Movatterモバイル変換


[0]ホーム

URL:


JP7701598B2 - Fe-based amorphous alloy and Fe-based amorphous alloy ribbon - Google Patents

Fe-based amorphous alloy and Fe-based amorphous alloy ribbon
Download PDF

Info

Publication number
JP7701598B2
JP7701598B2JP2021083749AJP2021083749AJP7701598B2JP 7701598 B2JP7701598 B2JP 7701598B2JP 2021083749 AJP2021083749 AJP 2021083749AJP 2021083749 AJP2021083749 AJP 2021083749AJP 7701598 B2JP7701598 B2JP 7701598B2
Authority
JP
Japan
Prior art keywords
less
based amorphous
amorphous alloy
atomic
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021083749A
Other languages
Japanese (ja)
Other versions
JP2022177475A (en
Inventor
信也 佐藤
晋一 寺嶋
茂克 尾▲崎▼
有一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel CorpfiledCriticalNippon Steel Corp
Priority to JP2021083749ApriorityCriticalpatent/JP7701598B2/en
Publication of JP2022177475ApublicationCriticalpatent/JP2022177475A/en
Application grantedgrantedCritical
Publication of JP7701598B2publicationCriticalpatent/JP7701598B2/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Description

Translated fromJapanese

本発明は、軟磁気特性に優れたFe系非晶質合金及び軟磁気特性に優れたFe系非晶質合金薄帯に関する。The present invention relates to an Fe-based amorphous alloy having excellent soft magnetic properties and an Fe-based amorphous alloy ribbon having excellent soft magnetic properties.

合金を溶融状態から急冷することによって、連続的に薄帯や線を製造する方法として遠心急冷法、単ロ-ル法、双ロ-ル法等が知られている。これらの方法は、高速回転する金属製ドラムの内周面または外周面に溶融金属をオリフィス等から噴出させることによって、急速に溶融金属を凝固させて薄帯や線を製造するものである。また、合金組成を適正に選ぶことによって、液体金属に類似した非晶質合金を得ることができ、磁気的性質あるいは機械的性質に優れた材料を製造することができる。The centrifugal quenching method, single roll method, twin roll method, etc. are known as methods for continuously producing ribbons or wires by rapidly cooling an alloy from a molten state. In these methods, molten metal is ejected from an orifice or the like onto the inner or outer circumferential surface of a metal drum rotating at high speed, causing the molten metal to rapidly solidify and produce ribbons or wires. In addition, by appropriately selecting the alloy composition, it is possible to obtain an amorphous alloy similar to liquid metal, and to produce a material with excellent magnetic or mechanical properties.

特に、非晶質合金の中でも、Fe系非晶質合金は、電力トランスや高周波トランスの鉄心等の用途として有望視されている。これらの用途の高性能化のために、Fe系非晶質合金の低鉄損化と高磁束密度化が強く要望されている。Among amorphous alloys, Fe-based amorphous alloys are particularly promising for use in the cores of power transformers and high-frequency transformers. To improve the performance of these applications, there is a strong demand for Fe-based amorphous alloys with low core loss and high magnetic flux density.

特許文献1には、組成がTMSiで表示される合金(TMはFe,Co,Niの少なくとも1種、MはAl,Ti,Zrの少なくとも1種、a~eは原子%で、a:70~85、b:4~18、c:7~18、d:0~4、e:0.01~0.3、かつa+b+c+d+e=100)であって、該合金の溶湯を複数の開口部をもつ多重スリットノズルを介して、移動する冷却基板の上に噴出して急冷凝固させることにより製造される、板厚内部に少なくとも一層の結晶化層を有することを特徴とする磁気特性にすぐれた非晶質合金薄帯が記載されている。特許文献1の図3を見る限り、特許文献1に記載された非晶質合金薄帯は、飽和磁束密度が1.5T未満であり、電力トランスや高周波トランスの鉄心等の用途に用いるには、飽和磁束密度がやや低いものとなっている。 Patent Document 1 describes anamorphous alloy ribbon havingexcellent magnetic properties, characterized by having at least one crystallized layer inside thethickness of thealloy , the alloy being manufactured by ejecting a molten metal of the alloy througha multiple slit nozzle having a plurality of openings onto a moving cooling substrate and rapidly solidifying the alloy, the composition of which is represented by TM a Si b B c C d Me (TM is at least one of Fe, Co, and Ni, M is at least one of Al, Ti, and Zr, a to e are atomic %, a: 70 to 85, b: 4 to 18, c: 7 to 18, d: 0 to 4, e: 0.01 to 0.3, and a + b + c + d + e = 100). As shown in FIG. 3 of Patent Document 1, the amorphous alloy ribbon described in Patent Document 1 has a saturation magnetic flux density of less than 1.5 T, which is somewhat low for use in applications such as iron cores of power transformers and high-frequency transformers.

特許文献2には、原子%で、Feを80.0%以上88.0%以下、Bを6.0%以上12.0%以下、Cを2.0%以上8.0%以下、Siを0.10%以上3.0%以下、Alを0.10%以上2.0%以下含有し、さらに、Moを0.10%以上6.0%以下含有し、残部不可避的不純物からなる、軟磁気特性に優れたFe系非晶質合金が記載されている。しかし、特許文献2に記載されたFe系非晶質合金は、高融点元素であるMoを含有しており、製造コストがやや高くなっている。Patent Document 2 describes an Fe-based amorphous alloy with excellent soft magnetic properties, which contains, in atomic percent, 80.0% to 88.0% Fe, 6.0% to 12.0% B, 2.0% to 8.0% C, 0.10% to 3.0% Si, 0.10% to 2.0% Al, and 0.10% to 6.0% Mo, with the remainder consisting of unavoidable impurities. However, the Fe-based amorphous alloy described in Patent Document 2 contains Mo, which is a high melting point element, making the manufacturing cost somewhat high.

特許文献3には、式:FeSiで示される高飽和磁束密度を有する鉄芯用非晶質合金(但し、Xは、Al、Sn、Ge、Ti、Zr、Nb、V、Mo、Wから選ばれる何れか1種または2種以上であり、bはBが1~5原子%、CはPが1~10原子%、dはSiが4~14原子%、eはCが5原子%以下、fはXが5原子%以下、aはFeが(100-(b+c+d+e+f))原子%)が記載されている。特許文献3の実施例を見る限り、特許文献3に記載された鉄芯用非晶質合金には、飽和磁束密度が1.5Tを超えるものがあるが、低い鉄損は期待できない。 Patent Document 3 describes an amorphous alloy for iron cores having a high saturation magnetic flux density represented by the formula Fea Bb Pc Sid Ce Xf (wherein X is one or more selected from Al, Sn, Ge, Ti, Zr, Nb, V, Mo, and W, b is 1 to 5 atomic % of B, C is 1 to 10 atomic % of P, d is 4 to 14 atomic % of Si, e is 5 atomic % or less of C, f is 5 atomic % or less of X, and a is (100-(b+c+d+e+f)) atomic % of Fe). As far as the examples in Patent Document 3 are concerned, some of the amorphous alloys for iron cores described in Patent Document 3 have a saturation magnetic flux density exceeding 1.5 T, but low iron loss cannot be expected.

特開平4-362162号公報Japanese Patent Application Publication No. 4-362162特開2017-78186号公報JP 2017-78186 A特開昭57-185957号公報Japanese Patent Application Publication No. 57-185957

以上のように、Fe系非晶質合金は電力トランスや高周波トランスの鉄心等の用途として有望視されており、これらの用途の高性能化のために、Fe系非晶質合金の低鉄損化と高磁束密度化が強く要望されている。また、Fe系非晶質合金を鉄心等の用途に適用する際には、低鉄損かつ高磁束密度な特性を有することに加えて、加工性に優れることも求められる。そこで本発明は、上記事情に鑑みてなされたものであり、鉄損が低く、高い磁束密度を有し、かつ、加工性にも優れたFe系非晶質合金及びFe系非晶質合金薄帯を提供することを課題とする。As described above, Fe-based amorphous alloys are considered promising for use in the iron cores of power transformers and high-frequency transformers, and there is a strong demand for Fe-based amorphous alloys with low iron loss and high magnetic flux density to improve the performance of these applications. Furthermore, when using Fe-based amorphous alloys for applications such as iron cores, in addition to having low iron loss and high magnetic flux density, excellent workability is also required. The present invention has been made in consideration of the above circumstances, and aims to provide an Fe-based amorphous alloy and an Fe-based amorphous alloy ribbon that have low iron loss, high magnetic flux density, and excellent workability.

上記課題を解決するため、本発明は以下の構成を採用する。
[1] 原子%で、Feを78.00%以上85.00%以下、Bを7.5%以上15.0%以下、Siを6.0%超10.0%以下、Cを0.5%以上5.0%以下、Alを0.005%以上1.50%以下含有し、残部が不純物からなり、
金属組織が非晶質組織からなり、
飽和磁束密度が1.62T以上であり、磁束密度1.3T、周波数50Hzにおける鉄損が0.095W/kg以下である、Fe系非晶質合金。
[2] 原子%で、Feを78.00%以上85.00%以下、Bを7.5%以上13.0%以下、Siを6.0%超9.0%以下、Cを1.0%以上4.0%以下、Alを0.005%以上1.50%以下含有し、残部が不純物からなり、
金属組織が非晶質組織からなり、
飽和磁束密度が1.62T以上であり、磁束密度1.3T、周波数50Hzにおける鉄損が0.095W/kg以下である、Fe系非晶質合金。
[3] Ni、Cr、Coのうち少なくとも1種以上で、[1]または[2]に記載のFe系非晶質合金のFeを10.0原子%以下の範囲で、代替する、Fe系非晶質合金。
[4] [1]乃至[3]のいずれか一項に記載のFe系非晶質合金からなる、Fe系非晶質合金薄帯。
In order to solve the above problems, the present invention employs the following configuration.
[1] In atomic percent, Fe is 78.00% or more and 85.00% or less, B is 7.5% or more and 15.0% or less, Si is more than 6.0% and 10.0% or less, C is 0.5% or more and 5.0% or less, Al is 0.005% or more and 1.50% or less, and the balanceis impurities;
The metal structure is amorphous.
An Fe-based amorphous alloyhaving a saturation magnetic flux density of 1.62 T or more and an iron loss of 0.095 W/kg or less at a magnetic flux density of 1.3 T and a frequency of 50 Hz .
[2] In atomic percent, Fe is 78.00% or more and 85.00% or less, B is 7.5% or more and 13.0% or less, Si is more than 6.0% and 9.0% or less, C is 1.0% or more and 4.0% or less, Al is 0.005% or more and 1.50% or less, and the balanceis impurities;
The metal structure is amorphous.
An Fe-based amorphous alloyhaving a saturation magnetic flux density of 1.62 T or more and an iron loss of 0.095 W/kg or less at a magnetic flux density of 1.3 T and a frequency of 50 Hz .
[3] An Fe-based amorphous alloy, in which at least one of Ni, Cr, and Co is substituted for Fe in theFe -based amorphous alloy according to [1] or [2] in an amount of 10.0 atomic % or less.
[4] An Fe-based amorphous alloy ribbon comprisingthe Fe -based amorphous alloy according to any one of [1] to [3].

本発明によれば、鉄損が低く、高い磁束密度を有し、かつ、加工性にも優れたFe系非晶質合金及びFe系非晶質合金薄帯を提供できる。The present invention provides an Fe-based amorphous alloy and an Fe-based amorphous alloy ribbon that have low core loss, high magnetic flux density, and excellent workability.

本発明者は、これまで提案された各種合金成分のうち、Feをメインとし、B、C及びSiからなる成分系に注目し、高磁束密度を維持しながら低鉄損を実現するための検討及び実験を行った。そして、従来は非晶質化には不利とされていたAlに注目した。Alは、特許文献1において薄帯表面に結晶質相を形成する元素として用いられていることからも明らかなように、従来から、結晶質相を形成させやすい元素であることが知られていた。一方、特許文献2に記載されているように、Al及びSiを添加することで、非晶質相の熱的安定性が向上するとの知見もあった。The inventors focused on a component system consisting mainly of Fe, B, C and Si among the various alloy components proposed so far, and conducted research and experiments to achieve low core loss while maintaining high magnetic flux density. They then focused on Al, which was previously considered to be disadvantageous for amorphization. As is clear from the fact that Al is used as an element that forms a crystalline phase on the ribbon surface in Patent Document 1, it has long been known to be an element that easily forms a crystalline phase. On the other hand, as described in Patent Document 2, it has also been found that the addition of Al and Si improves the thermal stability of the amorphous phase.

そこで、本発明者らが、Feをメインとし、添加元素がB、C及びSiを主体とする成分系について詳細実験を行った結果、Alを少量含有させることで低鉄損化を図れることを見出した。また、Alの含有による非晶質層形成能の低下を補うために、Si、C、Bの最適な含有量の範囲を見出した。これにより、特許文献2に記載されているようなMoの添加を必要とせずに、飽和磁束密度を1.62T以上とし、磁束密度1.3T、周波数50Hzにおける鉄損(鉄損W13/50)を0.095W/kg以下とすることが可能になった。更に、非晶質層形成能を低下させない範囲でCの含有量を最適化することで、優れた加工性を発揮できることを見出した。このようにして、高い飽和磁束密度、低鉄損及び優れた加工性を同時に発揮するFe系非晶質合金に係る発明を完成させるに至った。 Therefore, the inventors conducted detailed experiments on a component system mainly composed of Fe and mainly composed of B, C and Si as additive elements, and found that the iron loss can be reduced by adding a small amount of Al. In addition, the optimum content ranges of Si, C and B were found to compensate for the decrease in the amorphous layer forming ability due to the inclusion of Al. As a result, it became possible to make the saturation magnetic flux density 1.62 T or more and the iron loss (iron loss W13/50 ) at a magnetic flux density of 1.3 T and a frequency of 50 Hz 0.095 W/kg or less without the need for the addition of Mo as described in Patent Document 2. Furthermore, it was found that excellent workability can be exhibited by optimizing the content of C within a range that does not decrease the amorphous layer forming ability. In this way, the invention relating to an Fe-based amorphous alloy that simultaneously exhibits high saturation magnetic flux density, low iron loss and excellent workability was completed.

以下、本実施形態の軟磁気特性に優れたFe系非晶質合金及びFe系非晶質合金薄帯について説明する。
本実施形態のFe系非晶質合金は、原子%で、Feを78.00%以上85.00%以下、Bを7.5%以上15.0%以下、Siを6.0%超10.0%以下、Cを0.5%以上5.0%以下、Alを0.005%以上1.50%以下含有し、残部が不純物からなる。
また、本実施形態のFe系非晶質合金は、原子%で、Feを78.00%以上85.0%以下、Bを7.5%以上13.0%以下、Siを6.0%超9.0%以下、Cを1.0%以上4.0%以下、Alを0.005%以上1.50%以下含有し、残部が不純物からなるものであってもよい。
また、本実施形態のFe系非晶質合金は、Ni、Cr、Coのうち少なくとも1種以上で、上記のFe系非晶質合金のFeを10.0原子%以下の範囲で、代替してもよい。
また、本実施形態のFe系非晶質合金薄帯は、上記のFe系非晶質合金からなるものである。
The Fe-based amorphous alloy and the Fe-based amorphous alloy ribbon having excellent soft magnetic properties according to this embodiment will be described below.
The Fe-based amorphous alloy of this embodiment contains, in atomic percent, Fe of 78.00% or more and 85.00% or less, B of 7.5% or more and 15.0% or less, Si of more than 6.0% and 10.0% or less, C of 0.5% or more and 5.0% or less, Al of 0.005% or more and 1.50% or less, and the balance consisting of impurities.
In addition, the Fe-based amorphous alloy of this embodiment may contain, in atomic %, Fe of 78.00% or more and 85.0% or less, B of 7.5% or more and 13.0% or less, Si of more than 6.0% and 9.0% or less, C of 1.0% or more and 4.0% or less, Al of 0.005% or more and 1.50% or less, and the balance consisting of impurities.
Furthermore, in the Fe-based amorphous alloy of this embodiment, the Fe in the Fe-based amorphous alloy may be replaced with at least one of Ni, Cr, and Co in a range of 10.0 atomic % or less.
The Fe-based amorphous alloy ribbon of the present embodiment is made of the above-mentioned Fe-based amorphous alloy.

はじめに、本実施形態のFe系非晶質合金において、各元素の含有量を限定した理由について述べる。First, we will explain the reasons for limiting the content of each element in the Fe-based amorphous alloy of this embodiment.

Alは、本実施形態のFe系非晶質合金において、低鉄損を実現させるために含有させる。ただし、Alの含有量が増大すると,非晶質相形成能が低下し、非晶質合金を安定して得られないことから、飽和磁束密度を安定して1.62T以上とすることが困難となる。従って、Al含有量は0.005~1.50%の範囲とする。Al含有量は、0.008%以上、0.01%以上あってもよく、1.40%以下、1.30%以下であってもよい。Al is included in the Fe-based amorphous alloy of this embodiment to achieve low core loss. However, if the Al content increases, the amorphous phase forming ability decreases, and an amorphous alloy cannot be obtained stably, making it difficult to stably achieve a saturation magnetic flux density of 1.62 T or more. Therefore, the Al content is set in the range of 0.005 to 1.50%. The Al content may be 0.008% or more, 0.01% or more, or 1.40% or less, 1.30% or less.

Bは、本実施形態のFe系非晶質合金において、非晶質相形成及び非晶質相の熱的安定性を向上させるために含有させる。この元素の含有量を最適化することで、Alの含有に伴う非晶質相形成能の低下を打ち消して合金組織を安定して非晶質相とすることができ、軟磁気特性を一層改善することが可能になる。例えば、飽和磁束密度を安定して1.62T以上にすることができる。Bが7.5原子%未満では、非晶質相形成能の改善が得られず、Fe系非晶質合金において非晶質合金が安定して得られなくなり、鉄損を安定して0.095W/kg以下を維持したまま、飽和磁束密度を安定して1.62T以上とすることが困難となる。一方、Bを15.0原子%超としても、非晶質相形成能の改善が得られず、飽和磁束密度を安定して1.62T以上とすることは困難となる。従って、Bを7.5原子%以上15.0原子%以下の範囲に限定する。好ましくは、Bを7.5原子%以上13.0原子%以下とする。更に好ましくは、Bを8.0原子%以上12.5原子%以下とする。B is contained in the Fe-based amorphous alloy of this embodiment to improve the amorphous phase formation and the thermal stability of the amorphous phase. By optimizing the content of this element, the decrease in the amorphous phase formation ability due to the inclusion of Al can be countered, and the alloy structure can be stably made into an amorphous phase, thereby making it possible to further improve the soft magnetic properties. For example, the saturation magnetic flux density can be stably set to 1.62 T or more. If B is less than 7.5 atomic %, the amorphous phase formation ability cannot be improved, and the amorphous alloy cannot be stably obtained in the Fe-based amorphous alloy, and it is difficult to stably set the saturation magnetic flux density to 1.62 T or more while maintaining the iron loss at 0.095 W/kg or less. On the other hand, even if B exceeds 15.0 atomic %, the amorphous phase formation ability cannot be improved, and it is difficult to stably set the saturation magnetic flux density to 1.62 T or more. Therefore, B is limited to a range of 7.5 atomic % to 15.0 atomic %. Preferably, B is 7.5 atomic % or more and 13.0 atomic % or less. More preferably, B is 8.0 atomic % or more and 12.5 atomic % or less.

SiおよびCは、Bと同様に、本実施形態のFe系非晶質合金において、非晶質相形成及び非晶質相の熱的安定性を向上させるために含有させる。また、SiおよびCは、Fe系非晶質合金の加工性を向上させるためにも有効な元素である。SiおよびCの含有量を最適化することで、Alの含有に伴う非晶質相形成能の低下を打ち消して合金組織を安定して非晶質相とすることができ、軟磁気特性を一層改善することが可能になる。また、加工性を改善して、Fe系非晶質合金薄帯とした場合の曲げ破壊直径を3.5mm以下にすることが可能になる。Siが6.0原子%以下、Cが0.5原子%未満では、非晶質相形成能の改善が得られず、Fe系非晶質合金において非晶質合金が安定して得られなくなり、飽和磁束密度を安定して1.62T以上とすることが困難となる。一方、Siを10.0原子%超、Cを5.0原子%超としても、非晶質相形成能の改善が得られず、また、加工性が低下してしまう。従って、Siを6.0原子%超10.0原子%以下、Cを0.5原子%以上5.0原子%以下の範囲に限定する。好ましくは、Siを6.0原子%超9原子%以下、Cを1.0原子%以上4.0原子%以下とする。更に好ましくは、Siを6.0原子%超8.0原子%以下、Cを1.0原子%以上3.5原子%以下とする。Like B, Si and C are contained in the Fe-based amorphous alloy of this embodiment to improve the amorphous phase formation and the thermal stability of the amorphous phase. In addition, Si and C are also effective elements for improving the workability of the Fe-based amorphous alloy. By optimizing the content of Si and C, the decrease in the amorphous phase formation ability associated with the inclusion of Al can be countered, and the alloy structure can be stably made into an amorphous phase, making it possible to further improve the soft magnetic properties. In addition, by improving the workability, it is possible to make the bending fracture diameter of the Fe-based amorphous alloy ribbon 3.5 mm or less. If Si is 6.0 atomic % or less and C is less than 0.5 atomic %, the amorphous phase formation ability cannot be improved, and the amorphous alloy cannot be stably obtained in the Fe-based amorphous alloy, making it difficult to stably make the saturation magnetic flux density 1.62 T or more. On the other hand, even if Si is more than 10.0 atomic % and C is more than 5.0 atomic %, the amorphous phase formation ability cannot be improved and the workability is reduced. Therefore, Si is limited to a range of more than 6.0 atomic % and less than 10.0 atomic %, and C is limited to a range of 0.5 atomic % to 5.0 atomic %. Preferably, Si is limited to a range of more than 6.0 atomic % and less than 9 atomic %, and C is limited to a range of 1.0 atomic % to 4.0 atomic %. More preferably, Si is limited to a range of more than 6.0 atomic % and less than 8.0 atomic %, and C is limited to a range of 1.0 atomic % to 3.5 atomic %.

Fe系非晶質合金において、Feの含有量は通常、70原子%以上であれば一般的な鉄心としての実用的なレベルの飽和磁束密度が得られるが、1.62T以上の高い飽和磁束密度を得るためには、Feを78.00原子%以上にする必要がある。一方、Feの含有量が85.00原子%超となると、非晶質相の形成が困難となり、非晶質合金特有の良好な軟磁気特性(鉄損W13/50を安定して0.095W/kg以下)を得ることが難しくなる。よって、本実施形態のFe系非晶質合金において、Fe含有量を78.00原子%以上85.00原子%以下の範囲に限定する。より好ましいFe含有量は79.00原子%以上84.00原子%以下である。In Fe-based amorphous alloys, the Fe content is usually 70 atomic % or more to obtain a practical level of saturation magnetic flux density for a general iron core, but in order to obtain a high saturation magnetic flux density of 1.62 T or more, the Fe content must be 78.00 atomic % or more. On the other hand, if the Fe content exceeds 85.00 atomic %, it becomes difficult to form an amorphous phase, and it becomes difficult to obtain the good soft magnetic properties unique to amorphous alloys (iron loss W13/50 stably 0.095 W/kg or less). Therefore, in the Fe-based amorphous alloy of this embodiment, the Fe content is limited to a range of 78.00 atomic % or more and 85.00 atomic % or less. A more preferable Fe content is 79.00 atomic % or more and 84.00 atomic % or less.

本実施形態のFe系非晶質合金では、Feの一部をNi、Cr、Coの少なくとも1種で、10.0原子%以下の範囲で代替することで、高飽和磁束密度を維持したまま鉄損などの軟磁気特性の改善も実現できる。これら元素による代替量に上限を設けたのは、10.0原子%超となると、飽和磁束密度が低くなることや原料コストが嵩むためである。Ni、Cr、Coの1種以上でFeを代替した場合、Ni、Cr、Coの含有率とFeの含有率との合計が、78.00原子%以上85.00原子%以下の範囲であればよく、79.00原子%以上84.00原子%以下の範囲であってもよい。In the Fe-based amorphous alloy of this embodiment, by replacing part of Fe with at least one of Ni, Cr, and Co in the range of 10.0 atomic % or less, it is possible to improve soft magnetic properties such as iron loss while maintaining a high saturation magnetic flux density. The reason why an upper limit is set for the amount of replacement with these elements is that if it exceeds 10.0 atomic %, the saturation magnetic flux density decreases and the raw material cost increases. When Fe is replaced with one or more of Ni, Cr, and Co, the total content of Ni, Cr, and Co and the Fe content may be in the range of 78.00 atomic % to 85.00 atomic % or less, and may be in the range of 79.00 atomic % to 84.00 atomic %.

本実施形態に係るFe系非晶質合金における残部は不純物である。本実施形態に係るFe系非晶質合金は、例えばFe源として鉄鋼材料を用いる場合に、鉄鋼材料に含まれる不純物元素を不純物として含んでいてもよい。例えば、N、P、S、O等を不純物として含有してもよい。The remainder in the Fe-based amorphous alloy according to this embodiment is impurities. When a steel material is used as the Fe source, for example, the Fe-based amorphous alloy according to this embodiment may contain impurity elements contained in the steel material as impurities. For example, N, P, S, O, etc. may be contained as impurities.

本実施形態のFe系非晶質合金は、通常、薄帯の形態で得ることができる。このFe系非晶質合金薄帯は、上述の実施形態において説明した成分からなる合金を溶解し、溶湯をスロットノズル等を通して高速で移動している冷却板上に噴出し、該溶湯を急冷凝固させる方法、例えば、単ロ-ル法、双ロ-ル法によって製造することができる。これらのロール法に用いるロールは金属製であり、ロールを高速回転させ、ロール表面またはロール内面に溶湯を衝突させることで合金の急冷凝固が可能である。The Fe-based amorphous alloy of this embodiment can usually be obtained in the form of a ribbon. This Fe-based amorphous alloy ribbon can be produced by melting an alloy consisting of the components described in the above embodiment, ejecting the molten metal through a slot nozzle or the like onto a cooling plate moving at high speed, and rapidly solidifying the molten metal, for example, by a single roll method or a twin roll method. The rolls used in these roll methods are made of metal, and the alloy can be rapidly solidified by rotating the rolls at high speed and colliding the molten metal with the roll surface or inner surface.

単ロ-ル装置には、ドラムの内壁を使う遠心急冷装置、エンドレスタイプのベルトを使う装置、及びこれらの改良型である補助ロ-ルや、ロ-ル表面温度制御装置を付属させたもの、減圧下あるいは真空中、または不活性ガス中での鋳造装置も含まれる。Single-roll equipment includes centrifugal quenching equipment that uses the inner wall of a drum, equipment that uses an endless type belt, and improved versions of these with auxiliary rolls or roll surface temperature control devices, as well as casting equipment under reduced pressure, in a vacuum, or in an inert gas.

本実施形態では、薄帯の板厚、板幅などの寸法は特に限定しないが、薄帯の板厚は、例えば、10μm以上100μm以下が好ましい。また、板幅は10mm以上が好ましい。
以上説明の如く得られたFe系非晶質合金薄帯は、電力トランスや高周波トランスでの鉄心等の用途として用いることができる。
In this embodiment, the dimensions of the ribbon, such as the thickness and width, are not particularly limited, but the ribbon thickness is preferably, for example, 10 μm or more and 100 μm or less, and the ribbon width is preferably 10 mm or more.
The Fe-based amorphous alloy ribbon obtained as described above can be used for applications such as iron cores in power transformers and high frequency transformers.

なお、本実施形態のFe系非晶質合金は、薄帯の他に粉末状とすることも可能である。その場合、上述の組成の合金溶湯を満たしたるつぼのノズルから回転するロールあるいは冷却用の水などの液体の中に高速で合金溶湯あるいは合金溶湯の液滴を噴出して急冷凝固する方法を採用することができる。The Fe-based amorphous alloy of this embodiment can be in the form of powder in addition to a thin ribbon. In that case, a method can be used in which the molten alloy or droplets of the molten alloy are ejected at high speed from the nozzle of a crucible filled with the molten alloy of the above-mentioned composition into a rotating roll or a liquid such as cooling water, thereby rapidly solidifying the alloy.

上述の方法により、軟磁気特性に優れたFe系非晶質合金粉末を得ることができる。By using the above method, it is possible to obtain Fe-based amorphous alloy powder with excellent soft magnetic properties.

上述のように得られたFe系軟磁性合金粉末は、金型等により圧密して目的の形状に成形し、必要に応じ焼結して一体化することで、電力トランスや高周波トランス、コイルの鉄心等の用途として適用することができる。The Fe-based soft magnetic alloy powder obtained as described above can be compacted in a mold or the like to form the desired shape, and if necessary sintered to form an integrated body, making it suitable for use in power transformers, high-frequency transformers, coil cores, and other applications.

なお、本実施形態のFe系非晶質合金が非晶質組織を有するか否かは、例えば、Co管球を用いたX線回折装置によるX線回折測定で確認できる。すなわち、X線回折測定において明確な回折ピークが得られない場合は、Fe系非晶質合金が非晶質組織を有していると確認できる。Whether or not the Fe-based amorphous alloy of this embodiment has an amorphous structure can be confirmed, for example, by X-ray diffraction measurement using an X-ray diffraction device with a Co tube. In other words, if no clear diffraction peak is obtained in the X-ray diffraction measurement, it can be confirmed that the Fe-based amorphous alloy has an amorphous structure.

以上説明したように、本実施形態のFe系非晶質合金によれば、Alを含有させるとともに、B、Si及びCの含有量を最適化し、更にFeの含有量を78.00%以上にすることで、磁束密度1.3T、周波数50Hzにおける鉄損(鉄損W13/50)が0.095W/kg以下となり、飽和磁束密度が1.62T以上となり、優れた軟磁気特性を発揮でき、電力トランスや高周波トランスの鉄心等に好適に用いることができる。また、加工性も向上させることができる。 As described above, according to the Fe-based amorphous alloy of this embodiment, by containing Al, optimizing the contents of B, Si and C, and further setting the Fe content to 78.00% or more, the iron loss (iron loss W13/50 ) at a magnetic flux density of 1.3 T and a frequency of 50 Hz becomes 0.095 W/kg or less, the saturation magnetic flux density becomes 1.62 T or more, and excellent soft magnetic properties can be exhibited, making it suitable for use in the iron cores of power transformers and high-frequency transformers, etc. Also, the processability can be improved.

また、本実施形態のFe系非晶質合金薄帯によれば、Alを含有させるとともに、B、Si及びCの含有量を最適化し、更にFeの含有量を78.00%以上にすることで、磁束密度1.3T、周波数50Hzにおける鉄損(鉄損W13/50)が0.095W/kg以下となり、飽和磁束密度が1.62T以上となり、優れた軟磁気特性を発揮でき、電力トランスや高周波トランスの鉄心等に好適に用いることができる。また、加工性が向上することで、曲げ破壊直径を3.5mm以下とすることが可能になり、これにより、Fe系非晶質合金薄帯を電力トランスや高周波トランスの鉄心等に加工する際に、合金薄帯が破損してしまうおそれがなく、電力トランスや高周波トランスの鉄心の生産性を向上できる。 In addition, according to the Fe-based amorphous alloy ribbon of this embodiment, by containing Al, optimizing the contents of B, Si and C, and further setting the Fe content to 78.00% or more, the iron loss (iron loss W13/50 ) at a magnetic flux density of 1.3 T and a frequency of 50 Hz is 0.095 W/kg or less, the saturation magnetic flux density is 1.62 T or more, and excellent soft magnetic properties can be exhibited, making it suitable for use in iron cores of power transformers and high-frequency transformers, etc. In addition, the improved processability makes it possible to set the bending fracture diameter to 3.5 mm or less, and therefore, when the Fe-based amorphous alloy ribbon is processed into iron cores of power transformers and high-frequency transformers, etc., there is no risk of the alloy ribbon being damaged, and the productivity of iron cores of power transformers and high-frequency transformers can be improved.

なお、曲げ破壊半径は、JIS Z 2248:2006の金属材料曲げ試験方法に準拠し、曲げ試験機にFe系非晶質合金からなる薄帯を設置し、密着するまで試験片の両端を互いに押し合い、破断した際の試験片の直径(曲げ破壊直径)を測定することによって得られる。The bending fracture radius is determined in accordance with JIS Z 2248:2006, a metal material bending test method, by placing a thin strip of Fe-based amorphous alloy on a bending tester, pressing both ends of the test piece together until they come into contact, and measuring the diameter of the test piece at the time of fracture (bending fracture diameter).

以下、本発明の実施例について説明する。The following describes an embodiment of the present invention.

(実施例1)
表1に示す各種成分の合金をアルゴン雰囲気中で溶解し、単ロ-ル装置で急冷して鋳造することにより、Fe系非晶質合金の薄帯を作製した。鋳造雰囲気は大気中であった。なお、用いた単ロ-ル装置は、直径300mmの銅合金製冷却ロ-ルと、試料溶解用の高周波電源と、先端にスロットノズルが付いている石英ルツボ等とから構成される。本実験では、長さ10mm、幅0.6mmのスロットノズルを使用した。冷却ロ-ルの周速は24m/秒とした。結果として、得られた薄帯の板厚は約20μmであり、板幅はスロットノズルの長さに依存するので10mmであり、長さはおよそ100mであった。
Example 1
The alloys of the various components shown in Table 1 were melted in an argon atmosphere, and then rapidly cooled and cast in a single roll apparatus to produce a ribbon of an Fe-based amorphous alloy. The casting atmosphere was air. The single roll apparatus used was composed of a copper alloy cooling roll with a diameter of 300 mm, a high-frequency power source for melting the sample, and a quartz crucible with a slot nozzle at its tip. In this experiment, a slot nozzle with a length of 10 mm and a width of 0.6 mm was used. The peripheral speed of the cooling roll was 24 m/sec. As a result, the thickness of the obtained ribbon was about 20 μm, the width was 10 mm because it depended on the length of the slot nozzle, and the length was about 100 m.

得られたFe系非晶質合金薄帯に対して、X線回折測定を行ってX線回折パターンを得た。X線回折測定のX線源はCo-Kα(波長λ=1.7902Å)とし、スキャン範囲は2θ=10deg以上120deg以下とした。X線回折パターンの形状から、金属組織中に結晶質相が生成しているか否かを判断した。X-ray diffraction measurements were performed on the obtained Fe-based amorphous alloy ribbon to obtain an X-ray diffraction pattern. The X-ray source for the X-ray diffraction measurements was Co-Kα (wavelength λ = 1.7902 Å), and the scan range was 2θ = 10 deg or more and 120 deg or less. From the shape of the X-ray diffraction pattern, it was determined whether or not a crystalline phase had formed in the metal structure.

また、Fe系非晶質合金薄帯の飽和磁束密度及び鉄損は、SST(Single Strip Tester)を用いて測定した。なお、鉄損測定条件は、磁束密度1.3T、周波数50kHzである。鉄損測定用の試料は、いずれも1ロットの薄帯の全長に渡って6箇所から採取した。鉄損測定用のサンプルは120mm長さに切断した薄帯サンプルとした。これら鉄損測定用の薄帯サンプルは360℃にて1時間、磁場中(磁場:800A/m、鋳造方向に磁場を印加)でアニ-ルを行って測定に供した。アニ-ル中の雰囲気は窒素雰囲気とした。一方、VSM装置用の試料は、上記6個所からの薄帯サンプルについていずれも幅中央部から採取した薄片とした。The saturation magnetic flux density and iron loss of the Fe-based amorphous alloy ribbon were measured using a single strip tester (SST). The iron loss measurement conditions were a magnetic flux density of 1.3 T and a frequency of 50 kHz. The samples for the iron loss measurement were taken from six locations along the entire length of one lot of ribbon. The samples for the iron loss measurement were ribbon samples cut to a length of 120 mm. These ribbon samples for the iron loss measurement were annealed in a magnetic field (magnetic field: 800 A/m, magnetic field applied in the casting direction) at 360°C for one hour before being used for measurement. The atmosphere during annealing was a nitrogen atmosphere. On the other hand, the samples for the VSM device were slices taken from the width center of the ribbon samples from the above six locations.

飽和磁束密度及び鉄損の測定結果は6個所でのデ-タの平均値を、表1に示した。The saturation magnetic flux density and iron loss measurement results are shown in Table 1 as average values of data from six locations.

更に、Fe系非晶質合金薄帯について、曲げ破壊直径を測定した。曲げ破壊半径は、JIS Z 2248:2006の属材料曲げ試験方法に準拠し、曲げ試験機にFe系非晶質合金薄帯を設置し、破断した際の曲げ破壊直径を測定した。結果を表1に示す。Furthermore, the bending fracture diameter of the Fe-based amorphous alloy ribbon was measured. The bending fracture radius was measured in accordance with JIS Z 2248:2006, a bending test method for metal materials, by placing the Fe-based amorphous alloy ribbon on a bending tester and measuring the bending fracture diameter at break. The results are shown in Table 1.

Figure 0007701598000001
Figure 0007701598000001

表1に示すように、本発明例1~17は、いずれも合金組成が本発明の範囲を満たしていたため、飽和磁束密度が1.62T以上となり、磁束密度1.3T、周波数50Hzにおける鉄損(鉄損W13/50)が0.095W/kg以下となり、高い飽和磁束密度と低鉄損を同時に発揮することができた。また、曲げ破壊直径が3.5mm以下になり、加工性も良好だった。 As shown in Table 1, in all of the invention examples 1 to 17, the alloy composition satisfied the range of the invention, so the saturation magnetic flux density was 1.62 T or more, and the iron loss (iron loss W13/50 ) at a magnetic flux density of 1.3 T and a frequency of 50 Hz was 0.095 W/kg or less, and it was possible to simultaneously exhibit high saturation magnetic flux density and low iron loss. In addition, the bending fracture diameter was 3.5 mm or less, and the workability was also good.

一方、比較例1~10は、いずれも合金組成が本発明の範囲を満たさなかったため、鉄損(鉄損W13/50)が0.095W/kgを超えるか、飽和磁束密度が1.62T未満になった。 On the other hand, in Comparative Examples 1 to 10, the alloy composition did not satisfy the range of the present invention, and therefore the iron loss (iron loss W13/50 ) exceeded 0.095 W/kg or the saturation magnetic flux density was less than 1.62 T.

即ち、比較例1は、Fe含有量が少なかったため、飽和磁束密度が1.62T未満になった。
比較例2は、Fe含有量が過剰であったため、鉄損(鉄損W13/50)が0.095W/kgを超えた。
比較例3、4は、B含有量が本発明の範囲から外れたため、鉄損(鉄損W13/50)が0.095W/kgを超えた。
比較例5、6は、Si含有量が本発明の範囲から外れたため、鉄損(鉄損W13/50)が0.095W/kgを超えた。
比較例7、8は、C含有量が本発明の範囲から外れたため、鉄損(鉄損W13/50)が0.095W/kgを超えた。
比較例9、10は、Al含有量が本発明の範囲から外れたため、鉄損(鉄損W13/50)が0.095W/kgを超えた。
また、比較例10は、曲げ破壊直径が3.5mm越となり、加工性が劣位になった。
That is, in Comparative Example 1, the Fe content was small, so the saturation magnetic flux density was less than 1.62 T.
In Comparative Example 2, the Fe content was excessive, so that the iron loss (iron loss W13/50 ) exceeded 0.095 W/kg.
In Comparative Examples 3 and 4, the B content was outside the range of the present invention, and therefore the iron loss (iron loss W13/50 ) exceeded 0.095 W/kg.
In Comparative Examples 5 and 6, the Si content was outside the range of the present invention, and therefore the iron loss (iron loss W13/50 ) exceeded 0.095 W/kg.
In Comparative Examples 7 and 8, the C content was outside the range of the present invention, and therefore the iron loss (iron loss W13/50 ) exceeded 0.095 W/kg.
In Comparative Examples 9 and 10, the Al content was outside the range of the present invention, and therefore the iron loss (iron loss W13/50 ) exceeded 0.095 W/kg.
In addition, in Comparative Example 10, the bending fracture diameter exceeded 3.5 mm, and the workability was poor.

なお、Fe系非晶質合金薄帯に対して、X線回折測定を行ったところ、本発明例1~17及び比較例1~10はいずれも、明確な回折ピークが観察されないことから金属組織中に結晶質相が生成しているとは言えず、全体が非晶質相であった。When X-ray diffraction measurements were performed on the Fe-based amorphous alloy ribbons, no clear diffraction peaks were observed in any of the present invention examples 1 to 17 and comparative examples 1 to 10, so it cannot be said that a crystalline phase was formed in the metal structure, and the entire structure was amorphous.

(実施例2)
表1のNo.1に示す合金について、Feの一部をNi、Cr、Coの少なくとも1種で代替した各種成分の合金を用いて、実施例1と同様の装置、条件により薄帯を鋳造した。なお、用いた合金の具体的な成分については、表2に示した。結果として、得られた薄帯の板厚、板幅、長さはそれぞれ、約20μm、10mm、およそ100mであった。得られた薄帯の飽和磁束密度及び鉄損並びに曲げ破壊半径について評価した。これらの特性評価に用いた試料の採取方法及び測定条件は、実施例1と同じであった。その測定結果を表2に示す。なお、表2での表示要領は、表1の場合と同様である。
Example 2
For the alloy No. 1 in Table 1, a thin strip was cast using an alloy of various components in which a part of Fe was replaced with at least one of Ni, Cr, and Co, using the same equipment and conditions as in Example 1. The specific components of the alloy used are shown in Table 2. As a result, the thickness, width, and length of the obtained thin strip were about 20 μm, 10 mm, and about 100 m, respectively. The saturation magnetic flux density, iron loss, and bending fracture radius of the obtained thin strip were evaluated. The method of collecting the sample and the measurement conditions used for evaluating these characteristics were the same as in Example 1. The measurement results are shown in Table 2. The display method in Table 2 is the same as in Table 1.

Figure 0007701598000002
Figure 0007701598000002

表2の試料No.18~24の結果から明らかなように、Feの一部をNi、Cr、Coの少なくとも1種で、10.0原子%以下の範囲で代替しても、飽和磁束密度が1.62T以上で、鉄損をW13/50で安定して0.095W/kg以下とできることがわかった。また、曲げ破壊直径が3.5mm以下になり、加工性も良好だった。更に、いずれの試料も、X線回折測定において明確な回折ピークが観察されず、非晶質であることが確認された。 As is clear from the results of samples No. 18 to 24 in Table 2, even if part of Fe is replaced with at least one of Ni, Cr, and Co in the range of 10.0 atomic % or less, it was found that the saturation magnetic flux density was 1.62 T or more and the iron loss was stably 0.095 W/kg or less at W13/50 . In addition, the bending fracture diameter was 3.5 mm or less, and the workability was also good. Furthermore, no clear diffraction peak was observed in the X-ray diffraction measurement for any of the samples, confirming that they were amorphous.

以上説明したように、本発明のFe系非晶質合金によれば、Alを含有させるとともに、B、Si及びCの含有量を最適化し、更にFeの含有量を78.00%以上にすることで、磁束密度1.3T、周波数50Hzにおける鉄損(鉄損W13/50)が0.095W/kg以下となり、飽和磁束密度が1.62T以上となり、優れた軟磁気特性を発揮でき、電力トランスや高周波トランスの鉄心等に好適に用いることができる。また、加工性も向上させることができる。
また、本発明のFe系非晶質合金薄帯によれば、鉄損(鉄損W13/50)が0.095W/kg以下となり、飽和磁束密度が1.62T以上となり、更には曲げ破壊直径を3.5mm以下とすることができる。これにより、Fe系非晶質合金薄帯を電力トランスや高周波トランスの鉄心等に加工する際に、合金薄帯が破損してしまうおそれがなく、電力トランスや高周波トランスの鉄心の生産性を向上できる。
As described above, according to the Fe-based amorphous alloy of the present invention, by containing Al, optimizing the contents of B, Si and C, and further setting the Fe content to 78.00% or more, the iron loss (iron loss W13/50 ) at a magnetic flux density of 1.3 T and a frequency of 50 Hz becomes 0.095 W/kg or less, the saturation magnetic flux density becomes 1.62 T or more, and excellent soft magnetic properties can be exhibited, making it suitable for use in the iron cores of power transformers and high-frequency transformers, etc. Also, the workability can be improved.
Furthermore, the Fe-based amorphous alloy ribbon of the present invention has an iron loss (iron loss W13/50 ) of 0.095 W/kg or less, a saturation magnetic flux density of 1.62 T or more, and a bending fracture diameter of 3.5 mm or less. This prevents the alloy ribbon from being damaged when the Fe-based amorphous alloy ribbon is processed into iron cores of power transformers and high-frequency transformers, and improves the productivity of iron cores of power transformers and high-frequency transformers.

Claims (4)

Translated fromJapanese
原子%で、Feを78.00%以上85.00%以下、Bを7.5%以上15.0%以下、Siを6.0%超10.0%以下、Cを0.5%以上5.0%以下、Alを0.005%以上1.50%以下含有し、残部が不純物からなり、
金属組織が非晶質組織からなり、
飽和磁束密度が1.62T以上であり、磁束密度1.3T、周波数50Hzにおける鉄損が0.095W/kg以下である、Fe系非晶質合金。
The alloy contains, in atomic percent, Fe of 78.00% or more and 85.00% or less, B of 7.5% or more and 15.0% or less, Si of more than 6.0% and 10.0% or less, C of 0.5% or more and 5.0% or less, Al of 0.005% or more and 1.50% or less, and the balancebeing impurities;
The metal structure is amorphous.
An Fe-based amorphous alloyhaving a saturation magnetic flux density of 1.62 T or more and an iron loss of 0.095 W/kg or less at a magnetic flux density of 1.3 T and a frequency of 50 Hz .
原子%で、Feを78.00%以上85.00%以下、Bを7.5%以上13.0%以下、Siを6.0%超9.0%以下、Cを1.0%以上4.0%以下、Alを0.005%以上1.50%以下含有し、残部が不純物からなり、
金属組織が非晶質組織からなり、
飽和磁束密度が1.62T以上であり、磁束密度1.3T、周波数50Hzにおける鉄損が0.095W/kg以下である、Fe系非晶質合金。
The alloy contains, in atomic percent, Fe of 78.00% or more and 85.00% or less, B of 7.5% or more and 13.0% or less, Si of more than 6.0% and 9.0% or less, C of 1.0% or more and 4.0% or less, Al of 0.005% or more and 1.50% or less, and the balancebeing impurities;
The metal structure is amorphous.
An Fe-based amorphous alloyhaving a saturation magnetic flux density of 1.62 T or more and an iron loss of 0.095 W/kg or less at a magnetic flux density of 1.3 T and a frequency of 50 Hz .
Ni、Cr、Coのうち少なくとも1種以上で、請求項1または2に記載のFe系非晶質合金のFeを10.0原子%以下の範囲で、代替する、Fe系非晶質合金。 3. An Fe-based amorphous alloy according to claim 1, wherein Fe inthe Fe -based amorphous alloy is replaced by at least one of Ni, Cr and Co in an amount of 10.0 atomic % or less. 請求項1乃至請求項3のいずれか一項に記載のFe系非晶質合金からなる、Fe系非晶質合金薄帯。 A Fe-based amorphous alloy ribbon comprisingthe Fe -based amorphous alloy according to any one of claims 1 to 3.
JP2021083749A2021-05-182021-05-18 Fe-based amorphous alloy and Fe-based amorphous alloy ribbonActiveJP7701598B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2021083749AJP7701598B2 (en)2021-05-182021-05-18 Fe-based amorphous alloy and Fe-based amorphous alloy ribbon

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2021083749AJP7701598B2 (en)2021-05-182021-05-18 Fe-based amorphous alloy and Fe-based amorphous alloy ribbon

Publications (2)

Publication NumberPublication Date
JP2022177475A JP2022177475A (en)2022-12-01
JP7701598B2true JP7701598B2 (en)2025-07-02

Family

ID=84237751

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2021083749AActiveJP7701598B2 (en)2021-05-182021-05-18 Fe-based amorphous alloy and Fe-based amorphous alloy ribbon

Country Status (1)

CountryLink
JP (1)JP7701598B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP7719416B1 (en)*2024-04-222025-08-06日本製鉄株式会社 Fe-based amorphous alloy ribbon

Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2022244819A1 (en)2021-05-182022-11-24日本製鉄株式会社Fe-based amorphous alloy and fe-based amorphous alloy thin strip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS61212450A (en)*1985-03-181986-09-20Nippon Steel CorpThin fe amorphous alloy strip having large thickness and excellent toughness
JPH089753B2 (en)*1991-05-071996-01-31新日本製鐵株式会社 Method for producing Fe-based amorphous alloy
JPH04362162A (en)*1991-06-061992-12-15Nippon Steel Corp Amorphous alloy ribbon with excellent magnetic properties that has a crystallized layer inside the plate thickness
JPH05291019A (en)*1992-04-131993-11-05Nippon Steel Corp Method for producing Fe-based amorphous alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2022244819A1 (en)2021-05-182022-11-24日本製鉄株式会社Fe-based amorphous alloy and fe-based amorphous alloy thin strip

Also Published As

Publication numberPublication date
JP2022177475A (en)2022-12-01

Similar Documents

PublicationPublication DateTitle
JP5320764B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
US7744703B2 (en)Fe-based amorphous alloy strip
JP7020119B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy thin band with excellent soft magnetic properties
JP3594123B2 (en) Alloy ribbon, member using the same, and method of manufacturing the same
JP6881249B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
US7918946B2 (en)Fe-based amorphous alloy excellent in soft magnetic properties
JP5320768B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
JP2004353090A (en)Amorphous alloy ribbon and member using the same
JP6601139B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon with excellent soft magnetic properties
JP7701598B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon
JP4948868B2 (en) Fe-based amorphous alloy ribbon
JP7737030B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon
JP5320765B2 (en) Fe-based amorphous alloy with excellent soft magnetic properties
CN117321239A (en)Fe-based amorphous alloy and Fe-based amorphous alloy ribbon
JP3709149B2 (en) Fe-based amorphous alloy ribbon with high magnetic flux density
JP7719417B1 (en) Fe-based amorphous alloy ribbon
JP7719416B1 (en) Fe-based amorphous alloy ribbon
TWI898555B (en) Fe-based amorphous alloy and Fe-based amorphous alloy thin strip
JP6819427B2 (en) Fe-based amorphous alloy and Fe-based amorphous alloy ribbon
JP6443112B2 (en) Fe-based amorphous alloy and amorphous alloy ribbon with excellent soft magnetic properties
JP6683419B2 (en) Fe-based amorphous alloy and amorphous alloy ribbon with excellent soft magnetic properties
JP2001252749A (en)METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL
JP7610097B2 (en) Fe-based alloy ribbon and Fe-based amorphous alloy ribbon
JPH0686646B2 (en) Soft magnetic alloy ribbon

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20240122

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20241206

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20241217

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20250214

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20250520

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20250602

R150Certificate of patent or registration of utility model

Ref document number:7701598

Country of ref document:JP

Free format text:JAPANESE INTERMEDIATE CODE: R150


[8]ページ先頭

©2009-2025 Movatter.jp