Movatterモバイル変換


[0]ホーム

URL:


JP7742628B2 - wireless charging device - Google Patents

wireless charging device

Info

Publication number
JP7742628B2
JP7742628B2JP2021100362AJP2021100362AJP7742628B2JP 7742628 B2JP7742628 B2JP 7742628B2JP 2021100362 AJP2021100362 AJP 2021100362AJP 2021100362 AJP2021100362 AJP 2021100362AJP 7742628 B2JP7742628 B2JP 7742628B2
Authority
JP
Japan
Prior art keywords
power
wireless charging
charging device
insulator
conductive plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021100362A
Other languages
Japanese (ja)
Other versions
JP2022191877A (en
Inventor
昌也 田村
まりも 松本
宏輔 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUCfiledCriticalToyohashi University of Technology NUC
Priority to JP2021100362ApriorityCriticalpatent/JP7742628B2/en
Publication of JP2022191877ApublicationCriticalpatent/JP2022191877A/en
Application grantedgrantedCritical
Publication of JP7742628B2publicationCriticalpatent/JP7742628B2/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Description

Translated fromJapanese

本発明は、高周波を送電する送受電器及びそれを用いる無線充電装置に関するものである。特に、人体や生体などの体内に設置された医療機器等へ無線で電力を供給するための電子機器及び充電装置に関する。The present invention relates to a power transmitter/receiver that transmits high-frequency power and a wireless charging device that uses the same. In particular, it relates to an electronic device and charging device for wirelessly supplying power to medical equipment and other devices placed inside the human body or other living organism.

従来の埋め込み型医療機器での無線充電装置は、磁界結合を利用して送電するものである。Conventional wireless charging devices for implantable medical devices transmit power using magnetic field coupling.

例えば、特許文献1には、充電式電源を有する埋め込み式構成部品及び外部無線充電器を備える埋め込み型医療機器が開示されている。当該外部無線充電器は、充電式電源と、皮膚を介して電力を転送するように構成される誘電コイルと、からなり、該無線充電器の再充電のため補助充電器を検出して電力を受けるように構成されているものである。For example, Patent Document 1 discloses an implantable medical device that includes an implantable component with a rechargeable power source and an external wireless charger. The external wireless charger includes a rechargeable power source and an inductive coil configured to transfer power through the skin, and is configured to detect and receive power from an auxiliary charger to recharge the wireless charger.

上記の埋め込み型医療機器では、高周波磁界を用いて電力を送電するため、生体の導電性や誘電特性の影響を受けることなく、高効率に電力を送受電できる反面、誘電コイルにより漏洩磁界を生じる。漏洩磁界により当該医療機器自体やその回路及び内部配線だけでなく、機器に接続された外部配線にも誘導電流を生じてしまう恐れがある。誘導電流の対策は通常フェライトコアを用いるが、フェライトコアの大きさに制約され、医療機器の小型化は困難になる。The implantable medical devices described above transmit power using a high-frequency magnetic field, which allows for highly efficient power transmission and reception without being affected by the electrical conductivity or dielectric properties of the body. However, the induction coil generates a leakage magnetic field. This leakage magnetic field can generate induced currents not only in the medical device itself, its circuits, and internal wiring, but also in the external wiring connected to the device. Ferrite cores are typically used to prevent induced currents, but the size of the ferrite core is a constraint, making it difficult to miniaturize the medical device.

一方、誘導電流の対策が不十分である場合、医療機器は誤作動を起こす可能性が高まる。さらに、電子レンジなどから漏れ出る磁束が、埋め込み型医療機器の誘導コイルを鎖交するとき、予期せぬ誘導電流が流れ、充電式電源を破壊したり、誘導コイルが発熱することにより体内深部の温度の急激な上昇を引き起したりするなど安全性の課題が顕著となる。特許文献1では、300kHzの磁界結合により約3W送電する場合、体内深部の温度は約4℃上昇するとある。
On the other hand, if countermeasures against induced currents are insufficient, the medical device is more likely to malfunction. Furthermore, when magnetic flux leaking from a microwave oven or the like interlinks with the induction coil of an implantable medical device, unexpected induced currents can flow, destroying the rechargeable power supply or causing the induction coil to heat up, resulting in a sudden rise in temperature deep inside the body, posing significant safety issues. Patent Document 1 states that when transmitting approximately 3 W of power through magnetic field coupling at 300 kHz, the temperature deep inside the body will rise by approximately 4°C.

特表2014-500097公報Special table 2014-500097 publication

本発明は、上記誘導コイルを用いる外部無線充電器の課題を鑑みなされたものであり、埋め込み型医療機器のための安全性が高い無線充電装置を提供することが課題である。The present invention was developed in consideration of the issues with external wireless chargers that use induction coils, and aims to provide a highly safe wireless charging device for implantable medical devices.

本発明に係る無線充電装置は、生体内への埋め込み型医療機器へ電力を供給するものであって、
少なくともひとつの送電器と、少なくともひとつの受電器とを備え、
前記送電器は2以上の導体平板から、前記受電器は、2以上の導体平板からなり、
前記送電器の導体平板及び前記受電器の該導体平板は、皮膚に対し相互に平行に対向して配置され、
前記送電器の導体平板はその周囲を絶縁体によって覆われていることを特徴とする。
The wireless charging device according to the present invention supplies power to an implantable medical device in a living body,
At least one power transmitter and at least one power receiver are provided,
The power transmitter is made up of two or more conductor flat plates, and the power receiver is made up of two or more conductor flat plates,
the conductive plate of the power transmitter and the conductive plate of the power receiver are arranged parallel to and facing each other with respect to the skin,
The conductor plate of the power transmitter is characterized in that its periphery is covered with an insulator.

本発明に係る無線充電装置により、電界により電力を送電するため、誘導電流の発生や漏洩磁界の影響を受けることなく充電することができる。The wireless charging device of the present invention transmits power using an electric field, allowing charging to occur without being affected by induced currents or leakage magnetic fields.

また、前記送電器の導体平板を皮膚に貼り付けるだけで、前記受電器の導体平板との間で電界により電力を送電することができる。なお、送電器の導体平板は皮膚への影響や医療機器の使用を考慮して絶縁体で覆っても電力伝送に影響しない。Furthermore, simply by attaching the conductive plate of the power transmitter to the skin, power can be transmitted between the conductive plate of the power receiver and the power transmitter via an electric field. Furthermore, taking into consideration the effects on the skin and the use of medical equipment, the conductive plate of the power transmitter can be covered with an insulator without affecting power transmission.

本発明によれば、生体への埋め込み型医療機器において、誘導コイルの使用による漏洩磁界に起因する機器の故障や体内深部の温度を上昇させることなく、安全に高効率の充電を行うことができる。
According to the present invention, in a medical device implanted in a living body, safe and highly efficient charging can be performed without causing equipment failure or an increase in temperature deep inside the body due to leakage magnetic fields caused by the use of an induction coil.

本発明に係る生体内無線充電装置が使用される環境の一例を示す模式図である。1 is a schematic diagram showing an example of an environment in which an in-vivo wireless charging device according to the present invention is used;本発明に係る生体内無線充電装置の構成図である。1 is a diagram illustrating the configuration of an in-vivo wireless charging device according to the present invention.本発明に係る生体内無線充電装置の構成例を示すブロック図である。1 is a block diagram showing an example of the configuration of an in-vivo wireless charging device according to the present invention.本発明の実施例に係る送電器と受電器の配置を示した図である。FIG. 2 is a diagram showing an arrangement of a power transmitter and a power receiver according to an embodiment of the present invention.本発明の実施例に係る豚の皮膚及び皮下組織の高周波特性を示すグラフである。1 is a graph showing high-frequency characteristics of pig skin and subcutaneous tissue according to an embodiment of the present invention.本発明の実施例に係る送受電器間の電力伝送効率特性を示すグラフである。10 is a graph showing power transmission efficiency characteristics between a power transmitter and a power receiver according to an embodiment of the present invention.

本発明の実施形態について、以下、図を参照しながら説明する。ただし、説明に使用する図面及び以下の説明は、本開示を十分に理解するために提供されるものであり、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。Embodiments of the present invention will be described below with reference to the drawings. However, the drawings used in the description and the following description are provided to provide a thorough understanding of the present disclosure and are not intended to limit the subject matter described in the claims.

本発明に係る無線充電装置について、図1を用いて説明する。図1は、本発明に係る無線充電装置1が配置される環境の一例を示す模式図である。人体2に埋め込み型医療機器3は埋め込まれる。埋め込み型医療機器3は受電器200を搭載している。埋め込み型医療機器3は例えば、ペースメーカで、心臓へ一定の鼓動を与えるための電気信号を送るほか、生体情報を取得するための電気配線4を有している。埋め込み型医療機器3は、体外に配置されたシート型送電器5から駆動電力を無線で供給される。The wireless charging device according to the present invention will be described using Figure 1. Figure 1 is a schematic diagram showing an example of an environment in which a wireless charging device 1 according to the present invention is placed. An implantable medical device 3 is implanted in a human body 2. The implantable medical device 3 is equipped with a power receiver 200. The implantable medical device 3 is, for example, a pacemaker, and sends electrical signals to provide a regular beat to the heart, as well as having electrical wiring 4 for acquiring biological information. The implantable medical device 3 is supplied with driving power wirelessly from a sheet-type power transmitter 5 placed outside the body.

シート型送電器5は、例えば、図2に示すように皮膚などに貼り付けて使用するものとなる。この場合、シート型送電器5は、皮膚などに貼り付けるための粘着性を有したフィルム6、送電器100が搭載された回路部7、金属平板からなる送電電極8、絶縁体9で構成される。
また、この場合、皮膚と皮下脂肪からなる生体組織10を介して、埋め込み型医療機器3へ電力が送電される。このとき、埋め込み型医療機器3は、絶縁体11、金属平板からなる受電電極12、受電器200が搭載された回路部13から構成される。
絶縁体9、11は人体に金属が直接接触することによる金属の腐食を防ぐほか、生体親和性の観点から配置される。例えば、パリレンポリマーによるコーティングが用いられる。
The sheet-type power transmitter 5 is used by being attached to the skin or the like, for example, as shown in Fig. 2. In this case, the sheet-type power transmitter 5 is composed of an adhesive film 6 for attaching to the skin or the like, a circuit part 7 on which the power transmitter 100 is mounted, a power transmitting electrode 8 made of a metal flat plate, and an insulator 9.
In this case, power is transmitted to the implantable medical device 3 via biological tissue 10 consisting of skin and subcutaneous fat. In this case, the implantable medical device 3 is composed of an insulator 11, a power receiving electrode 12 consisting of a metal flat plate, and a circuit section 13 on which a power receiver 200 is mounted.
The insulators 9 and 11 are arranged to prevent corrosion of the metal due to direct contact with the human body and to ensure biocompatibility, and are, for example, coated with parylene polymer.

図3は、無線充電装置5の構成例を示すブロック図である。無線充電装置5は、送電器100、受電器200、及び金属平板からなる送電電極8、受電電極12を備える。受電器200は、送電器100に搭載した送電電極8から送電される高周波電力を受電電極12で受電する。送電電極8及び受電電極12は少なくとも2枚以上の金属平板を配置した構造を取る。送電電極8と受電電極12は人体組織10を介して対応配置される。Figure 3 is a block diagram showing an example configuration of a wireless charging device 5. The wireless charging device 5 includes a power transmitter 100, a power receiver 200, and a power transmitting electrode 8 and a power receiving electrode 12, each made of a flat metal plate. The power receiver 200 receives high-frequency power transmitted from the power transmitting electrode 8 mounted on the power transmitter 100 at the power receiving electrode 12. The power transmitting electrode 8 and the power receiving electrode 12 are structured with at least two or more flat metal plates. The power transmitting electrode 8 and the power receiving electrode 12 are positioned in correspondence with each other via human tissue 10.

このような状態において、例えば、ガブリエルらが測定した実験データによると、前記人体組織10が皮膚と皮下脂肪からなる場合、1.74kHzから30kHzの間で3.0以上のQ値を示すため、送電周波数を1.74kHzから30kHzの間に設定することで高効率に電力を送電することができる。In such a state, for example, according to experimental data measured by Gabriel et al., when the human tissue 10 consists of skin and subcutaneous fat, it exhibits a Q value of 3.0 or more between 1.74 kHz and 30 kHz, and therefore, by setting the transmission frequency between 1.74 kHz and 30 kHz, power can be transmitted with high efficiency.

送受電器の小型化を考慮する場合は、200MHzから400MHz付近まで1.0以上のQ値を示すため、送電周波数を200MHzから400MHzの間に設定することで小型かつ高効率に電力を送電することができる。When considering miniaturization of the power transmitter and receiver, the Q value is 1.0 or higher from around 200 MHz to 400 MHz, so by setting the transmission frequency between 200 MHz and 400 MHz, power can be transmitted in a compact and highly efficient manner.

結果、埋め込み型医療機器3は少なくとも金属平板2枚を備え、皮膚の表面に前記送電装置5を貼り付けるだけで電界結合により電力を受電できるため、皮膚等の体外より漏洩磁界を大幅に増加させることなく、簡素な装置により、体外の送電器からの必要な電力の高効率給電が実現できる。As a result, the implantable medical device 3 is equipped with at least two metal plates, and can receive power through electric field coupling simply by attaching the power transmission device 5 to the surface of the skin. This allows for highly efficient power supply from an external power transmitter using a simple device, without significantly increasing the leakage magnetic field from outside the body, such as from the skin.

まず、シート型送電器5について説明する。シート型送電器5は外部バッテリ101を駆動電力としてRF電源102から高周波電力を出力する。送電電極8は差動入力となるため、送電電極8の入力側には、RF電源102の出力インピーダンスとインピーダンス整合を取りながらシングルエンドから差動信号へ変換するための整合回路103とバラン104が接続される。外部バッテリ101は例えばフィルム型のリチウム電池で構成され、RF電源102、整合回路103は例えば、ポリイミド系からなるフレキシブル基板上に構成される。
なお、RF電源101は差動出力回路で設計してもよい。その場合、整合回路103は差動入力差動出力で構成することで、バラン104を取り除くことができる。
First, we will explain the sheet-type power transmitter 5. The sheet-type power transmitter 5 uses an external battery 101 as driving power and outputs high-frequency power from an RF power source 102. Since the power transmitting electrode 8 has a differential input, a matching circuit 103 and a balun 104 are connected to the input side of the power transmitting electrode 8 to convert a single-ended signal to a differential signal while achieving impedance matching with the output impedance of the RF power source 102. The external battery 101 is, for example, a film-type lithium battery, and the RF power source 102 and matching circuit 103 are, for example, configured on a flexible substrate made of polyimide.
The RF power supply 101 may be designed as a differential output circuit. In this case, the matching circuit 103 is configured as a differential input/differential output, so that the balun 104 can be eliminated.

続いて、埋め込み型医療機器3について説明する。送電電極8から送電された高周波電力は受電電極12で受電される。受電電極12は整合回路201を介して整流回路202に接続され、高周波電力を直流電力に変換する。整流回路202の他端はバッテリ203に接続されており、直流電力が投入され前記バッテリ203を充電する。充電されたバッテリ203の電力はDC/DC204を介して、例えば、ペースメーカ205へ供給される。
この際、図示していないが受電電力の透過量をモニタリングすることで、透過量が大きくなるように整合回路201を自動で調整することが可能である。なお、整流回路202とバッテリ203の間にバッテリ充電用のDC/DCを追加接続することで、バッテリ203の充電速度を速めることができる。
Next, the implantable medical device 3 will be described. High-frequency power transmitted from the power transmitting electrode 8 is received by the power receiving electrode 12. The power receiving electrode 12 is connected to a rectifier circuit 202 via a matching circuit 201, and converts the high-frequency power into DC power. The other end of the rectifier circuit 202 is connected to a battery 203, and DC power is input to charge the battery 203. The power of the charged battery 203 is supplied via a DC/DC converter 204 to, for example, a pacemaker 205.
At this time, although not shown, by monitoring the amount of transmitted power of the received power, it is possible to automatically adjust the matching circuit 201 so that the amount of transmitted power increases. Note that by additionally connecting a DC/DC converter for charging the battery between the rectifier circuit 202 and the battery 203, the charging speed of the battery 203 can be increased.

このようにして体外からペースメーカに搭載されたバッテリで電力を供給することができる。
In this way, power can be supplied from outside the body by a battery installed in the pacemaker.

図2に示す送電電極8を図4に示すように銅の金属平板2枚で構成し、それぞれの金属平板14と金属平板15とする。ここでは、シート型送電器5の絶縁体9は、絶縁体平板2枚で表現し、それぞれ絶縁体平板16、絶縁体平板17とし、FR4(比誘電率4.7、誘電正接0.01)で構成する。The power transmitting electrode 8 shown in Figure 2 is composed of two copper metal plates, as shown in Figure 4, designated as metal plate 14 and metal plate 15. Here, the insulator 9 of the sheet-type power transmitter 5 is represented by two insulator plates, designated as insulator plate 16 and insulator plate 17, and made of FR4 (relative permittivity 4.7, dielectric dissipation factor 0.01).

金属平板からなる送電電極8と、絶縁体平板からなる絶縁体9の厚みはそれぞれ35μm、100μmとする。生体組織10は、ここでは比誘電率18、誘電正接0.77の豚の皮膚と皮下脂肪を使用する。その厚みは5mmとする。The thicknesses of the power transmission electrode 8, which is made of a flat metal plate, and the insulator 9, which is made of a flat insulating plate, are 35 μm and 100 μm, respectively. The biological tissue 10 used here is pig skin and subcutaneous fat with a relative permittivity of 18 and a dielectric dissipation factor of 0.77. Its thickness is 5 mm.

埋め込み型医療機器3の絶縁体11は、送電器側の絶縁体9と同様に、絶縁体平板2枚で表現し、それぞれ絶縁体平板18、絶縁体平板19とし、FR4で構成する。受電電極12は送電電極8と同様に、銅の金属平板2枚で構成し、それぞれの金属平板20と金属平板21とする。The insulator 11 of the implantable medical device 3, like the insulator 9 on the power transmitter side, is represented by two flat insulator plates, designated as insulator plates 18 and 19, and made of FR4. The power receiving electrode 12, like the power transmitting electrode 8, is made by two flat copper metal plates, designated as metal plates 20 and 21.

金属平板からなる受電電極12と、絶縁体平板からなる絶縁体11の厚みはそれぞれ35μm、100μmとする。The thicknesses of the receiving electrode 12, which is made of a flat metal plate, and the insulator 11, which is made of a flat insulating plate, are 35 μm and 100 μm, respectively.

各金属平板14、15、20、21の少なくとも一辺に導体配線22、23、24、25を接続する。導体配線22、23は、例えば粘着性を有したフィルム6に設けた穴を通して取り出している。粘着性を有したフィルム6は、ここでは比誘電率5.0、誘電正接0.08からなるポリウレタンからなるドレッシングテープを用いる。導体配線22、23、24、25の一端を開放端とし、その開放端には、電力を供給する配線を接続するため、例えばSMAコネクタをはんだで固定する。Conductor wiring 22, 23, 24, and 25 are connected to at least one side of each of the metal flat plates 14, 15, 20, and 21. The conductor wiring 22 and 23 are routed through holes in, for example, an adhesive film 6. In this example, the adhesive film 6 is a polyurethane dressing tape with a relative permittivity of 5.0 and a dielectric dissipation factor of 0.08. One end of the conductor wiring 22, 23, 24, and 25 is left open, and an SMA connector, for example, is soldered to this open end to connect wiring that supplies power.

金属平板14、15、20、21及び絶縁体平板16、17、18、19は長辺、短辺とも2cmとする。横並びとなる金属平板14と金属平板15、金属平板20と金属平板21、絶縁体平板16と絶縁体平板17、絶縁体平板18と絶縁体平板19の間隔はいずれも2cmとする。導体配線22、23、24、25は長さ約3cm、直径0.5mmとする。The metal flat plates 14, 15, 20, 21 and the insulator flat plates 16, 17, 18, 19 each have a long and short side length of 2 cm. The spacing between horizontally arranged metal flat plates 14 and 15, metal flat plates 20 and 21, insulator flat plates 16 and 17, and insulator flat plates 18 and 19 is all 2 cm. The conductor wiring 22, 23, 24, 25 is approximately 3 cm long and has a diameter of 0.5 mm.

豚の皮膚と皮下脂肪からなる生体組織10の比誘電率とQ値の測定結果を図5に示す。200MHzから400MHz付近までは1.0以上のQ値を示し、300MHz付近で最大値を示す。Figure 5 shows the measurement results of the relative permittivity and Q value of biological tissue 10 consisting of pig skin and subcutaneous fat. The Q value is 1.0 or higher from 200 MHz to around 400 MHz, and reaches a maximum value around 300 MHz.

本例ではQ値が高い300MHz付近における電力伝送効率を図6に示す。図6は、導体配線22、23、24、25のそれぞれ一端に、はんだで固定したSMAコネクタと、ベクトルネットワークアナライザの各端子を接続し、送電電極8に接続された導体配線22、23から送電された電力を受電電極12で受電し、導体配線24、25から取り出された場合の、送電電力と受電電力の比から得られる電力伝送効率を周波数軸でグラフ化したものである。In this example, the power transmission efficiency at around 300 MHz, where the Q value is high, is shown in Figure 6. Figure 6 shows a graph of the power transmission efficiency on the frequency axis, obtained from the ratio of transmitted power to received power, when an SMA connector fixed with solder and each terminal of a vector network analyzer are connected to one end of each of the conductor wirings 22, 23, 24, and 25, and power transmitted from the conductor wirings 22 and 23 connected to the power transmitting electrode 8 is received by the power receiving electrode 12 and extracted from the conductor wirings 24 and 25.

図6より生体組織10は、高周波帯では誘電体として振る舞うことが読み取れる。金属平板14、15、20、21と生体組織10でコンデンサが形成され、電界結合によって電力が伝送される。結果、皮膚等の体外より漏洩磁界を大幅に増加させることなく、簡素な装置により、体外の送電器からの必要な電力の高効率給電が実現できる。また、このように薄い厚みで送電器5を実現できるため、皮膚の曲率に応じて密着性良く貼り付けることができ、日常生活に支障をきたすことなく、あるいは睡眠中に、埋め込み型医療機器3を充電できる。From Figure 6, it can be seen that the biological tissue 10 behaves as a dielectric in the high frequency band. A capacitor is formed between the metal plates 14, 15, 20, and 21 and the biological tissue 10, and power is transmitted by electric field coupling. As a result, a simple device can be used to efficiently supply the necessary power from an external power transmitter without significantly increasing the leakage magnetic field from outside the body, such as from the skin. Furthermore, because the power transmitter 5 can be realized with such a thin thickness, it can be attached with good adhesion according to the curvature of the skin, allowing the implantable medical device 3 to be charged without interfering with daily life or during sleep.

本例では実験の容易さから電力の入力線路として導体配線22、23、及び電力の出力線路として導体配線24、25を設けているが、必ずしもこれに沿うものではなく、例えば、金属平板14、15及び金属平板20、21上にビアホールを設けて電力の入力線路及び出力線路を設けてもよい。これにより引き回し線路による損失を低減できる。In this example, for ease of experimentation, conductor wiring 22, 23 is provided as the power input line, and conductor wiring 24, 25 is provided as the power output line, but this does not necessarily have to be the case. For example, via holes may be provided on metal plates 14, 15 and metal plates 20, 21 to provide the power input and output lines. This reduces loss due to the wiring lines.

あるいは、図示していないが、送電器100が搭載された回路部7を誘電体フィルム基板で、受電器200が搭載された回路部13を誘電体基板で構成し、金属平板14、15及び金属平板20、21に対して誘電体フィルム基板や誘電体基板を介して対向配置した金属平板をそれぞれ設けることで電界結合により電力を入力、及び出力させることができる。これによりビアホールを設ける必要がなく、製作が容易になる。Alternatively, although not shown, the circuit section 7 on which the power transmitter 100 is mounted can be constructed using a dielectric film substrate, and the circuit section 13 on which the power receiver 200 is mounted can be constructed using a dielectric substrate. By providing metal flat plates 14, 15 and metal flat plates 20, 21 facing each other via a dielectric film substrate or dielectric substrate, respectively, power can be input and output by electric field coupling. This eliminates the need for via holes and simplifies manufacturing.

また、本例では実験の容易さから粘着性を有したフィルム6にドレッシングテープを用いたが、必ずしもこれに沿うものではなく、例えば、金属平板14、15を覆う絶縁体16、17に粘着性を有する素材を用いてもよい。これにより、皮膚との接触面積を最小化でき、粘着剤による皮膚への影響を低減できる。In addition, in this example, for ease of experimentation, an adhesive film 6 was used as a dressing tape, but this is not necessarily the case. For example, an adhesive material could be used for the insulators 16, 17 that cover the metal plates 14, 15. This minimizes the contact area with the skin and reduces the impact of the adhesive on the skin.

なお、本例では実験の容易さから方形状の金属平板14、15、20、21および絶縁体平板16、17、18、19を用いたが、必ずしもこれに沿うものではない。
隣り合う金属平板間の電界結合を低減する形状、例えば、円形状やホームベース状の金属平板を用いてもよい。これにより、隣り合う金属平板間の電界結合を低減でき、電力伝送効率の効率化を実現できる。さらに、絶縁体平板も金属平板電極全体を覆う平板構造や薄膜構造を用いてもよい。これにより、金属平板と皮膚の直接的な接触を防ぐことができ、金属の腐食等を防ぐことができる。
In this example, rectangular metal plates 14, 15, 20, 21 and insulating plates 16, 17, 18, 19 are used for ease of experimentation, but this does not necessarily apply.
Metal plates with a shape that reduces electric field coupling between adjacent metal plates, such as a circular or home plate-shaped plate, may be used. This reduces electric field coupling between adjacent metal plates, improving power transmission efficiency. Furthermore, the insulator plate may have a flat plate structure or a thin film structure that covers the entire metal plate electrode. This prevents direct contact between the metal plate and the skin, preventing metal corrosion, etc.

また、本例では実験の容易さから送電電極8と受電電極12に同じ面積の方形状の金属平板14、15、20、21を用いたが、必ずしもこれに沿うものではない。
送電電極と受電電極の位置ずれが生じても保証できるように送電電極の面積を受電電極の面積よりも大きくする、例えば、1.1倍の面積にすることで、2cm角の受電電極に対し、送電電極は2.2cm角のサイズとなるため、長辺方向と短辺方向にそれぞれ0.2cmずれても送電電極と受電電極の対向面積は2cm×2cmを維持することができ、効率の低下を防ぐことができる。
In this example, for ease of experimentation, rectangular metal flat plates 14, 15, 20, 21 having the same area are used for the power transmitting electrode 8 and the power receiving electrode 12, but this is not necessarily the case.
To ensure that there is no misalignment between the transmitting and receiving electrodes, the area of the transmitting electrode is made larger than that of the receiving electrode. For example, by making the area 1.1 times larger, the transmitting electrode will be 2.2 cm square compared to the 2 cm square receiving electrode. Therefore, even if there is a misalignment of 0.2 cm in either the long or short direction, the opposing area between the transmitting and receiving electrodes can be maintained at 2 cm x 2 cm, preventing a decrease in efficiency.

1 無線充電装置
2 人体
3 埋め込み型医療機器
4 電気配線
5 シート型送電器
6 粘着性を有したフィルム
7 送電器100が搭載された回路部
8 送電電極
9、11 絶縁体
10 生体組織
12 受電電極
13 受電器200が搭載された回路部
14、15、20、21 金属平板
16、17、18、19 絶縁体平板
22、23、24、25 導体配線
100 送電器
101 外部バッテリ
102 RF電源
103、203 整合回路
104 バラン
200 受電器
201 整合回路
202 整流回路
203 バッテリ
204 DC/DC
205 ペースメーカ

1 Wireless charging device 2 Human body 3 Implantable medical device 4 Electrical wiring 5 Sheet-type power transmitter 6 Adhesive film 7 Circuit unit on which power transmitter 100 is mounted 8 Power transmitting electrodes 9, 11 Insulator 10 Biological tissue 12 Power receiving electrode 13 Circuit unit on which power receiver 200 is mounted 14, 15, 20, 21 Metal flat plates 16, 17, 18, 19 Insulator flat plates 22, 23, 24, 25 Conductor wiring 100 Power transmitter 101 External battery 102 RF power source 103, 203 Matching circuit 104 Balun 200 Power receiver 201 Matching circuit 202 Rectifier circuit 203 Battery 204 DC/DC
205 Pacemaker

Claims (3)

Translated fromJapanese
生体内への埋め込み型医療機器へ電力を供給する無線充電装置であって、
送電周波数を200MHZ~400MHZとするRF電源と、
送電側の回路部と、
前記送電側回路部に接続される、2以上の導体平板からなる、少なくともひとつの送電器と、
受電側回路部と、
前記受電側回路部に接続される、2以上の導体平板からなる、少なくともひとつの受電器と、を備え、
前記送電器の導体平板及び前記受電器の導体平板は、生体組織に対し相互に平行に対向して配置され、
さらに前記送電器の導体平板は、その周囲を絶縁体によって覆われ、前記受電器の導体平板の面積よりも大きい面積を有することを特徴とする無線充電装置。
A wireless charging device for supplying power to an implantable medical device in a living body,
An RF power source with a transmission frequency of 200 MHz to 400 MHz;
a power transmission circuit section;
At least one power transmitter, which is connected to the power transmitting side circuit unit and is composed of two or more conductor flat plates;
a power receiving side circuit unit;
At least one power receiver, which is connected to the power receiving side circuit section and is made up of two or more conductor flat plates,
the conductive plate of the power transmitter and the conductive plate of the power receiver are arranged parallel to and facing each other with respect to biological tissue,
Furthermore, the conductive plate of the power transmitter is covered with an insulatorand has an area larger than the area of the conductive plate of the power receiver .
前記受電器の導体平板は、その周囲を絶縁体によって覆われていることを特徴とする請求項1に記載の無線充電装置。The wireless charging device described in claim 1, characterized in that the conductor plate of the receiver is surrounded by an insulator. 前記送電器の導体平板は、前記受電器の導体平板の面積に対し、1.1倍の面積を有することを特徴とする請求項1および2に記載の無線充電装置。A wireless charging device as described in claims 1 and 2, characterized in that the conductive plate of the power transmitter has an area 1.1 times the area of the conductive plate of the power receiver.
JP2021100362A2021-06-162021-06-16 wireless charging deviceActiveJP7742628B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2021100362AJP7742628B2 (en)2021-06-162021-06-16 wireless charging device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2021100362AJP7742628B2 (en)2021-06-162021-06-16 wireless charging device

Publications (2)

Publication NumberPublication Date
JP2022191877A JP2022191877A (en)2022-12-28
JP7742628B2true JP7742628B2 (en)2025-09-22

Family

ID=84624307

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2021100362AActiveJP7742628B2 (en)2021-06-162021-06-16 wireless charging device

Country Status (1)

CountryLink
JP (1)JP7742628B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2012253398A (en)2009-09-292012-12-20Univ Of Electro-CommunicationsDevice, system, and method for transmitting power and information
WO2016135951A1 (en)2015-02-272016-09-01オリンパス株式会社Medical power supply system
JP2020182679A (en)2019-05-082020-11-12古河電気工業株式会社 Medical devices, extracorporeal units, power transmission sheets, medical devices and location detection methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2012253398A (en)2009-09-292012-12-20Univ Of Electro-CommunicationsDevice, system, and method for transmitting power and information
WO2016135951A1 (en)2015-02-272016-09-01オリンパス株式会社Medical power supply system
JP2020182679A (en)2019-05-082020-11-12古河電気工業株式会社 Medical devices, extracorporeal units, power transmission sheets, medical devices and location detection methods

Also Published As

Publication numberPublication date
JP2022191877A (en)2022-12-28

Similar Documents

PublicationPublication DateTitle
Kim et al.Free-positioning wireless charging system for small electronic devices using a bowl-shaped transmitting coil
AU2008351351B2 (en)Printed circuit board communication coil for use in an implantable medical device system
US8489200B2 (en)Transcutaneous energy transfer module with integrated conversion circuitry
US9806536B2 (en)Method and apparatus for wireless magnetic power transmission
Sato et al.A new contactless power-signal transmission device for implanted functional electrical stimulation (FES)
US10873214B2 (en)Connector and power supply system
JP5587892B2 (en) Further use of screw threads
CN108551200A (en) Implantable device and its power transmitting and receiving unit and power transmission device
Kod et al.An approach to improve the misalignment and wireless power transfer into biomedical implants using meandered wearable loop antenna
Mahmood et al.Wireless charging for cardiac pacemakers based on class‐D power amplifier and a series–parallel spider‐web coil
Iqbal et al.Highly isolated wireless power transfer and information co-delivery using a pacemaker duplex antenna
JP7742628B2 (en) wireless charging device
US12151109B2 (en)Implantable device comprising a coil arrangement
CN114759689B (en) wireless power supply
WO2021124303A1 (en)Conductive wireless power systems
Segawa et al.Electrode design theory using highly accurate equivalent circuits in biological capacitive wpt
CN114025834B (en) Implantable medical device with wireless coil configured to receive wireless power from an external charger
KR102446465B1 (en) Wireless power transmission system using a small quad-band antenna
CN110339479B (en) A wireless charging and remote monitoring device for implantable cardiac pacemaker
KR20180060578A (en)Apparatus for receiving wireless power
CN111064285B (en)Wireless energy signal transmission system for implantable device
CN116439976A (en)Vibration capsule and vibration capsule system
KR102441742B1 (en) System for Wireless Power Transmission to Bioimplantable Intracranial Pressure Monitoring Device
RU92798U1 (en) IMPLANTED MEDICAL DEVICE
CN116111734A (en) Medical Equipment and Implantable Electronic Devices

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20240604

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20250319

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20250401

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20250530

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20250819

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20250902

R150Certificate of patent or registration of utility model

Ref document number:7742628

Country of ref document:JP

Free format text:JAPANESE INTERMEDIATE CODE: R150


[8]ページ先頭

©2009-2025 Movatter.jp