ
ンランプ3による加熱強度を調整する。A conventional heating device will be explained with reference to FIG. A semiconductor substrate 1 is an object to be heated, and is supported by a support base 2. The halogen lamps 3 are for heating the semiconductor substrate 1, and rod-shaped lamps are arranged. The reflector plate 4 is for reflecting the light from this halogen lamp to improve heating efficiency. The radiation thermometer 5 measures the intensity of infrared rays emitted from the semiconductor substrate 1,
Based on this measured value, the temperature measuring device 6 determines the temperature of the semiconductor substrate 1. Based on the temperature value of the semiconductor substrate 1 determined by the temperature measuring device 6, the halogen lamp control system 7 adjusts the heating intensity by the halogen lamp 3.
ところが放射温度計による温度測定は、被加熱物の放射
率の影響を受ける。半導体基板の放射率は、半導体基板
の不純物濃度や半導体基板表面の膜構造によって大きく
変化するため、放射率の影響を除去する補正なしでは約
1000℃の加熱に対して約±100℃の測定誤差が生
じ得る。半導体基板の加熱工程では少なくとも±5℃以
内の温度制御が必要であるから、半導体基板の状態によ
って異なる放射率の影響を除去する補正は不可欠である
。しかし、加熱前に予め半導体基板の放射率を調べて補
正したのでは補正が不十分なものとなる。半導体基板の
状態は、たとえ同種の基板同志であっても常に製造プロ
セスにより変動するからである。特に半導体基板の不純
物濃度は、熱処理中に変動するため放射率は刻−刻と変
化する。However, temperature measurement using a radiation thermometer is affected by the emissivity of the object to be heated. The emissivity of a semiconductor substrate varies greatly depending on the impurity concentration of the semiconductor substrate and the film structure on the surface of the semiconductor substrate, so without correction to remove the effect of emissivity, there will be a measurement error of approximately ±100°C for heating of approximately 1000°C. may occur. Since the heating process of a semiconductor substrate requires temperature control within at least ±5° C., it is essential to perform correction to remove the influence of emissivity that varies depending on the state of the semiconductor substrate. However, if the emissivity of the semiconductor substrate is checked and corrected in advance before heating, the correction will be insufficient. This is because the state of semiconductor substrates always changes depending on the manufacturing process even if the substrates are of the same type. In particular, since the impurity concentration of the semiconductor substrate changes during heat treatment, the emissivity changes from moment to moment.
したがって放射温度計を用いて温度n1定を行なう場合
には、加熱中にも絶えず被加熱物の放射率による影響を
除去する補正をする必要がある。従来は補正の方法とし
て、波長が近似している二つの赤外放射線の強度を測定
し、この二つの測定値の比を取ることによって放射率に
よる影響を小さくするという方法が用いられていた。Therefore, when determining the temperature n1 using a radiation thermometer, it is necessary to constantly make corrections to remove the influence of the emissivity of the object to be heated even during heating. Conventionally, the correction method used was to measure the intensities of two infrared radiations with similar wavelengths, and to reduce the influence of emissivity by taking the ratio of these two measured values.
(発明が解決しようとする問題点)しかしこの方法は、波長が異なる2つの赤外放射線に対
して、被加熱物の放射率がほとんど同一であることを前
提としている。このため被加熱物の放射率が異なる波長
の赤外放射線に対して異なっているような場合にはこの
方法を用いることができないという問題点があった。(Problems to be Solved by the Invention) However, this method is based on the premise that the emissivity of the heated object is almost the same for two infrared radiations having different wavelengths. For this reason, there is a problem in that this method cannot be used when the emissivity of the object to be heated differs for infrared radiation of different wavelengths.
本発明は上記事情に鑑み、被加熱物の放射率が放射率測
定に用いる赤外線の波長の違いによって異なるか否かに
かかわらず、被加熱物の温度を放射率の影響による誤差
を除くことにより高い精度で測定し、加熱強度を適正に
制御し得る加熱装置を提供することを目的とする。In view of the above circumstances, the present invention has been developed by measuring the temperature of a heated object by eliminating errors caused by the influence of emissivity, regardless of whether the emissivity of the heated object differs depending on the wavelength of infrared rays used for emissivity measurement. It is an object of the present invention to provide a heating device that can measure with high accuracy and appropriately control heating intensity.
(問題点を解決するための手段)上記目的は、加熱されるべき被加熱物を加熱する加熱手
段と、前記被加熱物から放射される赤外線の強度を検出
して前記被加熱物の温度を測定し温度測定信号を発生す
る温度測定手段と、前記被加熱物に光を照射する光源部
と、前記被加熱物からの反射光の光量を測定する受光量
測定部と、前記光源部が照射した光の光量と前記光】測
定部が測定した反射光の光量とに基づいて前記被加熱物
の放射率を求めて放射率測定信号を発生する放射率算出
部とを有した放射率測定部と、前記放射率n1定信号が
示す放射率のハ1定値と所定値とを比較し、放射率の測
定値の方が大きい場合には前記温度測定信号が示す温度
の測定値をより低い値に補正し、放射率の測定値の方が
小さい場合には前記温度測定信号が示す温度の測定値を
より高い値に補正して補正温度信号を発生する温度補正
手段と、前記補正温度信号に基づいて前記加熱手段が前
記被加熱物を加熱する強度を制御する加熱制御手段とを
備えたことを特徴とする加熱装置によって達成される。(Means for solving the problem) The above object is to provide a heating means for heating an object to be heated, and to detect the intensity of infrared rays emitted from the object to be heated to determine the temperature of the object to be heated. a temperature measuring means for measuring and generating a temperature measurement signal; a light source section for irradiating light onto the object to be heated; a received light amount measuring section for measuring the amount of light reflected from the object to be heated; and an emissivity calculation section that calculates the emissivity of the object to be heated based on the amount of reflected light measured by the measurement section and generates an emissivity measurement signal. , the emissivity c1 constant value indicated by the emissivity n1 constant signal is compared with a predetermined value, and if the measured emissivity value is larger, the temperature measurement value indicated by the temperature measurement signal is set to a lower value. temperature correction means for generating a corrected temperature signal by correcting the measured value of temperature indicated by the temperature measurement signal to a higher value when the measured value of emissivity is smaller; This is achieved by a heating apparatus characterized in that the heating means is equipped with a heating control means for controlling the intensity with which the object to be heated is heated.
(作 用)被加熱物を加熱手段が加熱し、前記被加熱物から赤外線
が放射される。この赤み線の強度を温度測定手段が検出
して温度を測定し、温度測定信号を発生する。放射率測
定手段において、光源部が前記被加熱物に照射した光の
光量と、照射された光が前記被加熱物によって反射され
た反射光の光量を受光量測定部が測定した値とに基づい
て光量測定部が前記被加熱物の反射率を求めて放射率測
定信号を発生する。温度11)J定手段において、前記
放射率測定信号が示す放射率の測定値と所定値とを比較
し、測定値の方が大きい場合には前記温度測定信号が示
す温度の測定値をより低い値に補正し、測定値の方が小
さい場合には前記温度測定信号が示す温度の測定値をよ
り高い値に補正して補正温度信号を発生する。加熱制御
羊膜が前記補正温度信号に基づいて前記加熱手段が前記
被加熱物を加熱する強度を制御する。(Function) The heating means heats the object to be heated, and infrared rays are emitted from the object to be heated. A temperature measuring means detects the intensity of this reddish line, measures the temperature, and generates a temperature measurement signal. In the emissivity measuring means, the amount of light irradiated onto the object to be heated by the light source section and the amount of reflected light from the irradiated light reflected by the object to be heated are measured based on the value measured by the amount of received light measuring section. Then, a light amount measuring section determines the reflectance of the object to be heated and generates an emissivity measurement signal. Temperature 11) In the temperature determination means, the measured value of emissivity indicated by the emissivity measurement signal is compared with a predetermined value, and if the measured value is larger, the measured value of temperature indicated by the temperature measurement signal is lowered. If the measured value is smaller, the measured temperature value indicated by the temperature measurement signal is corrected to a higher value to generate a corrected temperature signal. A heating control amniotic membrane controls the intensity with which the heating means heats the object to be heated based on the corrected temperature signal.
(実施例)以下、本発明を図示する実施例に基づいて詳述する。(Example)Hereinafter, the present invention will be described in detail based on illustrated embodiments.
まず、本発明の一実施例による加熱装置について、第1
図を参照し説明する。第3図に示した従来の加熱装置と
比較し、光源11、受光量測定部12、放射率算出部1
3とから構成される放射率測定部が新たに付加され、さ
らに温度測定装置14に温度測定値に補正を行なう機能
が付加された点が異なる。従来の場合の同一物に対して
は同一番号を付し説明を省略する。First, regarding the heating device according to one embodiment of the present invention, the first
This will be explained with reference to the drawings. In comparison with the conventional heating device shown in FIG.
The difference is that an emissivity measurement section consisting of 3 is newly added, and a function for correcting the temperature measurement value is added to the temperature measurement device 14. Components that are the same as those in the conventional case are given the same numbers and their explanations will be omitted.
光源11は、半導体基板1に光を照射するものである。The light source 11 irradiates the semiconductor substrate 1 with light.
受光量測定部12は、光源11から照射された光を半導
体基板1が反射した反射光の光量をδIll定するもの
である。放射率算出部13は、光源11が半導体基板1
に照射した光の光量と受光量測定部12が測定した反射
光の光量とに基づいて半導体基板1の反射率を求め、放
射率測定信号を発生するものである。温度測定装置14
は、半導体基板1から放射される赤外線の強度を放射温
度計5が測定した値に基づいて半導体基板1の温度を求
める機能と、この温度の測定値を放射率算出部13で求
めた放射率の測定値に基づいて補正する温度補正を行な
う機能とを合わせ持っている。The received light amount measuring unit 12 determines the amount of reflected light, which is the light emitted from the light source 11 and reflected by the semiconductor substrate 1, as δIll. The emissivity calculation unit 13 calculates that the light source 11 is the semiconductor substrate 1.
The reflectance of the semiconductor substrate 1 is determined based on the amount of light irradiated onto the semiconductor substrate 1 and the amount of reflected light measured by the received light amount measuring section 12, and an emissivity measurement signal is generated. Temperature measuring device 14
has a function of determining the temperature of the semiconductor substrate 1 based on the value measured by the radiation thermometer 5 of the intensity of infrared rays emitted from the semiconductor substrate 1, and an emissivity calculated by the emissivity calculation unit 13 based on the measured value of this temperature. It also has a temperature correction function based on the measured value.
この温度補正は、放射率の測定値と所定値とを比較し、
放射率の測定値の方が大きい場合には放射温度計5で測
定した赤外線の強度から求めた温度測定値をより低い値
に補正し、放射率の測定値の方が小さい場合には温度測
定値をより高い値に補正することにより行なう。This temperature correction compares the measured value of emissivity with a predetermined value,
If the measured value of emissivity is larger, the temperature measurement value obtained from the intensity of infrared rays measured by the radiation thermometer 5 is corrected to a lower value, and if the measured value of emissivity is smaller, the temperature measurement value is corrected. This is done by correcting the value to a higher value.
被加熱物1がハロゲンランプ3により加熱されて、赤外
線を放射する。この赤外放射強度を放射温度計5が測定
し、この測定値に基づいて温度相定装置14が半導体基
板1の温度を求める。この場合、半導体基板1の放射率
はあ′る所定値であるという仮定に基づいて温度を求め
ることとなる。An object to be heated 1 is heated by a halogen lamp 3 and emits infrared rays. The radiation thermometer 5 measures this infrared radiation intensity, and the temperature phase determining device 14 determines the temperature of the semiconductor substrate 1 based on this measured value. In this case, the temperature is determined based on the assumption that the emissivity of the semiconductor substrate 1 is a certain predetermined value.
一方、光源11、受光量測定部12、放射率算出部13
から構成される放射率測定部により半導体基板1の放射
率を求める。放射温度計5が測定する赤外線と同じ波長
の光を光源11が半導体基板1に照射し、半導体基板1
によって反射される反射光の光量を受光量n1定部12
で測定し、放射率算出部13において照射した光の光量
に対する反射光の光量が占める割合である反射率Rを求
め、さらに放射率εをε−1−Hの関係により求める。On the other hand, a light source 11, a received light amount measurement section 12, an emissivity calculation section 13
The emissivity of the semiconductor substrate 1 is determined by an emissivity measuring section consisting of the following. A light source 11 irradiates the semiconductor substrate 1 with light having the same wavelength as the infrared rays measured by the radiation thermometer 5.
The amount of reflected light reflected by the received light amount n1 constant part 12
The emissivity calculation unit 13 calculates the reflectance R, which is the ratio of the amount of reflected light to the amount of emitted light, and further calculates the emissivity ε from the relationship ε-1-H.
なお、光源11が照射する赤外線の波長と、加熱された
半導体基板1自体が放射する赤外線の波長は一致してい
る。このため、受光量n1定部12が受光する赤外線に
は光源11から照射されて半導体基板1が反射した赤外
線と、加熱されて半導体基板1自体が放射する赤外線の
両者が含まれることとなり、区別しなければならない。Note that the wavelength of the infrared rays emitted by the light source 11 and the wavelength of the infrared rays emitted by the heated semiconductor substrate 1 itself match. Therefore, the infrared rays received by the received light amount n1 constant part 12 include both the infrared rays irradiated from the light source 11 and reflected by the semiconductor substrate 1, and the infrared rays emitted by the semiconductor substrate 1 itself after being heated. Must.
この方法としては、光源部11が放射する赤外線の強度
に予め変調を加えておいて、受光量測定部12で対応す
る変動成分を取り出す等の方法により求めるべき反射光
の受光量が求まる。In this method, the amount of received reflected light to be determined is determined by modulating the intensity of infrared rays emitted by the light source section 11 in advance and extracting the corresponding fluctuation component in the received light amount measuring section 12.
このようにして放射率算出部13において半導体基板1
の放射率が求まる。温度測定装置14は、放射温度計5
が測定した赤外放射強度から求めた半導体基板1の温度
を、放射率算出部13が求めた放射率を用いて補正する
。前述したように、半導体基板1の放射率はある所定値
であるという仮定に基づいて温度を求めており、この所
定値と実測された放射率との差分に応じて補正をするこ
ととなる。実測された放射率が所定値よりも大きい場合
には、放射温度計5から見た見掛は上の温度が高くなる
ため、より低い実温度に近い値になるように補正する。In this way, in the emissivity calculation section 13, the semiconductor substrate 1
Find the emissivity of The temperature measuring device 14 includes a radiation thermometer 5
The temperature of the semiconductor substrate 1 determined from the infrared radiation intensity measured by is corrected using the emissivity determined by the emissivity calculation unit 13. As mentioned above, the temperature is determined based on the assumption that the emissivity of the semiconductor substrate 1 is a certain predetermined value, and correction is made according to the difference between this predetermined value and the actually measured emissivity. If the actually measured emissivity is larger than a predetermined value, the apparent temperature as seen from the radiation thermometer 5 will be higher, so it is corrected to a lower value closer to the actual temperature.
実測された放射率が所定値よりも小さい場合には、放射
温度計5から見た見掛は上の温度が低くなるため、より
高い実温度に近い値になるように補正する。If the actually measured emissivity is smaller than the predetermined value, the apparent upper temperature as seen from the radiation thermometer 5 will be lower, so it is corrected to a higher value closer to the actual temperature.
この温度測定装置14について補正された温度に基づい
て、ハロゲンランプ制御装置7がハロゲンランプ3によ
る加熱温度を制御し、予め定められている半導体基板1
の設定温度に等しくなるようにする。Based on the temperature corrected for the temperature measurement device 14, the halogen lamp control device 7 controls the heating temperature of the halogen lamp 3, and controls the heating temperature of the semiconductor substrate 1 to a predetermined temperature.
equal to the set temperature.
このように本実施例によれば、被加熱物の放射率が放M
=l率測定に用いる赤外線の波長の違いによって異なる
か否かにかかわらず、被加熱物の温度測定値から放射率
の影響による誤差を除くことにより高い精度で測定し、
加熱強度を適正に制御することができる。In this way, according to this embodiment, the emissivity of the heated object is
=Irrespective of whether it differs due to the wavelength of the infrared rays used to measure the l-rate, the temperature of the heated object can be measured with high accuracy by removing errors due to the influence of emissivity,
Heating intensity can be appropriately controlled.
次に、従来の加熱装置を用いた場合と本実施例の加熱装
置を用いた場合における、それぞれの半導体基板1の設
定温度と実温度との比較について、第2図を参照し説明
する。第2図(a)および第2図(1))は従来の加熱
装置を用いた場合、第2図(c)は本実施例の加熱装置
を用いた場合の、半導体基板1の設定温度に対する実温
度と時間との関係を示したものである。第2図(a)は
半導体基板1の表面に約5000へのSiO2膜が施さ
れている場合であり、設定温度1000℃に対し実温度
は約50℃低くなっている。S i O2膜によって干
渉効果が生じ、半導体基板1の表面の反射率が低下する
ことによって逆に放射率が高くなる。これにより、放射
温度計5から見た見掛は上の温度が高くなり、ハロゲン
ランプ制御装置7が加熱強度を低く制御するためである
。第2図(b)は半導体基板1に高濃度の不純物が添加
されている場合であり、第2図(a)とは逆に設定温度
よりも実温度は高くなっている。これは、不純物の存在
によって反射率が高くなり、逆に放射率が低下して放射
温度計5から見た見掛は上の温度が低くなり、ハロゲン
ランプ制御装置7が加熱強度を高く制御するためである
。さらに実温度が時間とともに変化しているのは、加熱
により半導体基板1に含まれている不純物が変化し、時
間の経過とともに放射率が変化したためである。Next, a comparison between the set temperature and the actual temperature of the semiconductor substrate 1 when using the conventional heating device and when using the heating device of this embodiment will be explained with reference to FIG. FIGS. 2(a) and 2(1)) show the set temperature of the semiconductor substrate 1 when the conventional heating device is used, and FIG. 2(c) shows the set temperature of the semiconductor substrate 1 when the heating device of this embodiment is used. This shows the relationship between actual temperature and time. FIG. 2(a) shows a case where a SiO2 film of about 5000°C is applied to the surface of the semiconductor substrate 1, and the actual temperature is about 50°C lower than the set temperature of 1000°C. The S i O 2 film causes an interference effect, and as the reflectance of the surface of the semiconductor substrate 1 decreases, the emissivity increases. This is because the apparent temperature as seen from the radiation thermometer 5 becomes high, and the halogen lamp control device 7 controls the heating intensity to be low. FIG. 2(b) shows a case where a high concentration of impurities is added to the semiconductor substrate 1, and contrary to FIG. 2(a), the actual temperature is higher than the set temperature. This is because the reflectance increases due to the presence of impurities, and conversely, the emissivity decreases, so that the apparent temperature seen from the radiation thermometer 5 becomes lower, and the halogen lamp controller 7 controls the heating intensity to be high. It's for a reason. Furthermore, the reason why the actual temperature changes with time is that the impurities contained in the semiconductor substrate 1 change due to heating, and the emissivity changes with the passage of time.
一方、本実施例の加熱装置を用いた場合には第2図(c
)に示すように、半導体基板1の表面にS iO2膜が
施されていたり、半導体基板1に高濃度の不純物が含ま
れている場合であっても、実温度は設定温度にほぼ一致
している。本実施例の加熱装置は、加熱強度を適正に制
御し、半導体基数1の実温度を設定温度にほぼ一致させ
得ることかわかる。On the other hand, when the heating device of this embodiment is used, FIG.
), even if the surface of the semiconductor substrate 1 is coated with an SiO2 film or the semiconductor substrate 1 contains a high concentration of impurities, the actual temperature will almost match the set temperature. There is. It can be seen that the heating device of this example can appropriately control the heating intensity and make the actual temperature of the semiconductor radix 1 almost equal to the set temperature.
本実施例では加熱手段としてハロゲンランプ3を用いて
いるが、可視光又は赤外線によるもの等の他の加熱手段
であってもよい。反射板4は加熱効果を高めるものでは
あるが、なくてもよい。温度測定装置14は、放射温度
計5が測定した赤外放射線の強度の値に基づいて半導体
基板1の温度を求める機能と、この温度の測定値を放射
率測定手段が求めた放射率の測定値に基づいて補正する
温度補正を行なう機能とを合わせ持っているが、両者の
機能を別の装置に分離してもよい。In this embodiment, a halogen lamp 3 is used as the heating means, but other heating means such as one using visible light or infrared rays may be used. Although the reflector plate 4 enhances the heating effect, it is not necessary. The temperature measuring device 14 has a function of determining the temperature of the semiconductor substrate 1 based on the value of the intensity of infrared radiation measured by the radiation thermometer 5, and a function of measuring the emissivity determined by the emissivity measuring means based on the measured temperature value. It also has the function of performing temperature correction based on the value, but both functions may be separated into separate devices.
以上説明したように、本発明の加熱装置は、放射温度計
を用いて測定した被加熱物の温度測定値を、加熱中の被
加熱物の放射率を測定し、この放射率を用いて補正し、
補正された温度の値に基づいて被加熱物を加熱する強度
を制御する。このため、被加熱物の放射率が加熱中に絶
えず変化したり、被加熱物の放射率が放射率測定に用い
る赤外放射線の波長の違いによって異なるか否かにかか
わらず、測定された被加熱物の温度の値を補正すること
がてき、加熱強度を適正に制御することができる。As explained above, the heating device of the present invention measures the emissivity of the heated object during heating and corrects the temperature value of the heated object measured using a radiation thermometer using this emissivity. death,
The intensity of heating the object to be heated is controlled based on the corrected temperature value. For this reason, regardless of whether the emissivity of the heated object changes constantly during heating or whether the emissivity of the heated object varies depending on the wavelength of the infrared radiation used for emissivity measurement, the measured The temperature value of the heated object can be corrected, and the heating intensity can be appropriately controlled.
第1図は本発明の加熱装置の構成を示す図、第2図(a
)と第2図(b)は従来の加熱装置を用いた場合の半導
体基板1の温度と時間との関係を示す図、第2図(c)
は本発明の加熱装置を用いた場合の半導体基板1の温度
と時間との関係を示す図、第3図は従来の加熱装置の構
成を示す図である。1・・・半導体基板、2・・・支持台、3・・・ハロゲ
ンランプ、4・・・反射板、5・・・放射温度計、6・
・・温度測定装置、7・・・ハロゲンランプ制御装置、
11・・・光源、12・・・受光量測定部、13・・・
放射率算出部、14・・・温度測定装置。出願人代理人 佐 藤 −雄第1図明悩!!!l悩第3図Figure 1 is a diagram showing the configuration of the heating device of the present invention, Figure 2 (a
) and FIG. 2(b) are diagrams showing the relationship between the temperature of the semiconductor substrate 1 and time when a conventional heating device is used, and FIG. 2(c)
3 is a diagram showing the relationship between the temperature of the semiconductor substrate 1 and time when the heating device of the present invention is used, and FIG. 3 is a diagram showing the configuration of a conventional heating device. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Support stand, 3... Halogen lamp, 4... Reflection plate, 5... Radiation thermometer, 6...
...Temperature measuring device, 7...Halogen lamp control device,
11... Light source, 12... Light reception amount measuring section, 13...
Emissivity calculation unit, 14... temperature measurement device. Applicant's agent Mr. Sato-Yu 1st figure Mingangan! ! ! Trouble Figure 3
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62282643AJPH01124726A (en) | 1987-11-09 | 1987-11-09 | Heating device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62282643AJPH01124726A (en) | 1987-11-09 | 1987-11-09 | Heating device |
| Publication Number | Publication Date |
|---|---|
| JPH01124726Atrue JPH01124726A (en) | 1989-05-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62282643APendingJPH01124726A (en) | 1987-11-09 | 1987-11-09 | Heating device |
| Country | Link |
|---|---|
| JP (1) | JPH01124726A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0452773A3 (en)* | 1990-04-09 | 1992-06-10 | Anelva Corporation | Method and apparatus for processing substrate |
| US6169271B1 (en) | 1998-07-13 | 2001-01-02 | Mattson Technology, Inc. | Model based method for wafer temperature control in a thermal processing system for semiconductor manufacturing |
| US6924231B2 (en) | 2001-03-30 | 2005-08-02 | Tokyo Electron Limited | Single wafer processing method and system for processing semiconductor |
| DE102012005428A1 (en)* | 2012-03-16 | 2013-09-19 | Centrotherm Thermal Solutions Gmbh & Co. Kg | Device for determining the temperature of a substrate |
| EP2796857A1 (en)* | 2013-04-26 | 2014-10-29 | Jtekt Corporation | Optical non-destructive inspection apparatus and optical non-destructive inspection method |
| JP2014215212A (en)* | 2013-04-26 | 2014-11-17 | 株式会社ジェイテクト | Optical nondestructive inspection system and optical nondestructive inspection method |
| CN106505015A (en)* | 2016-09-30 | 2017-03-15 | 中国电子科技集团公司第四十八研究所 | A temperature measuring device for rapid heat treatment equipment |
| WO2019146167A1 (en)* | 2018-01-26 | 2019-08-01 | 株式会社Screenホールディングス | Heat treatment apparatus and heat treatment method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6038627A (en)* | 1983-08-12 | 1985-02-28 | Hitachi Ltd | Temperature measuring apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6038627A (en)* | 1983-08-12 | 1985-02-28 | Hitachi Ltd | Temperature measuring apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0452773A3 (en)* | 1990-04-09 | 1992-06-10 | Anelva Corporation | Method and apparatus for processing substrate |
| US6169271B1 (en) | 1998-07-13 | 2001-01-02 | Mattson Technology, Inc. | Model based method for wafer temperature control in a thermal processing system for semiconductor manufacturing |
| US6924231B2 (en) | 2001-03-30 | 2005-08-02 | Tokyo Electron Limited | Single wafer processing method and system for processing semiconductor |
| DE102012005428A1 (en)* | 2012-03-16 | 2013-09-19 | Centrotherm Thermal Solutions Gmbh & Co. Kg | Device for determining the temperature of a substrate |
| DE102012005428B4 (en)* | 2012-03-16 | 2014-10-16 | Centrotherm Photovoltaics Ag | Device for determining the temperature of a substrate |
| EP2796857A1 (en)* | 2013-04-26 | 2014-10-29 | Jtekt Corporation | Optical non-destructive inspection apparatus and optical non-destructive inspection method |
| JP2014215212A (en)* | 2013-04-26 | 2014-11-17 | 株式会社ジェイテクト | Optical nondestructive inspection system and optical nondestructive inspection method |
| CN106505015A (en)* | 2016-09-30 | 2017-03-15 | 中国电子科技集团公司第四十八研究所 | A temperature measuring device for rapid heat treatment equipment |
| CN106505015B (en)* | 2016-09-30 | 2019-04-05 | 中国电子科技集团公司第四十八研究所 | A kind of temperature measuring device for fast heat treatment device |
| WO2019146167A1 (en)* | 2018-01-26 | 2019-08-01 | 株式会社Screenホールディングス | Heat treatment apparatus and heat treatment method |
| JP2019129292A (en)* | 2018-01-26 | 2019-08-01 | 株式会社Screenホールディングス | Thermal treatment apparatus and thermal treatment method |
| Publication | Publication Date | Title |
|---|---|---|
| KR960013995B1 (en) | Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus | |
| US6160242A (en) | Apparatus and process for measuring the temperature of semiconductor wafers in the presence of radiation absorbing gases | |
| US11955388B2 (en) | Transmission-based temperature measurement of a workpiece in a thermal processing system | |
| USRE36050E (en) | Method for repeatable temperature measurement using surface reflectivity | |
| JPH0363534A (en) | Temperature measuring method | |
| WO2000058700A1 (en) | Temperature measuring system | |
| US6283630B1 (en) | Temperature measuring method using radiation thermometer | |
| JPH01124726A (en) | Heating device | |
| US20140192839A1 (en) | Method and Apparatus for Measuring Temperature of Semiconductor Layer | |
| EP0458388B1 (en) | Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used | |
| US5364187A (en) | System for repeatable temperature measurement using surface reflectivity | |
| KR101547318B1 (en) | Apparatus, method for processing substrate and apparatus, method for laser heat treatment using the same | |
| JPH04130746A (en) | Radiation thermometer for wafer temperature measurement and wafer temperature measurement method | |
| JPH03278524A (en) | Heating apparatus of semiconductor device | |
| JPH10321539A (en) | Semiconductor manufacturing method and manufacturing apparatus | |
| JP2001118798A (en) | Calibration method of radiation thermometer and heat- treating device | |
| JPH02298829A (en) | heat treatment equipment | |
| JP2003106902A (en) | Non-contact temperature measurement method and device | |
| US20240145274A1 (en) | Low temperature measurement of semiconductor substrates | |
| US20210381899A1 (en) | Method and device for the in-situ determination of the temperature of a sample | |
| JP2000114195A (en) | Substrate processing apparatus, jig used for calibration of radiation termometer thereof, and calibrating method of the same | |
| JP2003106901A (en) | Stable light source for radiation thermometer, calibration method for radiation thermometer and semiconductor manufacturing apparatus using the radiation thermometer | |
| JPH03221821A (en) | Method for controlling temperature of surface of object | |
| JPH0112188Y2 (en) | ||
| RU2054749C1 (en) | Method of contactless measurement of temperature of silicon plate |
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20070912 Year of fee payment:4 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080912 Year of fee payment:5 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20080912 Year of fee payment:5 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Year of fee payment:6 Free format text:PAYMENT UNTIL: 20090912 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20090912 Year of fee payment:6 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20100912 Year of fee payment:7 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110912 Year of fee payment:8 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110912 Year of fee payment:8 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Year of fee payment:9 Free format text:PAYMENT UNTIL: 20120912 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20120912 Year of fee payment:9 | |
| FPAY | Renewal fee payment (prs date is renewal date of database) | Free format text:PAYMENT UNTIL: 20130912 Year of fee payment:10 |