【発明の詳細な説明】〔産業上の利用分野〕本発明は振動フィーダに係り、特に振動増幅手段を設け
た電磁式直進振動フィーダに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vibration feeder, and more particularly to an electromagnetic linear vibration feeder provided with vibration amplification means.
直進型の振動フィーダの振動源として最近では圧電素子
等を用いたものも開発されているが、発生する振動エネ
ルギーが小さい等のため、その用途は限定され、振動源
の主流はやはり電磁力である。Recently, devices using piezoelectric elements have been developed as vibration sources for linear type vibration feeders, but their use is limited because the vibration energy generated is small, and the mainstream of vibration sources is still electromagnetic force. be.
第4図は従来の振動フィーダの構成を示す。FIG. 4 shows the configuration of a conventional vibratory feeder.
粉粒体を充填したホッパ32は二枚の板バネ30及び3
1に支えられ、かつこのホッパ32側には吸引板33が
固定しである。34はこの吸引板33に対向位置するよ
う振動フィーダの固定板35に固定した電磁石である。The hopper 32 filled with powder and granules is connected to two leaf springs 30 and 3.
1, and a suction plate 33 is fixed to the hopper 32 side. Reference numeral 34 denotes an electromagnet fixed to the fixed plate 35 of the vibrating feeder so as to face the suction plate 33.
この電磁石34に対して交流電圧を印加することにより
電磁石はこの交流電圧のサイクルに対応して断続的に磁
力を発する。これにより、吸引板33はこの電磁石の断
続的な吸引力と、この吸引力に弾発する板バネ30.3
1との共同作用により振動する。この振動はホッパ32
に伝達され、内部に充填しである粉粒体を排出端32a
に向かって移動させると共に、排出端から外部に排出さ
せる。By applying an alternating current voltage to the electromagnet 34, the electromagnet intermittently emits magnetic force in response to the cycles of this alternating voltage. As a result, the suction plate 33 receives the intermittent suction force of this electromagnet and the leaf spring 30.3 that springs in response to this suction force.
It vibrates due to the cooperation with 1. This vibration is caused by the hopper 32
The powder and granules filled inside are transferred to the discharge end 32a.
The liquid is moved toward the outside and discharged from the discharge end.
以上に示した従来の構成において電磁石34の吸引中心
、つまり電磁石34の鉄心34aの軸心36から粉粒体
充填面までの距離りは、吸引板33を吊り下げた形状と
しであるのであまり大きくとることはできない。つまり
振動の際のモーメントアームはほぼこの距離りとなるた
め、振幅を大きくするためには鉄心34aの端面と吸引
板33との間の隙間Gを大きくとる必要がある。しかし
、隙Gを多くとると、吸引板33を吸引するために大き
な吸引力を必要とし、この結果電磁石34は強力で大型
のものを使用せねばならず、振動フィーダ全体が大型・
大重量化することになる。第5図は隙間Gと吸引力との
関係を示すが、この図から明らかなとおり、隙間Gの増
加に対して吸引力は1/10” (例えばn#1〜5
)に急激に低下する。 薬剤等、切り出し量を非常に正
確に設定しなければならないものについては、振動フィ
ーダを電子天秤等の精密な秤量装置上に載置し、投下中
の粉粒体も切り出しの制御対象とする方法が実施されて
いるが、この場合前述の如く振動フィーダが大型・大重
量化すると秤量装置の死荷重が大きくなり、かつ秤量の
精度が低下するので特に問題である。In the conventional configuration shown above, the distance from the suction center of the electromagnet 34, that is, the axis 36 of the iron core 34a of the electromagnet 34 to the powder filling surface is not large because the suction plate 33 is suspended. It cannot be taken. In other words, since the moment arm during vibration has approximately this distance, it is necessary to increase the gap G between the end face of the iron core 34a and the suction plate 33 in order to increase the amplitude. However, if the gap G is large, a large suction force is required to attract the suction plate 33, and as a result, a strong and large electromagnet 34 must be used, and the entire vibrating feeder becomes large and large.
It will add a lot of weight. Fig. 5 shows the relationship between the gap G and the suction force. As is clear from this figure, the suction force increases by 1/10" as the gap G increases (for example, n#1 to 5
). For items such as drugs where the amount to be cut out must be set very accurately, a method is to place the vibrating feeder on a precision weighing device such as an electronic balance and control the cutting out of the powder or granules being dropped. However, in this case, as mentioned above, when the vibrating feeder becomes large and heavy, the dead load of the weighing device becomes large and the accuracy of weighing decreases, which is a particular problem.
本発明は上述した問題点に鑑み構成したもであり、ホッ
パ等の粉粒体配置部を支持する板バネに対して電磁石を
対向配置し、かつこの板バネに於ける電磁石吸引部から
粉粒体載置面までの距離を大きく設定することにより振
動の際のモーメントアームを大きくとるように設定し、
場合によっては電磁石をこの板バネに沿って移動可能な
ように設置し、モーメントアームを可変にするよう構成
した電磁石型の振動フィーダである。The present invention has been constructed in view of the above-mentioned problems, and includes an electromagnet disposed opposite to a plate spring that supports a part for disposing powder or granules such as a hopper, and powder particles from a suction part of the electromagnet in this plate spring. By setting a large distance to the body placement surface, the moment arm during vibration is set to be large.
In some cases, this is an electromagnet-type vibratory feeder in which an electromagnet is installed so as to be movable along this leaf spring, and the moment arm is made variable.
板バネに対して電磁石を対向配置し、かつこの板バネに
於ける電磁石吸引部と粉粒体s!載置面の間の距離を大
きく設定することにより、振動の際のモーメントアーム
を大きくとるように設定したので、電磁石の吸引部にお
いては振幅の小さな振動をこの大きなモーメントアーム
で増幅することが可能となり、小型の電磁石で大きな振
幅を得ることが可能となる。An electromagnet is arranged opposite to the leaf spring, and the electromagnet suction part of the leaf spring and the powder s! By setting a large distance between the mounting surfaces, the moment arm during vibration is set to be large, so it is possible to amplify small-amplitude vibrations in the electromagnet suction part with this large moment arm. Therefore, it is possible to obtain a large amplitude with a small electromagnet.
以下本発明の実施例を図面を参考に具体的に説明する。Embodiments of the present invention will be specifically described below with reference to the drawings.
第1図は本発明の第1の実施例を示す。FIG. 1 shows a first embodiment of the invention.
同図において、1及び2は板バネであり、各々の下端は
固定板3に固定され、その上端は各々ホッパ4を支持し
ている。5は電磁石であり、この電磁石5の鉄心6は板
バネ2に取り付けた吸引板7に対向位置している。この
場合、板バネ2における吸引の中心(鉄心6の軸心8が
仮バネ2を通過する位置)は、板バネ2の下方に位置し
、例えば板バネ2の下部固定部から吸引中心までの距離
aとこの吸引中心からホッパ底面までの距離すとの比率
は1:2とし、吸引中心から粉粒体載置面まで′の距離
、つまり振動時のモーメントアームを大きく設定してい
る。この場合電磁石5の鉄心6と吸引板との間の隙間G
は狭く設定し、小さな吸引力で板バネ2が振動するよう
に構成しである。In the figure, reference numerals 1 and 2 indicate leaf springs, each of which has its lower end fixed to a fixed plate 3 and whose upper end supports a hopper 4. 5 is an electromagnet, and an iron core 6 of this electromagnet 5 is located opposite to an attraction plate 7 attached to the leaf spring 2. In this case, the center of suction in the leaf spring 2 (the position where the axis 8 of the iron core 6 passes through the temporary spring 2) is located below the leaf spring 2, for example, from the lower fixed part of the leaf spring 2 to the suction center. The ratio of the distance a to the distance from the suction center to the bottom of the hopper is set to 1:2, and the distance ' from the suction center to the powder placement surface, that is, the moment arm during vibration, is set large. In this case, the gap G between the iron core 6 of the electromagnet 5 and the suction plate
is set narrowly so that the leaf spring 2 vibrates with a small suction force.
小さな吸引力でもモーメントアームbを大きく設定しで
あるので、粉粒体載置面における振動は大きく増幅され
る。従って前記電磁石は小型のものでよく、振動フィー
ダ全体を軽量化することが可能である。Since the moment arm b is set large even with a small suction force, vibrations on the powder placement surface are greatly amplified. Therefore, the electromagnet may be small, and it is possible to reduce the weight of the entire vibratory feeder.
第2図及び第3図は第2の実施例を示す。2 and 3 show a second embodiment.
この実施例では電磁石5を板バネ2に沿って移動可能な
ように構成し、これにより振幅を調節するように構成し
である。In this embodiment, the electromagnet 5 is configured to be movable along the leaf spring 2, thereby adjusting the amplitude.
9は電磁石を取りつける取り付は台であり、この取り付
は台9は固定板3に対して螺子10により固定しである
。螺子10の挿通部は長手方向が仮バネ2の長手方向と
一致するよう形成した長穴3aとして形成してあり、こ
の長穴3aにより取り付は台9を移動させることが可能
なように構成しである。これにより電磁石5を仮バネ2
に沿って所定の位置に移動後固定し、仮バネ2における
モーメントアームを変更可能なようにしている。Reference numeral 9 designates a base on which the electromagnet is attached, and the base 9 is fixed to the fixed plate 3 with screws 10. The insertion portion of the screw 10 is formed as an elongated hole 3a formed so that its longitudinal direction coincides with the longitudinal direction of the temporary spring 2, and the elongated hole 3a allows the mounting base 9 to be moved. It is. This causes the electromagnet 5 to become the temporary spring 2.
The temporary spring 2 is moved to a predetermined position and then fixed, so that the moment arm of the temporary spring 2 can be changed.
第3図は電磁石取り付は部の詳細を示す。Figure 3 shows details of the electromagnet mounting section.
同図において、取り付は台9の移動面3bと板バネ2の
電磁石対向面とは所定の角度αをなすように構成しであ
る(第2図も合わせて参照)。この構成により電磁石5
を下降させるに従って鉄心6は吸引板7に接近する。即
ち、取り付は台9の移動面3bを上述の構成とすること
により鉄心6の移動面11と吸引板7との成す角もαと
なるため、例えば鉄心6の軸心が8aの位置から8bの
位置に下降するとその隙間はG、からGtに狭まる。In the figure, the mounting is configured such that the moving surface 3b of the base 9 and the surface of the plate spring 2 facing the electromagnet form a predetermined angle α (see also FIG. 2). With this configuration, the electromagnet 5
As the iron core 6 is lowered, the iron core 6 approaches the suction plate 7. That is, when mounting the moving surface 3b of the stand 9 as described above, the angle formed between the moving surface 11 of the iron core 6 and the suction plate 7 also becomes α, so that, for example, the axis of the iron core 6 is moved from the position 8a. When descending to position 8b, the gap narrows from G to Gt.
つまり電磁石5を下降させて振幅をより大きく増幅する
ようにするためにはより大きな振動エネルギーを必要と
するが、この振動エネルギーを隙間Gを狭めることによ
り達成するように構成している。That is, in order to lower the electromagnet 5 and amplify the amplitude to a greater extent, larger vibration energy is required, but this vibration energy is achieved by narrowing the gap G.
このように構成すれば粉粒体の種類や性情により最適な
振幅を設定することが可能となる。With this configuration, it becomes possible to set the optimum amplitude depending on the type and characteristics of the powder or granular material.
本発明は以上にその構成を具体的に説明したように、ホ
ッパ等の粉粒体配置部を支持する板バネに対して電磁石
を対向配置し、かつこの板バネに於ける電磁石吸引部と
粉粒体載置面との間の距離を太き(設定することにより
振動の際のモーメントアームを大きくとるように設定し
、更に場合によっては電磁石をこの板バネに沿って昇降
可能なように設定してモーメントアームを可変にするよ
う構成したので、小型の電磁石の振動を増幅することに
より振幅の大きい振動を得ることが可能となり、振動フ
ィーダを軽量化することが可能できると共に粉粒体の種
類や性情によって最適な振幅に調節することができる。As the configuration of the present invention has been specifically explained above, an electromagnet is disposed opposite to a plate spring that supports a powder arrangement part such as a hopper, and an electromagnet suction part of this plate spring and a powder By setting the distance between the particle mounting surface and the particle mounting surface to be large, the moment arm during vibration is set to be large, and in some cases, the electromagnet is also set so that it can be moved up and down along this leaf spring. Since the moment arm is configured to be variable, it is possible to obtain large-amplitude vibrations by amplifying the vibrations of a small electromagnet, which makes it possible to reduce the weight of the vibration feeder and to adjust the size of the powder and granular material. The amplitude can be adjusted to the optimum level depending on your personality and personality.
第1図は本発明の第1の実施例を示す振動フィーダの側
面図、第2図は第2の実施例を示す振動フィーダの一部
破断側面図、第3図は第2図に示す構成の部分拡大図、
第4図は従来の振動フィーダの側面図、第5図は電磁石
と吸引部材との間の隙間と、電磁石の吸引力との関係を
示す線図である。1.2・・・板バネ 3・・・固定板4・・・ホッパ
5・・・電磁石6・・・鉄心 9・・・取り付は台第3図G+FIG. 1 is a side view of a vibration feeder showing a first embodiment of the present invention, FIG. 2 is a partially cutaway side view of the vibration feeder showing a second embodiment, and FIG. 3 is the configuration shown in FIG. 2. A partially enlarged view of
FIG. 4 is a side view of a conventional vibration feeder, and FIG. 5 is a diagram showing the relationship between the gap between the electromagnet and the attraction member and the attraction force of the electromagnet. 1.2...Plate spring 3...Fixing plate 4...Hopper 5...Electromagnet 6...Iron core 9...Installation is as shown in Figure 3 of the stand G+
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27826187AJPH01122817A (en) | 1987-11-05 | 1987-11-05 | Vibration amplifying type vibration feeder |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27826187AJPH01122817A (en) | 1987-11-05 | 1987-11-05 | Vibration amplifying type vibration feeder |
| Publication Number | Publication Date |
|---|---|
| JPH01122817Atrue JPH01122817A (en) | 1989-05-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP27826187APendingJPH01122817A (en) | 1987-11-05 | 1987-11-05 | Vibration amplifying type vibration feeder |
| Country | Link |
|---|---|
| JP (1) | JPH01122817A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0453716U (en)* | 1990-09-14 | 1992-05-08 | ||
| JPH0530017U (en)* | 1991-09-26 | 1993-04-20 | エヌテイエヌ株式会社 | Excitation magnet for vibration feeder |
| EP1159052B2 (en)† | 1999-02-26 | 2011-08-03 | Donaldson Company, Inc. | Sealing system for filter |
| US8034144B2 (en) | 1999-02-26 | 2011-10-11 | Donaldson Company, Inc. | Filter arrangement; sealing system; and methods |
| US8685128B2 (en) | 2003-12-22 | 2014-04-01 | Donaldson Company, Inc. | Seal, arrangement for filter element; filter element assembly; and, methods |
| US8945268B2 (en) | 2005-11-09 | 2015-02-03 | Donaldson Company, Inc. | Seal arrangement for filter element; filter element assembly; and, methods |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62196216A (en)* | 1986-02-20 | 1987-08-29 | Anritsu Corp | Electromagnetic feeder |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62196216A (en)* | 1986-02-20 | 1987-08-29 | Anritsu Corp | Electromagnetic feeder |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0453716U (en)* | 1990-09-14 | 1992-05-08 | ||
| JPH0530017U (en)* | 1991-09-26 | 1993-04-20 | エヌテイエヌ株式会社 | Excitation magnet for vibration feeder |
| EP1410832B2 (en)† | 1999-02-26 | 2013-04-17 | Donaldson Company, Inc. | Filter element with sealing system |
| US8034144B2 (en) | 1999-02-26 | 2011-10-11 | Donaldson Company, Inc. | Filter arrangement; sealing system; and methods |
| US8246708B2 (en) | 1999-02-26 | 2012-08-21 | Donaldson Company, Inc. | Filter arrangement; sealing system; and methods |
| EP1795246B2 (en)† | 1999-02-26 | 2013-04-17 | Donaldson Company, Inc. | Air cleaner |
| EP1159052B2 (en)† | 1999-02-26 | 2011-08-03 | Donaldson Company, Inc. | Sealing system for filter |
| US9089807B2 (en) | 1999-02-26 | 2015-07-28 | Donaldson Company, Inc. | Filter arrangement; sealing system; and methods |
| US9707503B2 (en) | 1999-02-26 | 2017-07-18 | Donaldson Company, Inc. | Filter arrangement; sealing system; and methods |
| US10279303B2 (en) | 2003-12-22 | 2019-05-07 | Donaldson Company, Inc. | Seal arrangement for filter element; filter element assembly; and, methods |
| US8685128B2 (en) | 2003-12-22 | 2014-04-01 | Donaldson Company, Inc. | Seal, arrangement for filter element; filter element assembly; and, methods |
| US9457310B2 (en) | 2003-12-22 | 2016-10-04 | Donaldson Company, Inc. | Seal arrangement for filter element; filter element assembly; and, methods |
| US11123676B2 (en) | 2003-12-22 | 2021-09-21 | Donaldson Company, Inc. | Seal arrangement for filter element; filter element assembly; and, methods |
| US8945268B2 (en) | 2005-11-09 | 2015-02-03 | Donaldson Company, Inc. | Seal arrangement for filter element; filter element assembly; and, methods |
| US10507423B2 (en) | 2005-11-09 | 2019-12-17 | Donaldson Company, Inc. | Seal arrangement for filter element; filter element assembly; and, methods |
| US11117085B2 (en) | 2005-11-09 | 2021-09-14 | Donaldson Company, Inc. | Seal arrangement for filter element; filter element assembly; and, methods |
| US9718021B2 (en) | 2005-11-09 | 2017-08-01 | Donaldson Company, Inc. | Seal arrangement for filter element; filter element assembly; and, methods |
| Publication | Publication Date | Title |
|---|---|---|
| US4378064A (en) | Three mass electromagnetic feeder | |
| US3581871A (en) | Vibratory feeders | |
| US11198563B2 (en) | Vibratory conveyor | |
| JPH01122817A (en) | Vibration amplifying type vibration feeder | |
| US5967294A (en) | High stroke, highly damped spring system for use with vibratory feeders | |
| EP0188416A1 (en) | Method for screening of wooden chips and the like and a screen | |
| US3031060A (en) | Micro feeder | |
| GB2030731A (en) | Vibratory Conveyors | |
| JPS5876722A (en) | Device for controlling height of filler in vessel | |
| JPH0763675B2 (en) | Multipurpose vibration device | |
| US4880106A (en) | Electromagnetic vibratory feeder | |
| JP5590977B2 (en) | Linear feeder and combination weigher using the same | |
| US2833506A (en) | Scale | |
| ES8603299A1 (en) | Electromagnetic vibratory exciter | |
| JPS6122907Y2 (en) | ||
| JPS63258310A (en) | Vibration feeder | |
| JPH0520473Y2 (en) | ||
| CN220333853U (en) | Load-adjustable vibration feeding mechanism | |
| JPS62235115A (en) | Vibrating feeder using piezoelectric vibrator | |
| JPH045455Y2 (en) | ||
| JPH0380692B2 (en) | ||
| JPS6347216A (en) | Vibration feeder | |
| JPS63106222A (en) | Vibrator employing piezoelectric vibration chip | |
| CN207890512U (en) | A kind of tea leaf vibration feeder of adjustable amplitude section | |
| JP2005029326A (en) | Vibration parts feeder |