Movatterモバイル変換


[0]ホーム

URL:


JP7712168B2 - Thermal spray materials - Google Patents

Thermal spray materials

Info

Publication number
JP7712168B2
JP7712168B2JP2021160844AJP2021160844AJP7712168B2JP 7712168 B2JP7712168 B2JP 7712168B2JP 2021160844 AJP2021160844 AJP 2021160844AJP 2021160844 AJP2021160844 AJP 2021160844AJP 7712168 B2JP7712168 B2JP 7712168B2
Authority
JP
Japan
Prior art keywords
thermal spray
particle size
powder
ca2sio4
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021160844A
Other languages
Japanese (ja)
Other versions
JP2023050640A (en
Inventor
直樹 岡本
敬也 益田
淳登 竹内
博之 伊部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi IncfiledCriticalFujimi Inc
Priority to JP2021160844ApriorityCriticalpatent/JP7712168B2/en
Priority to KR1020220122444Aprioritypatent/KR20230047005A/en
Priority to CN202211209553.9Aprioritypatent/CN115896676A/en
Publication of JP2023050640ApublicationCriticalpatent/JP2023050640A/en
Application grantedgrantedCritical
Publication of JP7712168B2publicationCriticalpatent/JP7712168B2/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Description

Translated fromJapanese

本発明は、この発明は、金属、セラミック、サーメットなどの表面の溶射皮膜の形成に使用される溶射材料に関する。This invention relates to a thermal spray material used to form thermal spray coatings on the surfaces of metals, ceramics, cermets, etc.

溶射皮膜は、溶射材料を基材に溶射することで形成される。溶射皮膜は、溶射材料の特性に応じて種々の用途で使用されている。溶射皮膜の適用例として、自動車エンジン、航空機エンジン、半導体製造装置、鋼板の搬送用ロール、一般産業での耐摩耗用途など、耐摩耗、耐熱、耐腐食性が求められる様々なアプリケーションに広く適用されている。Thermal spray coatings are formed by spraying a thermal spray material onto a substrate. Thermal spray coatings are used for a variety of purposes depending on the characteristics of the thermal spray material. Thermal spray coatings are widely used in a variety of applications that require wear resistance, heat resistance, and corrosion resistance, such as automobile engines, aircraft engines, semiconductor manufacturing equipment, steel plate transport rolls, and wear-resistant applications in general industry.

従来から新規な溶射材料の開発のため各種の研究がなされてきた。例えば、特許文献1では、γ-2CaO・SiO2粉末を噴霧造粒して製造される珪酸カルシウム質溶射材料が提案されている。この方法では、γ-2CaO・SiO2を焼結合成した材料を湿式粉砕したスラリーを造粒して溶射材料を作製しているが、材料に含まれる水和活性物によってスラリー粘度が不安定となり、スラリーが固化してしまうという問題があった。また、原料を造粒した後γ-2CaO・SiO2の焼結合成を行うと、焼結合成の冷却過程において550℃付近でβ相からγ相に転移する。β相からγ相への転移は急激な体積変化を伴い、組織崩壊を起こすことで、材料中に欠陥が生じるため、粒度分布が微粉化するために、溶射皮膜形成時にスピッティングを生じる要因となった。 Conventionally, various researches have been conducted to develop new thermal spray materials. For example, Patent Document 1 proposes a calcium silicate thermal spray material manufactured by spraying and granulating γ-2CaO.SiO2 powder. In this method, the thermal spray material is manufactured by granulating a slurry obtained by wet-grinding a material obtained by sintering γ-2CaO.SiO2 , but there is a problem that the slurry viscosity becomes unstable due to the hydrated active substances contained in the material, and the slurry solidifies. In addition, when sintering synthesis of γ-2CaO.SiO2 is performed after granulating the raw materials, the β phase transitions to the γ phase at around 550 ° C during the cooling process of the sintering synthesis. The transition from the β phase to the γ phase is accompanied by a sudden volume change, which causes structural collapse, resulting in defects in the material, and the particle size distribution becomes fine, which causes spitting during the formation of the thermal spray coating.

なお、スピッティングは、過溶融した溶射用粉末が溶射装置のノズル内壁に付着堆積してできる堆積物が溶射皮膜に混入する現象をいい、溶射用粉末が細かな粒子を多く含むほどスピッティングは起こりやすい。スピッティングが発生すると、溶射皮膜の組織構造が不均一となるため、溶射皮膜の品質が著しく低下する。Spitting refers to the phenomenon in which over-molten thermal spray powder adheres to and accumulates on the inner wall of the nozzle of the thermal spraying device, resulting in the deposition of deposits that become mixed into the thermal spray coating. The more fine particles the thermal spray powder contains, the more likely it is that spitting will occur. When spitting occurs, the tissue structure of the thermal spray coating becomes non-uniform, resulting in a significant decrease in the quality of the thermal spray coating.

特公平7-100847号公報Special Publication No. 7-100847

本発明は、溶射皮膜を形成した際に、スピッティング現象の発生を抑制可能な溶射皮膜形成性に優れた珪酸カルシウム質溶射材料を提供することを目的とする。The present invention aims to provide a calcium silicate thermal spray material with excellent thermal spray coating forming properties that can suppress the occurrence of spitting when a thermal spray coating is formed.

本発明は、珪酸カルシウム質溶射材料において、X線回折法を用いて測定した結晶相の回折強度において2θ=30.75~31.35で検出されるβ-Ca2SiO4の単一ピーク回折強度と、2θ=20.25~20.85で検出されるγ-Ca2SiO4の単一ピーク回折強度とのピーク比率(β-Ca2SiO4/γ-Ca2SiO4)が1よりも大きい溶射用材料を提供する。ピーク比率(β-Ca2SiO4/γ-Ca2SiO4)が1よりも大きいという技術思想は、γ-Ca2SiO4のピークが検出されず実質的にゼロのときにβ-Ca2SiO4のピークが検出される場合も包含する。 The present invention provides a calcium silicate thermal spray material in which the peak ratio (β-Ca2SiO4/γ-Ca2SiO4) between the single peak diffraction intensity of β-Ca2SiO4 detected at 2θ=30.75 to 31.35 and the single peak diffraction intensity of γ-Ca2SiO4 detected at 2θ=20.25 to 20.85 in the diffraction intensities ofthe crystalphases measured using an X-ray diffraction method is greater than 1. The technical idea of the peak ratio (β-Ca2SiO4 /γ-Ca2SiO4 ) being greater than 1 also includes the case wherea β-Ca2SiO4 peak is detected whenno γ-Ca2SiO4 peak is detected and is substantiallyzero .

珪酸カルシウム質材料は、CaO-SiO2系の組成を有すものであるが、本発明では2CaO-SiO2系組成の材料を使用する。2CaO-SiO2系珪酸カルシウム質材料は、いくつかの結晶相(α、α´、β及びγ)を有しているが、常温常圧ではγ相を安定な結晶相として有している。 Calcium silicate materials have a CaO-SiO2 composition, but in the present invention, materials with a 2CaO-SiO2 composition are used. 2CaO-SiO2 calcium silicate materials have several crystal phases (α, α', β, and γ), but at room temperature and normal pressure, they have the γ phase as a stable crystal phase.

本発明は、CaOとSiO2の組成比をCaOリッチにさせることによって焼結後にβ相として安定化することができ、β相からγ相の転移が生じないためこれに伴う体積変化を生じることなく、微粉化に伴うスピッティングを防止できることを見出したものである。このとき、微粉化を防止できる程度に十分にβ相が形成しているためには、X線回折法を用いて測定した結晶相の回折強度において2θ=30.75~31.35で検出されるβ-Ca2SiO4の単一ピーク回折強度と2θ=20.25~20.85で検出されるγ-Ca2SiO4の単一ピーク回折強度のピーク比率(β-Ca2SiO4/γ-Ca2SiO4)が1よりも大きければよいことが分かった。上記ピーク比率は3よりも大きくてもよく、さらに、5よりも大きければより安定したβ相が形成され好ましい。 The present invention has found that by making the composition ratio of CaO and SiO2 CaO rich, the β phase can be stabilized after sintering, and since there is no transition from the β phase to the γ phase, there is no accompanying volume change, and spitting associated with pulverization can be prevented. In this case, it was found that in order for the β phase to be formed sufficiently to prevent pulverization, the peak ratio (β-Ca 2 SiO 4 /γ-Ca2 SiO4 ) between the single peak diffraction intensity of β-Ca2 SiO4 detected at 2θ = 30.75 to 31.35 in the diffraction intensity of the crystal phase measured using the X-ray diffraction method and the single peak diffraction intensity of γ-Ca2 SiO4 detected at = 20.25to 20.85 should be greater than 1. The peak ratio may be greater than 3, and moreover, if it is greater than 5, a more stable β phase is formed, which is preferable.

本発明の珪酸カルシウム質溶射材料は、β相が安定して形成されているために、体積変化による粉化が防止でき、γ-Ca2SiO4粉に比較して粒子径が小さすぎることがない。具体的には、レーザー回折法を用いて測定した粒度分布において体積換算での粒子径が15μm以下の割合が20%未満であることが好ましい。また、レーザー回折法を用いて測定した粒度分布において体積換算での粒子径10μm以下の割合が10%未満であることが好ましい。 In the calcium silicate thermal spray material of the present invention, the β-phase is stably formed, so that powdering due to volume change can be prevented, and the particle size is not too small compared to γ-Ca2SiO4powder . Specifically, in the particle size distribution measured using the laser diffraction method, the ratio of particle sizes of 15 μm or less in volume conversion is preferably less than 20%. Also, in the particle size distribution measured using the laser diffraction method, the ratio of particle sizes of 10 μm or less in volume conversion is preferably less than 10%.

レーザー回折法を用いて測定した粒度分布において体積換算での粒子径が15μm以下の割合が20%未満であると、溶射皮膜を形成した際にスピッティングの発生が防止でき、形成された溶射皮膜の表面粗さを低下させる傾向にある。When the particle size distribution measured using laser diffraction method shows that the proportion of particles with a volumetric particle size of 15 μm or less is less than 20%, spitting can be prevented when a thermal spray coating is formed, and the surface roughness of the formed thermal spray coating tends to be reduced.

レーザー回折法を用いて測定した粒度分布において体積換算での粒子径10μm以下の割合が10%未満であると、溶射皮膜を形成した際にスピッティングの発生が防止でき、形成された溶射皮膜の表面粗さを低下させる傾向にある。When the percentage of particles with a volumetric particle size of 10 μm or less is less than 10% in the particle size distribution measured using laser diffraction, spitting can be prevented when a thermal spray coating is formed, and the surface roughness of the formed thermal spray coating tends to be reduced.

珪酸カルシウム質溶射材料において、X線回折法を用いて測定した結晶相の回折強度において2θ=30.75~31.35で検出されるβ-Ca2SiO4の単一ピーク回折強度と2θ=20.25~20.85で検出されるγ-Ca2SiO4の単一ピーク回折強度のピーク比率(β-Ca2SiO4/γ-Ca2SiO4)を高め、安定したβ相を得るためには、CaOとSiO2の組成比をCaOリッチにさせればよく、特に、酸化物に換算したCa成分とSi成分のmol比率(CaOmol量/SiO2mol量)が2.0よりも大きくすることが好ましい。 In calcium silicate thermal spray materials, in order to increase the peak ratio (β-Ca2 SiO 4 /γ-Ca 2 SiO 4 ) of the single peak diffraction intensity of β-Ca 2 SiO4 detected at 2θ = 30.75 to 31.35 and the single peak diffraction intensity of γ-Ca2 SiO4 detected at 2θ=20.25 to20.85 in the diffraction intensity of the crystalline phase measured using X-ray diffraction method, and to obtain a stable β phase, it is sufficient to make the composition ratio of CaO to SiO2 CaO-rich, and in particular, it is preferable that the molar ratio of Ca component to Si component converted to oxide (molar amount of CaO/molar amount of SiO2 ) be greater than 2.0.

本発明の溶射材料は、安息角を低くすることができる。安息角は、30~37度程度であることが好ましい。この範囲であれば、溶射膜の形成の際に、溶射材料の供給が滑らかにおこなわれ、供給速度を高くすることができ、また、ホッパー内での各種トラブルが防止できる。The thermal spray material of the present invention can have a low angle of repose. The angle of repose is preferably about 30 to 37 degrees. If it is in this range, the supply of the thermal spray material during the formation of the thermal spray film can be carried out smoothly, the supply speed can be increased, and various problems within the hopper can be prevented.

「安息角」は、粉末材料を一定の高さの漏斗から水平な基板の上に落下させることで生成した円すい状の堆積物の直径および高さから算出される底角を意味している。かかる安息角は、JIS R 9301-2-2:1999「アルミナ粉末物性測定方法-2:安息角」の規定に準じて測定することができる。"Angle of repose" refers to the base angle calculated from the diameter and height of the cone-shaped deposit produced by dropping powder material from a funnel of a certain height onto a horizontal substrate. The angle of repose can be measured in accordance with the provisions of JIS R 9301-2-2:1999 "Method of measuring the physical properties of alumina powder - 2: Angle of repose".

[溶射用材料の製造方法]
本発明の溶射用材料は、必ずしもこれに制限されるものではないが、原料粉末を造粒した後、焼結して安定化した球形を形成することが好ましい。例えば、原料粉末を水、溶媒、必要に応じてバインダと混合、攪拌してスラリーを形成して造粒し、造粒粉を焼成して焼結した後、必要に応じて分級することにより溶射用材料を得ることができる。
[Method of manufacturing thermal spray material]
Although not necessarily limited thereto, the thermal spray material of the present invention is preferably formed by granulating the raw material powder and then sintering it to form stable spheres. For example, the raw material powder is mixed with water, a solvent, and optionally a binder, and stirred to form a slurry, which is then granulated, and the granulated powder is fired and sintered, and then classified as necessary to obtain the thermal spray material.

<原料の用意>
まず、溶射用材料の原料を用意する。原料としては、例えば、CaCO3、SiO2の粉体を用いることができる。これらの原料には、Al2O3、FeO2などが不純物として含まれることが多い。原料として用いる粉体の性状は特に制限されないが、均一な組成の混晶を形成するために、例えば、平均粒子径は0.1μm以上10μm程度の微細なものであることが好ましい。平均粒子径は、例えばレーザー回折法により測定した、体積基準の粒度分布に基づく累積頻度が50%となるときの粒子径(メディアン径)である。造粒、焼結後の組成において、SiO2に対するCaOのモル比が2以上となるように、CaCO3とSiO2のモル比を調整しておくことが好ましい。CaO及びSiO2のモル比は、蛍光X線分析(XRF)によるCa成分とSi成分をそれぞれCaOとSiO2に換算した際のモル比として算出される。
<Preparing ingredients>
First, the raw material of the thermal spraying material is prepared. For example, powders of CaCO3 and SiO2 can be used as the raw material. These raw materials often contain Al2 O3, FeO2 , etc. as impurities. The properties of the powder used as the raw material are not particularly limited, but in order to form a mixed crystal of uniform composition, it is preferable that the powder has a fine average particle size of, for example, 0.1 μm or more and 10 μm. The average particle size is the particle size (median size) when the cumulative frequency based on the volume-based particle size distribution measured by, for example, laser diffraction method is 50%. In the composition after granulation and sintering, it is preferable to adjust the molar ratio of CaCO3 and SiO2 so that the molar ratio of CaO to SiO2 is 2 or more. The molar ratio of CaO and SiO 2 is calculated as the molar ratio when the Ca component and Si component by X-ray fluorescence analysis (XRF) are converted to CaO and SiO2, respectively.

<造粒>
次いで、用意した原料粉体を球状に造粒して造粒粉を作製する。この造粒工程を経ることで、後の焼成工程において角張った粒子が生成するのを防ぐことができ、流動性に優れた球形の溶射用材料を好適に得ることができる。造粒の手法としては特に制限されず、公知の各種の造粒法を採用することができる。例えば、転動造粒法、流動層造粒法、撹拌造粒法、圧縮造粒法、押出造粒法、破砕造粒法、スプレードライヤーを用いた噴霧造粒法等の手法の1つ以上を採用することができる。分散媒を介して原料粉体を簡便かつ高精度に均一混合できるとの観点から、スプレードライヤーを用いた噴霧造粒法を好ましく採用することができる。スプレードライヤーを用いた噴霧造粒法に用いる分散媒の種類は特に制限されず、水、低級アルコール(例えば、メタノール、エタノール、プロパノール等の炭素数が5以下のアルコール)およびこれらの混合液等が挙げられる。また、分散媒には必要に応じてバインダを加えることができる。造粒の条件は使用する装置によるため一概には言えないが、例えば、大気中で400℃以下(例えば乾燥温度は120℃~300℃程度)の温度範囲で造粒することが好ましい。造粒粉における造粒粒子の大きさは、原料粉体の平均粒子径と次工程の焼成工程による収縮を加味して決定すればよい。
<Granulation>
Next, the prepared raw powder is granulated into a spherical shape to produce a granulated powder. By passing through this granulation process, it is possible to prevent the generation of angular particles in the subsequent firing process, and it is possible to suitably obtain a spherical thermal spray material with excellent fluidity. The granulation method is not particularly limited, and various known granulation methods can be adopted. For example, one or more of the following methods can be adopted: rolling granulation method, fluidized bed granulation method, stirring granulation method, compression granulation method, extrusion granulation method, crushing granulation method, spray granulation method using a spray dryer, etc. From the viewpoint that the raw powder can be easily and highly precisely mixed uniformly through the dispersion medium, the spray granulation method using a spray dryer can be preferably adopted. The type of dispersion medium used in the spray granulation method using a spray dryer is not particularly limited, and examples thereof include water, lower alcohols (e.g., alcohols having 5 or less carbon atoms, such as methanol, ethanol, and propanol), and mixtures thereof. In addition, a binder can be added to the dispersion medium as necessary. Although the granulation conditions vary depending on the apparatus used and cannot be generally stated, it is preferable to granulate in the air at a temperature range of 400° C. or less (e.g., drying temperature is about 120° C. to 300° C.). The size of the granulated particles in the granulated powder may be determined taking into account the average particle size of the raw material powder and shrinkage due to the subsequent firing process.

<焼成>
その後、造粒した造粒粉を焼成する。焼成では、造粒した粒子に含まれる個々の原料粒子を焼結させる。かかる焼結時に原料成分が互いに拡散し、混晶を形成する。本発明の溶射材料においては、造粒粒子に含まれる原料粒子を十分に焼結ないしは溶融させて一体化させることが好ましい。すなわち、造粒の体がほぼ見られなくなる程度にまで一体化させることが好ましい。焼成および溶融一体化の条件は、例えば、大気雰囲気中、1300℃程度で焼成することが例示される。焼成時間は造粒粒子の形態にもよるため特に限定されないが、例えば、4時間程度を目安とすることができる。造粒粉の焼成には、一般的なバッチ式焼成炉や、連続式焼成炉等を特に限定されることなく利用することができる。焼成雰囲気は大気雰囲気や不活性雰囲気など特に限定することなく利用することができる。なお、必須の工程ではないが、必要に応じて、焼成後に焼成物の解砕、分級等の工程を含めてもよい。これにより、ここに開示される溶射用材料を得ることができる。
<Firing>
Thereafter, the granulated powder is fired. In firing, the individual raw material particles contained in the granulated particles are sintered. During the sintering, the raw material components diffuse into each other to form a mixed crystal. In the thermal spray material of the present invention, it is preferable to fully sinter or melt the raw material particles contained in the granulated particles to integrate them. That is, it is preferable to integrate them to the extent that the granulated bodies are almost no longer visible. The conditions for firing and melt integration are, for example, firing at about 1300°C in an air atmosphere. The firing time is not particularly limited because it depends on the shape of the granulated particles, but can be, for example, about 4 hours. For firing the granulated powder, a general batch-type firing furnace, a continuous firing furnace, etc. can be used without any particular limitation. The firing atmosphere can be used without any particular limitation, such as an air atmosphere or an inert atmosphere. Although not essential, if necessary, a process such as crushing and classification of the fired product may be included after firing. This makes it possible to obtain the thermal spray material disclosed herein.

焼結工程によって造粒粉が十分に焼結されて堅牢な粒子を得ることが重要である。また、原料としてカルシウム炭酸塩を使用する場合、焼結工程で十分に脱炭素させることにより、溶射中に炭酸ガスが発生して緻密な皮膜形成を阻害することがないようにすることが留意されるべきである。It is important that the granulated powder is sintered sufficiently in the sintering process to obtain robust particles. Also, when using calcium carbonate as a raw material, care should be taken to ensure that it is sufficiently decarbonized in the sintering process to prevent carbon dioxide gas from being generated during thermal spraying, which would inhibit the formation of a dense coating.

<溶射皮膜>
以上の溶射用材料を溶射することで、溶射皮膜を形成することができる。この溶射皮膜は、基材の表面に備えられていることで、溶射皮膜付部材等として提供される。以下、かかる溶射皮膜付部材と、溶射皮膜とについて説明する。この発明の溶射材料は、ガス式溶射方法あるいはプラズマ溶射方法で溶射することができる。
<Thermal spray coating>
A thermal spray coating can be formed by spraying the above-mentioned thermal spray material. This thermal spray coating is provided on the surface of a substrate, and is provided as a thermal spray coated member or the like. The thermal spray coated member and the thermal spray coating are described below. The thermal spray material of the present invention can be sprayed by a gas thermal spray method or a plasma thermal spray method.

この溶射皮膜は、基材の表面に備えられることで、例えば当該基材に対して耐食性や耐熱性などを付与することができる。溶射の対象である基材(被溶射材)については特に限定されない。例えば、かかる溶射材料の溶射に供したときに、所望の耐性を備え得る材料からなる基材であれば、その材質や形状等は特に制限されない。かかる基材を構成する材料としては、例えば、各種の金属または合金等が挙げられる。具体的には、例えば、アルミニウム、アルミニウム合金、鉄、鉄鋼、銅、銅合金、ニッケル、ニッケル合金、金、銀、ビスマス、マンガン、亜鉛、亜鉛合金等が例示される。なかでも、汎用されている金属材料のうち比較的熱膨張係数の大きい、各種SUS材(いわゆるステンレス鋼であり得る。) 等に代表される鉄鋼、インコネル等に代表される耐熱合金、インバー, コバール等に代表される低膨張合金、ハステロイ等に代表される耐食合金、軽量構造材等として有用な1000シリーズ~7000シリーズアルミニウム合金等に代表されるアルミニウム合金等からなる基材が挙げられる。例えば、本発明の珪酸カルシウム質溶射材料は溶融金属との反応性が低く、かつステンレス系材料と近い熱膨張係数を有することから、例えば、溶融亜鉛めっき工程などで溶融金属との接触にさらされるステンレス系材料のコーティングに使用してもよい。This thermal spray coating can be provided on the surface of a substrate to provide the substrate with, for example, corrosion resistance and heat resistance. There are no particular limitations on the substrate (subject to thermal spraying) that is the subject of thermal spraying. For example, as long as the substrate is made of a material that can provide the desired resistance when subjected to thermal spraying of the thermal spraying material, there are no particular limitations on the material or shape. Examples of materials that constitute such substrates include various metals or alloys. Specific examples include aluminum, aluminum alloys, iron, steel, copper, copper alloys, nickel, nickel alloys, gold, silver, bismuth, manganese, zinc, zinc alloys, etc. Among these, substrates made of steels, such as various SUS materials (which may be so-called stainless steels), which have relatively large thermal expansion coefficients among commonly used metal materials, heat-resistant alloys, such as Inconel, low-expansion alloys, such as Invar and Kovar, corrosion-resistant alloys, such as Hastelloy, and aluminum alloys, such as 1000 series to 7000 series aluminum alloys, which are useful as lightweight structural materials, etc., can be mentioned. For example, the calcium silicate thermal spray material of the present invention has low reactivity with molten metal and a thermal expansion coefficient close to that of stainless steel materials, so it may be used to coat stainless steel materials that are exposed to contact with molten metal, for example, in hot-dip galvanizing processes.

溶射材料を溶射する溶射方法としては、公知の各種の溶射方法を採用することができる。例えば、好適には、プラズマ溶射法、高速フレーム溶射法、フレーム溶射法、爆発溶射法等の溶射方法を採用することが例示される。As a thermal spraying method for spraying the thermal spray material, various known thermal spraying methods can be used. For example, it is preferable to use a thermal spraying method such as a plasma thermal spraying method, a high-velocity flame thermal spraying method, a flame thermal spraying method, or a detonation thermal spraying method.

プラズマ溶射法とは、溶射材料を軟化または溶融するための溶射熱源としてプラズマ炎を利用する溶射方法である。電極間にアークを発生させ、かかるアークにより作動ガスをプラズマ化すると、かかるプラズマ流はノズルから高温高速のプラズマジェットとなって噴出する。プラズマ溶射法は、このプラズマジェットに溶射材料を投入し、加熱、加速して基材に堆積させることで溶射皮膜を得るコーティング手法一般を包含する。なお、プラズマ溶射法は、大気中で行う大気プラズマ溶射(APS:atmospheric plasma spraying)や、大気圧よりも低い気圧で溶射を行う減圧プラズマ溶射(LPS:low pressure plasma spraying)、大気圧より高い加圧容器内でプラズマ溶射を行う加圧プラズマ溶射(high pressure plasma spraying)等の態様であり得る。かかるプラズマ溶射によると、例えば、一例として、溶射材料を5000℃ ~10000℃程度のプラズマジェットにより溶融および加速させることで、溶射材料を200m/s~600m/s程度の速度にて基材へ衝突させて堆積させることができる。The plasma spraying method uses a plasma flame as a spraying heat source to soften or melt the spraying material. When an arc is generated between electrodes and the working gas is turned into plasma by the arc, the plasma flow is ejected from a nozzle as a high-temperature, high-speed plasma jet. The plasma spraying method includes a general coating method in which the spraying material is introduced into the plasma jet, heated, accelerated, and deposited on a substrate to obtain a sprayed coating. The plasma spraying method can be performed in various forms, such as atmospheric plasma spraying (APS), which is performed in the atmosphere, low pressure plasma spraying (LPS), which is performed at a pressure lower than atmospheric pressure, and high pressure plasma spraying, which is performed in a pressurized container higher than atmospheric pressure. With such plasma spraying, for example, the spraying material can be melted and accelerated by a plasma jet of about 5000°C to 10000°C, and the spraying material can be collided with the substrate at a speed of about 200 m/s to 600 m/s and deposited.

<実施例1>
実施例1として、表1に示される原料仕込み組成となるCaCO3、Si02粉末を原料として、これに水及びポリビニルアルコールを加え撹拌機で混合し、その後熱風温度250℃のスプレードライヤーで噴霧造粒して造粒粉を得た。得られた造粒粉を粒度分析したところ、表1に示されるメディアン径、粒度分布を有していた。メディアン径、及び粒度分布は、Malvern Panalytical社のレーザー回折式粒度分布測定装置Mastersizer 3000を用いて測定した。
Example 1
In Example 1,CaCO3 andSiO2 powders having the raw material composition shown in Table 1 were used as raw materials, water and polyvinyl alcohol were added to them, mixed with a stirrer, and then sprayed and granulated with a spray dryer at a hot air temperature of 250°C to obtain a granulated powder. The obtained granulated powder was subjected to particle size analysis and found to have the median diameter and particle size distribution shown in Table 1. The median diameter and particle size distribution were measured using a laser diffraction particle size distribution analyzer Mastersizer 3000 manufactured by Malvern Panalytical.

次に、この造粒粉を加熱炉で1300℃の温度で4時間程度焼成することにより焼結粉を得た。得られた焼結粉を75μmの篩にかけて分級し製品粉(溶射材料)を得た。この製品粉について、粒度分析をしたところ、表1に示されるメディアン径、粒度分布を有していた。メディアン径、及び粒度分布は、Malvern Panalytical社のレーザー回折式粒度分布測定装置Mastersizer 3000を用いて測定した。Next, this granulated powder was fired in a heating furnace at 1300°C for about 4 hours to obtain sintered powder. The obtained sintered powder was classified through a 75 μm sieve to obtain the product powder (thermal spray material). When this product powder was subjected to particle size analysis, it had the median diameter and particle size distribution shown in Table 1. The median diameter and particle size distribution were measured using a laser diffraction particle size distribution analyzer, Mastersizer 3000, manufactured by Malvern Panalytical.

また、この製品粉の化学成分(CaO、SiO及びFe2O3+AL2O3のモル比率)、結晶相のX線回折強度(2θ=30.75~31.35で検出されるβ-Ca2SiO4の単一ピーク回折強度と2θ=20.25~20.85で検出されるγ-Ca2SiO4の単一ピーク回折強度)及び安息角を測定した結果を表1に示した。なお、製品粉の化学成分は株式会社島津製作所製の蛍光X線分析装置 LAB CENTER XRF-1800を用い、X線発生部の電圧は40kV、電流は95mAとした。また、実際にXRF測定したサンプルは製品粉にフラックス成分である四ホウ酸リチウムを製品粉の10mass%添加・混合したものを東京科学株式会社製のビード&フューズサンプラTK-4100型を用いて作製したガラスビードを用いた。X線回折装置としては、株式会社リガク製のUltimaIVを用い、X線源をCuKα線、加速電圧40kV、加速電流10mA、走査範囲2θ=10°~70°、スキャンスピード10°/min、サンプリング幅0.01°の条件で測定した。なお、このとき、発散スリットは1°、発散縦制限スリットは10mm、散乱スリットは8mm°、受光スリットは開放、オフセット角度は0°に調整した。また、安息角は、JIS R 9301-2-2:1999に準拠し、それぞれの粉末材料をA.B.D.粉体特性測定器(筒井理科器械株式会社製、ABD-72形)に供することで得た値である。 The chemical composition of the product powder (molar ratio of CaO,SiO2 , andFe2O3 +Al2O3 ), X-ray diffraction intensity ofthe crystal phase (single peak diffraction intensityof β-Ca2SiO4 detected at 2θ = 30.75-31.35 and single peak diffraction intensity of γ-Ca2SiO4 detected at 2θ = 20.25-20.85) and angleof repose were measured and the results are shown in Table 1. The chemical composition of the product powder was measured using a fluorescent X-ray analyzer LAB CENTER XRF-1800 manufactured by Shimadzu Corporation, with the voltage of the X-ray generator set to 40 kV and the current set to 95 mA. The sample actually measured by XRF was glass beads made by adding and mixing 10 mass% of lithium tetraborate, a flux component, to the product powder using a bead and fuse sampler TK-4100 manufactured by Tokyo Scientific Co., Ltd. The X-ray diffraction apparatus used was Rigaku's UltimaIV, and the X-ray source was CuKα radiation, the acceleration voltage was 40 kV, the acceleration current was 10 mA, the scanning range 2θ = 10° to 70°, the scanning speed was 10°/min, and the sampling width was 0.01°. At this time, the divergence slit was adjusted to 1°, the divergence vertical limiting slit was adjusted to 10 mm, the scattering slit was adjusted to 8 mm°, the receiving slit was opened, and the offset angle was adjusted to 0°. The repose angle was measured in accordance with JIS R 9301-2-2:1999 by subjecting each powder material to an A.B.D. powder property measuring instrument (manufactured by Tsutsui Rikakikai Co., Ltd., ABD-72 type).

<実施例2~4、比較例1及び2>
実施例2~4、比較例1及び2として、原料仕込み組成となるCaCO3、Si02粉末の割合のみそれぞれ表1に示される割合に変更して、実施例1と同様の方法により、造粒、焼結を行い、それぞれ、造粒粒及び製品粉について、粒度分析をしたところ、表1に示されるメディアン径、粒度分布を有していた。また、これらの製品粉の化学成分、結晶相の回折強度、安息角を実施例1と同様の方法により測定した結果を表1に示した。
<Examples 2 to 4, Comparative Examples 1 and 2>
In Examples 2 to 4 and Comparative Examples 1 and 2, only the ratios of CaCO3 and SiO2 powders in the raw material charge composition were changed to the ratios shown in Table 1, and granulation and sintering were performed in the same manner as in Example 1. When the granulated granules and product powder were subjected to particle size analysis, they had the median diameter and particle size distribution shown in Table 1. In addition, the chemical components, diffraction intensity of the crystal phase, and angle of repose of these product powders were measured in the same manner as in Example 1, and the results are shown in Table 1.

<比較例3>
比較例3として、比較例1及び2と同様のCaCO3、Si02粉末を原料として、加熱炉で1300℃の温度で4時間程度焼成することにより焼結し、その後粉砕して、水及びポリビニルアルコールを加え撹拌機で混合したが、スラリー化する際に高粘度・固化してしまい、造粒粉を得ることができなかった。
<Comparative Example 3>
In Comparative Example 3, the sameCaCO3 andSiO2 powders as in Comparative Examples 1 and 2 were used as raw materials and sintered by firing in a heating furnace at a temperature of 1300°C for approximately 4 hours, then crushed, water and polyvinyl alcohol were added, and mixed with a stirrer. However, when the slurry was made, it became highly viscous and solidified, and a granulated powder could not be obtained.

<製品粉の特性>
得られた製品粉について造粒粉からの収縮率を測定した結果を表1に示した。収縮率は、メディアン径を基準にして、「(造粒粉のメディアン径-製品粉のメディアン径)/造粒粉のメディアン径×100」により計算した。表1に示されるように、実施例1~4では収縮率が25%以下と低く、比較例1及び2では45%を超えており収縮が大きかった。比較例1及び2については焼結合成の冷却過程において550℃付近でのβ相からγ相への転移に伴って、急激な体積変化を伴い、組織崩壊を起こすことで、粒度分布が微粉化するために、収縮率が大きくなったと考えられる。
<Characteristics of the product flour>
The shrinkage rate of the obtained product powder from the granulated powder was measured, and the results are shown in Table 1. The shrinkage rate was calculated based on the median diameter by "(median diameter of granulated powder - median diameter of product powder) / median diameter of granulated powder x 100". As shown in Table 1, the shrinkage rate was low at 25% or less in Examples 1 to 4, and was large at over 45% in Comparative Examples 1 and 2. In Comparative Examples 1 and 2, the shrinkage rate was large because the particle size distribution became finer due to the sudden volume change and structure collapse caused by the transition from the β phase to the γ phase at around 550°C during the cooling process of sinter synthesis.

実施例1~4の製品粉の化学成分中CaO/SiO2のモル比が2以上であるのに対して、比較例1及び2ではCaO/SiO2のモル比が2未満であった。また、X線回折強度では、2θ=30.75~31.35で検出されるβ-Ca2SiO4の単一ピーク回折強度と、2θ=20.25~20.85で検出されるγ-Ca2SiO4の単一ピーク回折強度とのピーク比率(β-Ca2SiO4/γ-Ca2SiO4)が、実施例1~4では1より大きいのに対して、比較例1及び2ではβ-Ca2SiO4の単一ピークが検出されなかった。すなわち、比較例1及び2では、同ピーク強度比は0.0であり、β相が実質的に形成されていないことがわかった。 The molar ratio of CaO/SiO2 in the chemical components of the product powder in Examples 1 to 4 was 2 or more, whereas the molar ratio of CaO/SiO2 in Comparative Examples 1 and 2 was less than 2. In addition, in the X-ray diffraction intensity, the peak ratio (β-Ca2 SiO 4 /γ-Ca2 SiO4 ) between the single peak diffraction intensity of β-Ca2 SiO4 detected at 2θ=30.75 to 31.35 and the single peak diffraction intensityof γ-Ca2 SiO4 detected at 2θ=20.25 to 20.85 was greater than 1 in Examples 1 to 4, whereas the single peak of β-Ca2 SiO4 was not detected in Comparative Examples 1 and 2. That is, in Comparative Examples 1 and 2, the peak intensity ratio was 0.0, indicating that the β phase was not substantially formed.

また、得られた製品粉について、JIS R 9301-2-2:1999に準拠し、それぞれの製品粉をA.B.D.粉体特性測定器(筒井理科器械株式会社製、ABD-72形)に供することで安息角を測定した。その結果、実施例1~4では、安息角が33~36度の範囲におさまっているのに対し、比較例1及び2ではそれぞれ41.0度、37.9度であり、実施例より大きかった。The angles of repose of the resulting powder products were measured in accordance with JIS R 9301-2-2:1999 using an A.B.D. powder property measuring instrument (manufactured by Tsutsui Rikakikai Co., Ltd., Model ABD-72). As a result, the angles of repose of Examples 1 to 4 were in the range of 33 to 36 degrees, whereas the angles of repose of Comparative Examples 1 and 2 were 41.0 degrees and 37.9 degrees, respectively, which were larger than those of the Examples.

<溶射皮膜の特性>
次に、実施例1~4、比較例1及び2の製品を使用して、SUS316Lを基材として、以下の方法でプラズマ溶射を行った。溶射された皮膜に対して、スピッティングの有無、及び表面粗さを測定した。スピッティングの有無は、皮膜表面を外観観察し、スピッティングが無いものを「無し」と判定し、一つでもスピッティングが確認されたものを「有り」とした。具体的にはスピッティングは直径0.3mm以上の大きさを有する皮膜表面の付着物を指す。表面粗さは、JIS B0601に規定の方法に準拠して測定した。株式会社ミツトヨ製の表面粗さ計「SV-3000S CNC」を用いて、基材表面(被溶射面)の任意の5点で表面粗さを測定し、測定した5点の表面粗さの平均値をその基材表面の表面粗さとした。また、表面粗さの結果として表1に算術平均粗さRaと最大高さ粗さRzの結果を示した。
<Characteristics of thermal spray coating>
Next, the products of Examples 1 to 4 and Comparative Examples 1 and 2 were used to perform plasma spraying on SUS316L substrates in the following manner. The presence or absence of spitting and surface roughness of the sprayed coatings were measured. The presence or absence of spitting was determined by visually observing the surface of the coating, and a case in which there was no spitting was judged to be "absent," and a case in which at least one spitting was confirmed was judged to be "present." Specifically, spitting refers to deposits on the surface of the coating that have a diameter of 0.3 mm or more. The surface roughness was measured in accordance with the method specified in JIS B0601. The surface roughness was measured at any five points on the substrate surface (sprayed surface) using a surface roughness meter "SV-3000S CNC" manufactured by Mitutoyo Corporation, and the average value of the surface roughness at the five measured points was taken as the surface roughness of the substrate surface. In addition, the results of the arithmetic mean roughness Ra and maximum height roughness Rz are shown in Table 1 as the surface roughness results.

<プラズマ溶射の条件>
溶射機としてPRAXAIR社製SG-100プラズマを用いて、以下の条件によりプラズマ溶射を行った。
Ar分圧:50psi
He分圧:50psi
プラズマ出力:35kW
粉末流量:9g/min
基材:アルミナ#40でブラスト処理されたステンレス鋼SUS316L
溶射距離:120mm
皮膜厚さ:200~300μm
トラバース速度:400mm/sec
冷却方法:空冷
<Plasma spraying conditions>
Plasma spraying was performed using a PRAXAIR SG-100 plasma sprayer under the following conditions.
Ar partial pressure: 50 psi
He partial pressure: 50 psi
Plasma power: 35kW
Powder flow rate: 9g/min
Substrate: Stainless steel SUS316L blasted with alumina #40
Spray distance: 120mm
Coating thickness: 200-300μm
Traverse speed: 400mm/sec
Cooling method: air cooling

表1にそれぞれ、スピッティングの発生の有無、溶射皮膜の表面粗さを測定した結果を示した。実施例1~4ではスピッティングを生じることなく溶射皮膜が形成されたのに対し、比較例1では溶射材料の供給ができずそもそも皮膜形成ができず、比較例2では溶射皮膜が形成できたがスピッティングが生じ、表面粗さが劣化した。実施例1~4は、スピッティング抑制可能であり、溶射材料の供給などにも問題がなく溶射皮膜形成性に優れていた。Table 1 shows the results of measuring the occurrence of spitting and the surface roughness of the thermal spray coating. In Examples 1 to 4, the thermal spray coating was formed without spitting, whereas in Comparative Example 1, the supply of the thermal spray material was not possible and the coating could not be formed in the first place, and in Comparative Example 2, the thermal spray coating was formed but spitting occurred and the surface roughness deteriorated. In Examples 1 to 4, spitting could be suppressed, there were no problems with the supply of the thermal spray material, etc., and the thermal spray coating was excellent in formability.

Claims (4)

Translated fromJapanese
β-Ca2SiO4結晶相を有する珪酸カルシウム質溶射材料であって、X線回折法を用いて測定した結晶相の回折強度において2θ=30.75~31.35で検出されるβ-Ca2SiO4の単一ピーク回折強度と、2θ=20.25~20.85で検出されるγ-Ca2SiO4の単一ピーク回折強度とのピーク比率(β-Ca2SiO4/γ-Ca2SiO4)が1よりも大きく、
JIS R 9301-2-2:1999の規定に基づいて測定される安息角が30~37°である、溶射材料。
A calcium silicate thermal spray material having aβ -Ca2SiO4 crystal phase, wherein in the diffraction intensity of the crystal phase measured using an X-ray diffraction method, the peak ratio (β-Ca2SiO4 /γ-Ca2SiO4) between the single peak diffraction intensity of β-Ca2SiO4 detected at 2θ = 30.75 to 31.35 and the single peak diffraction intensity of γ-Ca2SiO4 detected at =20.25 to20.85 is greater than 1;
A thermal spray materialhaving an angle of repose of 30 to 37° as measured in accordance with the provisions of JIS R 9301-2-2:1999 .
レーザー回折法を用いて測定した粒度分布において体積換算での粒子径が15μm以下の割合が20%未満である請求項1の溶射材料。The thermal spray material of claim 1, in which the percentage of particles with a volumetric particle size of 15 μm or less is less than 20% in the particle size distribution measured using a laser diffraction method. レーザー回折法を用いて測定した粒度分布において体積換算での粒子径10μm以下の割合が10%未満である請求項1又は2に記載の溶射材料。The thermal spray material according to claim 1 or 2, in which the proportion of particles with a volumetric particle size of 10 μm or less is less than 10% in the particle size distribution measured using a laser diffraction method. 酸化物換算したCa成分とSi成分のモル比率(CaOモル量/SiO2モル量)が2.0よりも大きい組成物である請求項1~3のいずれか一項に記載の溶射材料。 The thermal spray material according to any one of claims 1 to 3, which is a composition having a molar ratio of Ca and Si components calculated as oxides (CaO molar amount/SiO2molar amount) of greater than 2.0.
JP2021160844A2021-09-302021-09-30 Thermal spray materialsActiveJP7712168B2 (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
JP2021160844AJP7712168B2 (en)2021-09-302021-09-30 Thermal spray materials
KR1020220122444AKR20230047005A (en)2021-09-302022-09-27Thermal spray material
CN202211209553.9ACN115896676A (en)2021-09-302022-09-30Spray coating material

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2021160844AJP7712168B2 (en)2021-09-302021-09-30 Thermal spray materials

Publications (2)

Publication NumberPublication Date
JP2023050640A JP2023050640A (en)2023-04-11
JP7712168B2true JP7712168B2 (en)2025-07-23

Family

ID=85747081

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2021160844AActiveJP7712168B2 (en)2021-09-302021-09-30 Thermal spray materials

Country Status (3)

CountryLink
JP (1)JP7712168B2 (en)
KR (1)KR20230047005A (en)
CN (1)CN115896676A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN116496107B (en)*2023-04-282024-10-29湖北工业大学Baking-free pearlescent ceramic tile and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2001049420A (en)1999-06-232001-02-20Sulzer Metco Us IncThermal spraying powder of dicalcium silicate, its coating and its production
CN105712362A (en)2016-04-252016-06-29武汉科技大学Beta-dicalcium silicate and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH07100847B2 (en)*1987-09-181995-11-01秩父小野田株式会社 Calcium silicate thermal spray material
JPH07100847A (en)1993-10-071995-04-18Teijin Ltd High surface quality composite molded article manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2001049420A (en)1999-06-232001-02-20Sulzer Metco Us IncThermal spraying powder of dicalcium silicate, its coating and its production
CN105712362A (en)2016-04-252016-06-29武汉科技大学Beta-dicalcium silicate and preparation method thereof

Also Published As

Publication numberPublication date
CN115896676A (en)2023-04-04
KR20230047005A (en)2023-04-06
JP2023050640A (en)2023-04-11

Similar Documents

PublicationPublication DateTitle
EP1227169B1 (en)Spray powder and method for its production
EP3561143B1 (en)Method for forming thermal spraying coating film of intermetallic compound, thermal spraying coating film, method for producing metal product having spray coating film and glass-conveying roll
EP1247786A1 (en)Thermal spray particles and sprayed components
JPS58151474A (en)Manufacture of flame spray powder and porous coating
Pakseresht et al.Thermal plasma spheroidization and spray deposition of barium titanate powder and characterization of the plasma sprayable powder
CN114045455A (en) Yttrium-based thermal spray coating using yttrium-based particle powder and preparation method thereof
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
TW202222737A (en)Yittrium granular powder for thermal spray and thermal spray coating produced using the same
US11306383B2 (en)Thermal spraying material
JP7712168B2 (en) Thermal spray materials
US11359270B2 (en)Thermal spraying matertal
JP4273292B2 (en) Thermal spray particles and thermal spray member using the particles
CN114059000A (en)Yttrium-based particle powder for thermal spraying, yttrium-based particles, and methods for producing these
Padmanabhan et al.Synthesis of thermal spray grade yttrium oxide powder and its application for plasma spray deposition
CN115516124A (en)Slurry composition for suspension plasma thermal spraying, method for producing same, and suspension plasma thermal spraying coating film
JP2012112012A (en)Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
JP7393166B2 (en) Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating
RU2087254C1 (en)Method of production of ultrafine powder of zirconium dioxide with coating
FI131339B1 (en) Method for preparing a powder mixture for a ceramic coating and its use
HK40032051A (en)A kind of high-hardness surface coating structure and its preparation method
Bai et al.Optimization of alumina slurry properties and drying conditions in the spray drying process and characterization of corresponding coating fabricated by atmospheric plasma spray
JP7633010B2 (en) Thermal spray material and method for forming thermal spray coating using the same
CN120082831A (en) A black alumina-based ceramic powder for plasma spraying and a preparation method thereof
Khaing et al.Production of fine aluminum powder from metallic aluminum
Meyer et al.Current Trends in the Development of Suspensions and Liquid Precursors for Thermal Spraying: Case of Zn2TiO4

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20240415

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20241211

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20250114

A601Written request for extension of time

Free format text:JAPANESE INTERMEDIATE CODE: A601

Effective date:20250303

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20250425

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20250701

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20250710

R150Certificate of patent or registration of utility model

Ref document number:7712168

Country of ref document:JP

Free format text:JAPANESE INTERMEDIATE CODE: R150


[8]ページ先頭

©2009-2025 Movatter.jp