【発明の詳細な説明】〔産業上の利用分野〕本発明は、エレクトロンサイクロトロン共鳴を利用した
金属化合物gI膜の製造方法に関し、詳しくは、エレク
トロンサイクロトロン共鳴条件下で成膜用原料ガスまた
は希ガスより生成されたプラズマ粒子の流れと、電子銃
により蒸気化された金属原子または金属化合物の流れと
を基体に照射し、これらの流れの相互作用により金属化
合物の薄膜を該基拝上に形成する方法に関する。この方
法によれば、低温で化学量論組成の良い、結晶性に優れ
た金属化合物の薄膜を高速で形成できる。Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a metal compound gI film using electron cyclotron resonance. The substrate is irradiated with a flow of plasma particles generated by the plasma and a flow of metal atoms or metal compounds vaporized by an electron gun, and a thin film of the metal compound is formed on the substrate by the interaction of these flows. Regarding the method. According to this method, a thin film of a metal compound with good stoichiometry and excellent crystallinity can be formed at low temperature and at high speed.
従来、金属化合物の薄膜の形成方法としては、スパッタ
リング法や、イオンビーム・スパッタリング法、イオン
ブレーティング法、・CVD法等が知られている。ここ
では、イオンブレーティング法を用いた、金属化合物薄
膜の形成について説明する。Conventionally, sputtering methods, ion beam sputtering methods, ion blating methods, CVD methods, and the like are known as methods for forming thin films of metal compounds. Here, the formation of a metal compound thin film using the ion blating method will be described.
第3図に、−数的なイオンブレーティング装置の概略図
を示す。FIG. 3 shows a schematic diagram of a numerical ion blating device.
この装置での操作は、まず、基体を取付後、系内をlX
l0−’Torr程度の真空に排気し、ArガスをlX
l0−3Torr導入し、基体のイオンビームを行ない
、その表面のクリーニングを行なう。さらにlX10=
Torrまで再度排気した後、所定の真空度5×10崎
TorrまでN2ガスを導入し、RFプラズマを形成し
、電子銃によりTiを蒸着し、Tiと、N2プラズマを
反応させて、TiNを形成する。通常、基体の温度は、
300℃〜500℃で、低温にすると、膜の硬度が低下
する。To operate this device, first, after attaching the substrate, the inside of the system is
Evacuate to a vacuum of about 10-'Torr and evacuate Ar gas to 1X
10-3 Torr is introduced, an ion beam is applied to the substrate, and the surface thereof is cleaned. Further lX10=
After evacuation to Torr again, N2 gas is introduced to a predetermined vacuum level of 5 x 10 Torr, RF plasma is formed, Ti is evaporated with an electron gun, and Ti and N2 plasma react to form TiN. do. Typically, the temperature of the substrate is
When the temperature is lowered to 300°C to 500°C, the hardness of the film decreases.
しかしながら、上記のような過程を含む従来の方法では
、反応ガス原子と蒸着粒子のイオン化、活性化率が低い
ため、形成された膜の組成が、化学量論組成からズした
金属過多な組成となり易い。そのため、膜硬度の低いも
のしか得られなかフたり、基体を加熱しないと膜硬度が
低くなってしまうという問題があった。However, in the conventional method including the above-mentioned process, the ionization and activation rate of the reactant gas atoms and the deposited particles is low, so the composition of the formed film deviates from the stoichiometric composition and has a metal-rich composition. easy. Therefore, there was a problem that only a film with low hardness could be obtained, and the film hardness would be low unless the substrate was heated.
また、イオンビームを利用した方法では、イオンビーム
による不純物の混入、大面積に成膜するのが難かしい、
成膜速度が遅いなどの種々の問題があった。In addition, with methods using ion beams, impurities may be mixed in due to the ion beam, and it is difficult to form a film over a large area.
There were various problems such as slow film formation speed.
さらにCVD法では、基71B温度を非常に高温にしな
ければならないといった欠点があった。Furthermore, the CVD method has the disadvantage that the temperature of the group 71B must be kept at a very high temperature.
本発明の目的は、上述の欠点を除去して低温で、化学f
fi論組成の合った結晶性の良い、金属化合物薄膜を形
成することができる方法を提供することにある。The object of the present invention is to eliminate the above-mentioned drawbacks and to produce chemical f
It is an object of the present invention to provide a method capable of forming a metal compound thin film having a good crystallinity and having a suitable theoretical composition.
上記の目的を達成する本発明の金属化合物の薄膜の製造
方法は、減圧にし得る反応室内に、配置された成膜用の
基体上に、プラズマ発生室内においてエレクトロンサイ
クロトロン共鳴条件下で成膜用原料ガスまたは希ガスよ
り生成されたプラズマ粒子と、電子銃により蒸気化され
た金属原子または金属化合物とを照射し、相互作用させ
ることで前記基体上に金属化合物薄膜を形成することを
特徴とする。The method for producing a thin film of a metal compound according to the present invention which achieves the above-mentioned object is to prepare a film-forming material for film-forming under electron cyclotron resonance conditions in a plasma generation chamber on a film-forming substrate placed in a reaction chamber which can be made to have a reduced pressure. It is characterized in that a metal compound thin film is formed on the substrate by irradiating and interacting plasma particles generated from a gas or rare gas with metal atoms or metal compounds vaporized by an electron gun.
本発明の方法は、例えば、ガス導入系が接続され、磁界
とマイクロ波によるECRを用いて高密度で高励起状態
のプラズマを生成させ得るプラズマ生成室と、形成する
膜物質を基体に蒸着するための電子銃を設けた成膜室と
、プラズマ生成室で生成したプラズマを磁界勾配により
成膜室に引き出す手段を有し、該プラズマ生成室が、こ
れより引き出されたプラズマが、基体に照射されるよう
な位置に配置されている構成の装置を用いて実施するこ
とができる。The method of the present invention includes, for example, a plasma generation chamber to which a gas introduction system is connected and which can generate high-density and highly excited plasma using ECR using a magnetic field and microwaves, and a film material to be formed that is deposited on a substrate. The plasma generation chamber has a deposition chamber equipped with an electron gun for irradiation of the plasma generated in the plasma generation chamber, and a means for extracting the plasma generated in the plasma generation chamber into the deposition chamber using a magnetic field gradient. It can be carried out using a device configured to be placed at a position such that
このような装置を用いて例えば以下のようにして金属化
合物の薄膜の製造を行なうことができる。Using such an apparatus, a thin film of a metal compound can be produced, for example, in the following manner.
まず、磁界とマイクロ波によるECRを用いてプラズマ
生成室にN2ガス及び02ガスなどの成膜用原料ガスと
Ar等の不活性ガスを必要に応じて単独又は混合ガスと
して導入し、そのガスのECRプラズマを生成し、更に
生成したプラズマを成膜室にプラズマ流として引き出し
成膜室の基体に照射する。First, raw material gases for film formation such as N2 gas and 02 gas and inert gases such as Ar are introduced into the plasma generation chamber either singly or as a mixed gas as needed using ECR using a magnetic field and microwaves. ECR plasma is generated, and the generated plasma is drawn out as a plasma stream into the film forming chamber and irradiated onto the substrate in the film forming chamber.
一方、Ti、Ta、Mo、Si、An、Fe等の金属原
子及び/またはこれらの金属を含む化合物などの蒸気を
電子銃により基体に蒸着する。On the other hand, vapors of metal atoms such as Ti, Ta, Mo, Si, An, Fe, and/or compounds containing these metals are deposited onto the substrate using an electron gun.
ここで用いるECRプラズマは、イオンブレーティング
などに用いられるRFプラズマに比べ、1〜2桁プラズ
マ密度が高くなっているものを用いる。The ECR plasma used here has a plasma density one to two orders of magnitude higher than that of the RF plasma used for ion blasting and the like.
以上の過程によって、基4す上に照射されている蒸気状
の金属原子及び/または金属化合物とECRプラズマの
相互作用によって、化学量論組成のあった、結晶性の良
い金属化合物薄膜を低温で基体上に高速で形成できる。Through the above process, a thin film of a metal compound with a stoichiometric composition and good crystallinity is formed at a low temperature by the interaction of the vaporized metal atoms and/or metal compound irradiated onto the substrate and the ECR plasma. Can be formed on a substrate at high speed.
以下に、図面を参照して本発明の方法の一実施態様をよ
り詳細に説明する。Below, one embodiment of the method of the present invention will be explained in more detail with reference to the drawings.
第1図は、本発明の方法に用いることのできる装置の主
要部の概略図である。FIG. 1 is a schematic diagram of the main parts of an apparatus that can be used in the method of the present invention.
第1図において、9は成膜室、10は蒸発源である電子
銃、11はECRプラズマ生成室、12は基板、13は
膜厚モニターである。In FIG. 1, 9 is a film forming chamber, 10 is an electron gun serving as an evaporation source, 11 is an ECR plasma generation chamber, 12 is a substrate, and 13 is a film thickness monitor.
プラズマ生成室11は、空洞共振器になっており、ここ
に導波管14により例えば、2.’45GHzのマイク
ロ波を導入し、空洞共振器内にECRプラズマを作り、
これを磁界勾配により、成膜室9に導くための磁気コイ
ル15が設けられている。The plasma generation chamber 11 is a cavity resonator, and a waveguide 14 is used to generate, for example, 2. 'Introducing 45GHz microwave and creating ECR plasma inside the cavity resonator,
A magnetic coil 15 is provided for guiding this to the film forming chamber 9 using a magnetic field gradient.
プラズマ室11にはプラズマ源のガスを導入するための
導入管16がある。The plasma chamber 11 has an introduction pipe 16 for introducing plasma source gas.
具体的には、磁気コイル15によって発生した磁界と、
マイクロ波による電子サイクロトロン共鳴(ECR)を
用いプラズマ生成室(空洞共振器)11内にN2ガス及
び02ガスとAr等不活性ガスの単独あるいは混合ガス
を導入管16を通じて導入し、かかるガスECRプラズ
マを形成する。Specifically, the magnetic field generated by the magnetic coil 15,
Electron cyclotron resonance (ECR) using microwaves is used to introduce N2 gas, 02 gas, and an inert gas such as Ar into the plasma generation chamber (cavity resonator) 11 through the introduction pipe 16, and generate such a gas ECR plasma. form.
磁気コイル15で形成される磁界の勾配により、上述の
プラズマを成膜19に導く、このとき成膜室におけるプ
ラズマの大きさを調節するため、プラズマ室と成膜室の
間に、オリフィス(ピンホール)を設定し、プラズマ流
の大きさを調節できるようにする。The above-mentioned plasma is guided to the film formation 19 by the gradient of the magnetic field formed by the magnetic coil 15. At this time, in order to adjust the size of the plasma in the film formation chamber, an orifice (pin) is installed between the plasma chamber and the film formation chamber. hole) so that the size of the plasma flow can be adjusted.
一方、成膜室9では電子銃10により、金属及び/また
は金属化合物を蒸発させ、これと成膜室9に引き出した
プラズマとを基体12に照射して、金属化合物を形成す
る。On the other hand, in the film forming chamber 9, a metal and/or a metal compound is evaporated by an electron gun 10, and the substrate 12 is irradiated with this and the plasma drawn into the film forming chamber 9 to form a metal compound.
このように、磁界とマイクロ波によって、形成されるE
CRプラズマは、導入ガスの高密度プラズマで、かつ、
高励起活性な状態である。しかも、10″’To r
r程度の圧力で、安定したプラズマ状態を維持すること
ができる。また無電極放電のため電極による不純物の混
入の問題がない。In this way, the E formed by the magnetic field and microwaves
CR plasma is a high-density plasma of introduced gas, and
It is in a highly excited and active state. Moreover, 10″'To r
A stable plasma state can be maintained at a pressure of about r. Furthermore, since there is no electrode, there is no problem of impurity contamination caused by electrodes.
生成したプラズマを成膜室9へ引き出し、更にこれを電
子銃2により蒸発させた金属及び/または金属化合物へ
基体12上で照射することにより、化学量論組成がよく
、結晶性よく低温で、金属化合物の薄膜を形成すること
ができる。By extracting the generated plasma into the film forming chamber 9 and irradiating the evaporated metal and/or metal compound with the electron gun 2 on the substrate 12, a film with a good stoichiometric composition, good crystallinity, and low temperature is produced. Thin films of metal compounds can be formed.
以下、実施例により本発明の方法を更に詳細に説明する
。Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.
実施例1第1図に示した装置を用い以下の条件で金属化合物薄膜
の製造を実施した。Example 1 A metal compound thin film was produced using the apparatus shown in FIG. 1 under the following conditions.
まず、N2ガスをプラズマ生成室11に10 SCCM
で導入し、更に2.45GHzのマイクロ波を、投入パ
ワーSOW〜500Wで導入し、ECRプラズマを形成
した。First, N2 gas is introduced into the plasma generation chamber 11 at a rate of 10 SCCM.
A microwave of 2.45 GHz was introduced at an input power of SOW ~500 W to form an ECR plasma.
このときプラズマ生成室11の真空度は2XlO=To
rrであった。一方、成膜室は真空度1×1O−6To
rrまで排気した後、プラズマ生成室で形成したN2の
ECRプラズマを成膜室9に引き出した。このときの成
膜室の真空度は1×lO″4Torrとし、金属として
Tiを電子銃lOにより蒸着し、同時に基体にプラズマ
生成室11からのN2のECRプラズマを照射し、Ti
Nを形成した。得られたTiN膜の組成を光電子分光法
(xps)で評価したところN / T i七0.95
〜0.98と化学量論組成に近かった。また膜の硬度を
測定したところm Hv”32500と他のPVD法に
より得られるものより硬度が高いことがわかった。At this time, the degree of vacuum in the plasma generation chamber 11 is 2XlO=To
It was rr. On the other hand, the vacuum level of the film forming chamber is 1×1O-6To
After exhausting to rr, the N2 ECR plasma formed in the plasma generation chamber was drawn out to the film formation chamber 9. At this time, the degree of vacuum in the film forming chamber was set to 1×1O''4 Torr, and Ti was deposited as a metal using an electron gun 1O. At the same time, the substrate was irradiated with N2 ECR plasma from the plasma generation chamber 11, and Ti
N was formed. The composition of the obtained TiN film was evaluated by photoelectron spectroscopy (XPS) and found that N/Ti was 70.95.
~0.98, which was close to the stoichiometric composition. Further, when the hardness of the film was measured, it was found that the hardness was m Hv"32,500, which was higher than that obtained by other PVD methods.
実施例2実施例1において蒸着する金属としてBを用い、実施例
1と同条件でBN膜を形成した。得られた膜の組成を光
電子分光法(xps)で求めたところ、N/B−0,9
5〜0.98と化学量論組成にほとんど等しかった。ま
た、X線回折で結晶構造を調べたところ立方晶、六方晶
の双方が認められた。膜の硬度はHvz4000〜50
00K g / m m 2であった。Example 2 A BN film was formed under the same conditions as in Example 1, using B as the metal to be deposited in Example 1. The composition of the obtained film was determined by photoelectron spectroscopy (XPS) and was found to be N/B-0.9.
5 to 0.98, which was almost equal to the stoichiometric composition. Furthermore, when the crystal structure was examined by X-ray diffraction, both cubic and hexagonal crystal structures were observed. The hardness of the film is Hvz4000-50
It was 00K g/mm2.
実施例3実施例1において、蒸着する金属として、A2用い、プ
ラズマ生成室へ導入するガスとして、N2とArの混合
ガスを各々、105CCMで導入し、真空度2x 10
’To r rでECRヲラズマを形成し、これをプラ
ズマ流として引き出し、基体上に照射した。このとき、
ECRプラズマのN2プラズマは、基体上で、Afiと
反応しAINを形成しArプラズマは、膜へのアシスト
として働き、膜の結晶性を向上させる働きをする。得ら
れた膜の組成を光電子分光法(xps)で求めたところ
、N/AfL慢0.95〜0.98と化学量論組成にほ
とんど近かった。またX線回折により結晶構造を調べた
ところ(101)の回折強度の強い膜が得られた。Example 3 In Example 1, A2 was used as the metal to be evaporated, a mixed gas of N2 and Ar was introduced at 105 CCM as the gas introduced into the plasma generation chamber, and the degree of vacuum was 2 x 10
An ECR plasma was formed using Torr, which was extracted as a plasma stream and irradiated onto the substrate. At this time,
The N2 plasma of the ECR plasma reacts with Afi on the substrate to form AIN, and the Ar plasma acts as an assist to the film and improves the crystallinity of the film. When the composition of the obtained film was determined by photoelectron spectroscopy (XPS), the N/AfL ratio was 0.95 to 0.98, which was almost the stoichiometric composition. Further, when the crystal structure was examined by X-ray diffraction, a film with a strong diffraction intensity (101) was obtained.
実施例4実施例1の装置において、プラズマ生成室のプラズマ引
き出し部にECRプラズマ中の、イオンを取り出せるよ
う、第2図に示すような引き出し電極17を設けた。こ
の装置を用い、実施例1と同様にTiを電子銃で蒸着し
、N2のECRプラズマから、前記、引き出し電極17
にバイアス電圧500vを印加して、イオンビームを形
成し基体へ照射し、TiN膜を形成した。こうして得ら
れた膜の組成を光電子分光法(xps)により求めたと
ころ、N / T i :0 、95〜0 、98とほ
ぼ化学量論的組成となっていた。また、X線回折により
結晶構造を調べたところ(200)の回折強度の強い膜
が得られた。この膜の硬度は、mHv勺2500〜’3
000と高硬度であった。Example 4 In the apparatus of Example 1, an extraction electrode 17 as shown in FIG. 2 was provided in the plasma extraction part of the plasma generation chamber so that ions in the ECR plasma could be extracted. Using this apparatus, Ti was deposited using an electron gun in the same manner as in Example 1, and Ti was deposited on the extraction electrode 17 from N2 ECR plasma.
A bias voltage of 500 V was applied to form an ion beam, which was irradiated onto the substrate to form a TiN film. When the composition of the film thus obtained was determined by photoelectron spectroscopy (XPS), it was found to have a nearly stoichiometric composition with N/T i :0, 95-0, 98. Further, when the crystal structure was examined by X-ray diffraction, a film with a strong diffraction intensity (200) was obtained. The hardness of this film is mHv 2500~'3
The hardness was as high as 000.
実施例5ECRプラズマとして02プラズマを実施例1゜と同条
件で形成し、基体上に照射した状態で、S i 02を
電子銃により蒸着する以外は実施例1と同様にして、基
体上にS i 02膜を低温で形成した。得られた膜の
屈折率をHe−Neレーザー(a=632.8nm)の
波長で調べたところ、1.45であフた。また、膜の充
填率もほとんど1.0と非常に緻密な膜が得られた。Example 5 02 plasma was formed as ECR plasma under the same conditions as in Example 1, and Si 02 was deposited on the substrate in the same manner as in Example 1, except that Si 02 was evaporated with an electron gun while irradiated onto the substrate. A SiO2 film was formed at low temperature. When the refractive index of the obtained film was examined using a He-Ne laser (a=632.8 nm) wavelength, it was found to be 1.45. Further, the filling factor of the membrane was almost 1.0, and a very dense membrane was obtained.
実施例6実施例5において、5i02のかわりに、Siを電子銃
で蒸着したところ、実施例5と同等の5i02の膜が得
られた。Example 6 In Example 5, when Si was deposited using an electron gun instead of 5i02, a 5i02 film equivalent to that of Example 5 was obtained.
実施例7MgFzを抵抗加熱、もしくは、電子銃により蒸着し、
プラズマ室で、Arプラズマを、実施例1と同条件で形
成し、基体上に照射しながら、MgF2の蒸着を行なっ
たところ、He−Neレーザー(a=632.8nm)
の波長での屈折率が1.38であり、その充填率が約0
.98のM g F 2の膜の形成が低温で行なわれた
。この膜は低温で形成したにもかかわらず、非常に硬度
の高い膜であった。Example 7 MgFz was deposited by resistance heating or an electron gun,
Ar plasma was formed in the plasma chamber under the same conditions as in Example 1, and MgF2 was vapor-deposited while irradiating it onto the substrate.
The refractive index at the wavelength is 1.38, and the filling factor is approximately 0.
.. Formation of 98 M g F 2 films was performed at low temperature. Although this film was formed at a low temperature, it was a very hard film.
以上説明したように、本発明によれば、電子銃により蒸
発させた金属及び/または金属化合物と、これに、高密
度かつ高励起活性なECRプラズマあるいは、これより
形成したイオンビームとを同時に基体に照射することに
より、熱エネルギーを利用せず、低温で結晶性の良い金
属化合物薄膜を高速で形成することができる。As explained above, according to the present invention, a metal and/or a metal compound evaporated by an electron gun and a high-density and highly excited active ECR plasma or an ion beam formed from this are simultaneously applied to a substrate. By irradiating the metal compound with irradiation, it is possible to form a metal compound thin film with good crystallinity at low temperature and at high speed without using thermal energy.
第1図は、本発明による装置の概略構成を示す図、第2
図は、本発明による実施例4の装置の概略構成を示す図
、第3図は、従来例を説明するための装置の概略構成を
示す図である。1−−−−−−真空室2・・・・・・ヒーター3−−−−−−基体4−−−−−−シャッター5・・・−R,F、コイル6−−−−−−排気系7・・・・・・プローブ8−−−−−− E 、 B9−−−−−−成膜室10・・・・・・電子銃11・・・・・・プラズマ生成室12−−−−−−基体13−・・・・・膜厚モニター14−・・・・・マイクロ波の導波管15・・・・・・磁気コイルI6・・・・・・ガス導入管17・・・引き出し電極FIG. 1 is a diagram showing a schematic configuration of an apparatus according to the present invention, and FIG.
FIG. 3 is a diagram showing a schematic configuration of a device according to a fourth embodiment of the present invention, and FIG. 3 is a diagram showing a schematic configuration of a device for explaining a conventional example. 1------Vacuum chamber 2---Heater 3---------Base 4------Shutter 5---R, F, coil 6------ Exhaust system 7...Probe 8---E, B 9------ Film forming chamber 10...Electron gun 11...Plasma generation chamber 12 -------- Substrate 13 --- Film thickness monitor 14 --- Microwave waveguide 15 --- Magnetic coil I6 --- Gas introduction tube 17 ...Extraction electrode
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25957987AJPH01104763A (en) | 1987-10-16 | 1987-10-16 | Production of thin metal compound film |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25957987AJPH01104763A (en) | 1987-10-16 | 1987-10-16 | Production of thin metal compound film |
| Publication Number | Publication Date |
|---|---|
| JPH01104763Atrue JPH01104763A (en) | 1989-04-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25957987APendingJPH01104763A (en) | 1987-10-16 | 1987-10-16 | Production of thin metal compound film |
| Country | Link |
|---|---|
| JP (1) | JPH01104763A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01242773A (en)* | 1988-03-23 | 1989-09-27 | Nissin Electric Co Ltd | Production of compound thin film and producing equipment thereof |
| EP0412007A3 (en)* | 1989-07-31 | 1991-04-10 | Sumitomo Electric Industries, Ltd | Process for preparing superconducting thin films |
| JPH03122266A (en)* | 1989-10-06 | 1991-05-24 | Matsushita Electric Ind Co Ltd | Production of thin nitride film |
| JPH04223333A (en)* | 1990-12-25 | 1992-08-13 | Matsushita Electric Ind Co Ltd | Manufacture of thin film transistor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01242773A (en)* | 1988-03-23 | 1989-09-27 | Nissin Electric Co Ltd | Production of compound thin film and producing equipment thereof |
| EP0412007A3 (en)* | 1989-07-31 | 1991-04-10 | Sumitomo Electric Industries, Ltd | Process for preparing superconducting thin films |
| JPH03122266A (en)* | 1989-10-06 | 1991-05-24 | Matsushita Electric Ind Co Ltd | Production of thin nitride film |
| JPH04223333A (en)* | 1990-12-25 | 1992-08-13 | Matsushita Electric Ind Co Ltd | Manufacture of thin film transistor |
| Publication | Publication Date | Title |
|---|---|---|
| US4961958A (en) | Process for making diamond, and doped diamond films at low temperature | |
| CA1329791C (en) | Process for making diamond, doped diamond, diamond-cubic boron nitride composite films | |
| US4714625A (en) | Deposition of films of cubic boron nitride and nitrides of other group III elements | |
| Komiya et al. | Formation of thick titanium carbide films by the hollow cathode discharge reactive deposition process | |
| JPH01104763A (en) | Production of thin metal compound film | |
| US20040173160A1 (en) | Apparatus for thin film deposition, especially under reactive conditions | |
| US20150140232A1 (en) | Ultrahigh Vacuum Process For The Deposition Of Nanotubes And Nanowires | |
| JPH03122266A (en) | Production of thin nitride film | |
| JPH01246357A (en) | Production of cubic boron nitride film | |
| JP2617539B2 (en) | Equipment for producing cubic boron nitride film | |
| JP2687468B2 (en) | Thin film forming equipment | |
| JP2916514B2 (en) | Manufacturing method of oxide thin film | |
| JP2603919B2 (en) | Method for producing boron nitride film containing cubic boron nitride crystal grains | |
| JPH031377B2 (en) | ||
| JP2775340B2 (en) | Synthetic film deposition method | |
| JPH05311429A (en) | Thin film forming device | |
| JPS62232180A (en) | Superconducting material | |
| JPH08158039A (en) | Formation of thin carbon nitride film | |
| JPH02230734A (en) | Thin film formation device | |
| JPH01298093A (en) | Production of diamond film | |
| JPH0562169A (en) | Amorphous boron nitride film | |
| JPH04116155A (en) | Formation of thin film | |
| JPH03122996A (en) | plasma equipment | |
| JPS60257130A (en) | Formation of thin film using radical beam | |
| JPH01298147A (en) | Method for forming dielectric thin film and apparatus used for the method |