本発明は、主に光学的手法によって青果を非侵襲的、非破壊的に評価、検査する方法、及び、そのための装置に関する。The present invention relates to a method for non-invasive and non-destructive evaluation and inspection of fruit and vegetables, primarily using optical techniques, and an apparatus for this purpose.
青果は、その鮮度(熟度)や食味等を事前に評価した上で、適正な値付けや流通が行われることが好ましい。しかし、実食や抽出検査のために青果が侵襲、破壊されてしまった時点で、その青果の商品価値は大きく下がってしまうことに加え、このような方法では全数検査ができない。It is desirable to evaluate freshness (ripeness) and taste of fruits and vegetables in advance before pricing and distributing them appropriately. However, once fruits and vegetables are invaded or destroyed for tasting or sampling testing, their commercial value drops significantly, and this method does not allow for 100% inspection.
このため、従来、青果の鮮度や食味等は、人の目による外観、触れた又は持った感触、軽く叩いた際の音声、発せられる匂い、等に基づいて、非侵襲的且つ簡易的に評価、推定されてきた。For this reason, the freshness and taste of fruits and vegetables have traditionally been evaluated and estimated non-invasively and simply based on their appearance as seen by the human eye, the sensation when touched or held, the sound made when lightly tapped, the smell they give off, etc.
上記したような手法は、一消費者による青果の購買判断には非常に有用である一方、属人的な技能によるところが大きく、青果の鮮度や食味等の評価をより厳密に行うには不十分な側面があった。While the methods described above are extremely useful for consumers to make purchasing decisions regarding fruits and vegetables, they are heavily dependent on personal skill and are therefore insufficient for more precise evaluation of the freshness and taste of fruits and vegetables.
こういった状況から、主に光学的手法によって青果の鮮度や食味等を非侵襲的且つ定量的に評価、検査する方法や、そのための装置が提案されている。In light of this situation, methods and devices for non-invasively and quantitatively evaluating and inspecting the freshness and taste of fruits and vegetables, mainly using optical techniques, have been proposed.
例えば、特許文献1には、ブドウに励起光を照射した際の蛍光に基づく指標から、糖度、カラーチャート値、クロロフィル濃度等の特性値を決定し、出荷時期の判断を行うための評価デバイスや評価方法が記載されている。For example, Patent Document 1 describes an evaluation device and method for determining characteristic values such as sugar content, color chart value, and chlorophyll concentration from indicators based on fluorescence when grapes are irradiated with excitation light, and for determining the shipping time.
また、特許文献2には、野菜に含まれるクロロフィルを励起した際に発せられる蛍光に基づいて野菜の鮮度や熟度を検知することが可能な鮮度検知部を備える、食品保管庫(冷蔵庫)が記載されている。Patent document 2 also describes a food storage unit (refrigerator) equipped with a freshness detection unit that can detect the freshness and ripeness of vegetables based on the fluorescence emitted when the chlorophyll contained in the vegetables is excited.
上記したように、青果に含まれるクロロフィルを励起して発せられる蛍光に基づいて、その濃度や含有量を調べて青果の非破壊評価を行う手法が存在するが、クロロフィルのみを指標とした場合、正確な評価が困難な青果もいくつか存在する。As mentioned above, there are techniques for non-destructively evaluating produce by measuring the concentration and content of chlorophyll based on the fluorescence emitted by exciting the chlorophyll contained in the produce. However, there are some produce that are difficult to accurately evaluate when chlorophyll is the only indicator.
  例えば、非破壊では正確な評価が困難な青果の一つにアボカドが挙げられる。
  ブドウやマンゴー等の一般的な果実の表皮が薄く柔らかいのに対し、アボカドは厚く硬い表皮で覆われていることが特徴である。
  即ち、表皮の柔らかい果実に対しては、光源光を内部に進入させて内部情報を多く得られるのに対し、アボカドのような厚く硬い表皮を持つ果実に対しては、光源光を内部に進入させることができず内部情報が得られない、という問題があった。  For example, avocados are one type of fruit or vegetable that is difficult to accurately evaluate non-destructively.
 Unlike common fruits such as grapes and mangoes, which have a thin, soft skin, avocados are covered with a thick, hard skin.
 In other words, for fruits with soft skin, it is possible to obtain a lot of internal information by letting the light from the light source enter the interior, but for fruits with thick, hard skin such as avocados, the light from the light source cannot enter the interior and internal information cannot be obtained.
本発明は上記したような問題に鑑みてなされたものであり、より正確なアボカドの非破壊評価を行う方法を提供する。The present invention was made in consideration of the above-mentioned problems, and provides a method for more accurate non-destructive evaluation of avocados.
  上記課題を解決するための本発明は、下記[1]~[13]に示す技術思想である。
  [1]励起光をアボカドの表皮に照射して前記アボカドの表皮に含まれる自家蛍光物質を励起する励起工程と、励起された前記自家蛍光物質から発せられる蛍光を測定する測定工程と、前記蛍光における第一波長域の蛍光強度及び第二波長域の蛍光強度に基づいて前記アボカドを評価する評価工程と、を含み、前記第一波長域はクロロフィルの蛍光領域を含み、前記第二波長域はカロテノイドの蛍光領域を含む、アボカドの評価方法。
  [2]前記励起光は、中心波長が410nm以上480nm未満である、[1]に記載のアボカドの評価方法。
  [3]前記測定工程は、前記励起光の中心波長よりも10nm以上長い波長の蛍光を測定する工程である、[1]又は[2]に記載のアボカドの評価方法。
  [4]前記評価工程において、前記第一波長域における蛍光ピーク及び前記第二波長域における蛍光ピークの蛍光強度比に基づいて、前記アボカドを評価する、[1]~[3]の何れかに記載のアボカドの評価方法。
  [5]複数の励起光源と、受光部と、評価部と、表示部と、を備え、前記受光部は、クロロフィルの蛍光領域を含む第一波長域の蛍光強度及びカロテノイドの蛍光領域を含む第二波長域の蛍光強度を測定可能に構成され、前記評価部は、前記第一波長域の蛍光強度及び前記第二波長域の蛍光強度に基づいてアボカドの評価結果を算出可能に構成され、前記表示部は、前記評価結果を表示可能に構成されている、アボカドの評価装置。
  [6]複数の前記励起光源は、前記受光部を囲むように、且つ、各前記励起光源の投光軸が、前記受光部の側に傾斜するように配置されている、[5]に記載の評価装置。
  [7]複数の前記励起光源及び前記受光部を被覆するように配置された遮光部材を更に備え、前記遮光部材は、複数の前記励起光源から見た投光方向及び前記受光部から見た受光方向を開放するように配置されている、[5]又は[6]に記載の評価装置。
  [8]前記励起光源は、その光源中心波長が410nm以上480nm未満である、[5]~[7]の何れかに記載の評価装置。
  [9]前記受光部は、光学フィルタを有し、前記光学フィルタは、前記励起光源の光源中心波長よりも10nm以上長い波長の光を透過させるロングパスフィルタを含む、[5]~[8]の何れかに記載の評価装置。
  [10]前記表示部は、前記評価結果として、前記第一波長域及び前記第二波長域におけるピーク強度を表示可能な、[5]~[9]の何れかに記載の評価装置。
  [11]前記表示部は、前記評価結果として、前記評価結果に基づく所定の色彩を表示可能な、[5]~[10]の何れかに記載の評価装置。
  [12]前記第一波長域は、680nm以上750nm未満である、[2]に記載のアボカドの評価方法。
  [13]前記励起光源の投光軸の傾斜角度は、10°以上20°未満であり、前記遮光部材の長さは、25mm以上35mm未満である、[7]に記載の評価装置。  The present invention for solving the above problems is based on the technical ideas shown in the following [1] to [13].
 [1] A method for evaluating an avocado, comprising: an excitation step of irradiating an avocado epidermis with excitation light to excite an autofluorescent substance contained in the avocado epidermis; a measurement step of measuring fluorescence emitted from the excited autofluorescent substance; and an evaluation step of evaluating the avocado based on the fluorescence intensity in a first wavelength range and the fluorescence intensity in a second wavelength range of the fluorescence, wherein the first wavelength range includes a fluorescence region of chlorophyll and the second wavelength range includes a fluorescence region of carotenoids.
 [2] The avocado evaluation method described in [1], wherein the excitation light has a central wavelength of 410 nm or more and less than 480 nm.
 [3] The avocado evaluation method described in [1] or [2], wherein the measurement process is a process of measuring fluorescence having a wavelength that is 10 nm or more longer than the central wavelength of the excitation light.
 [4] The avocado evaluation method according to any one of [1] to [3], wherein in the evaluation step, the avocado is evaluated based on a fluorescence intensity ratio between a fluorescence peak in the first wavelength range and a fluorescence peak in the second wavelength range.
 [5] An avocado evaluation device comprising a plurality of excitation light sources, a light receiving unit, an evaluation unit, and a display unit, wherein the light receiving unit is configured to be capable of measuring fluorescence intensity in a first wavelength range including a chlorophyll fluorescence range and fluorescence intensity in a second wavelength range including a carotenoid fluorescence range, the evaluation unit is configured to be capable of calculating an evaluation result of the avocado based on the fluorescence intensity in the first wavelength range and the fluorescence intensity in the second wavelength range, and the display unit is configured to be capable of displaying the evaluation result.
 [6] The evaluation device described in [5], wherein the multiple excitation light sources are arranged to surround the light receiving unit and the projection axis of each excitation light source is inclined toward the light receiving unit.
 [7] The evaluation device described in [5] or [6], further comprising a light-shielding member arranged to cover the plurality of excitation light sources and the light-receiving unit, the light-shielding member being arranged to open up the light projection direction as seen from the plurality of excitation light sources and the light-receiving direction as seen from the light-receiving unit.
 [8] The evaluation device according to any one of [5] to [7], wherein the excitation light source has a light source central wavelength of 410 nm or more and less than 480 nm.
 [9] The evaluation device described in any one of [5] to [8], wherein the light receiving unit has an optical filter, and the optical filter includes a long-pass filter that transmits light having a wavelength that is 10 nm or longer than the light source central wavelength of the excitation light source.
 [10] The evaluation device according to any one of [5] to [9], wherein the display unit is capable of displaying peak intensities in the first wavelength range and the second wavelength range as the evaluation result.
 [11] The evaluation device according to any one of [5] to [10], wherein the display unit is capable of displaying a predetermined color based on the evaluation result as the evaluation result.
 [12] The avocado evaluation method described in [2], wherein the first wavelength range is 680 nm or more and less than 750 nm.
 [13] The evaluation device according to [7], wherein the inclination angle of the projection axis of the excitation light source is 10° or more and less than 20°, and the length of the light blocking member is 25 mm or more and less than 35 mm.
  [1]のような方法により、アボカドの表皮が含有するクロロフィル及びカロテノイドの各々に由来する蛍光を複合的な評価指標として、より正確なアボカドの非破壊評価を行うことができる。
  特に、アボカドのような厚く硬い表皮を持つ果実に対しては、光源光を内部に進入させることが難しいが、[1]のような方法によれば、表皮から得られる情報に基づいて、アボカド内部の熟度等をより正確に評価することができる。  By using a method such as [1], it is possible to perform a more accurate non-destructive evaluation of avocados by using the fluorescence derived from each of the chlorophyll and carotenoids contained in the avocado skin as a composite evaluation index.
 In particular, it is difficult to penetrate light from a light source into fruits with thick, hard skin such as avocados. However, a method such as [1] makes it possible to more accurately evaluate the ripeness, etc., of the inside of an avocado based on information obtained from the skin.
[2]に記載の波長域の光を励起光に用いる方法は、紫外光を長く照射した場合のような不可逆的損傷をアボカドに与えるリスクを抑え、クロロフィル及びカロテノイドの由来の蛍光と励起光を弁別でき、且つ、励起に十分なエネルギーをクロロフィル及びカロテノイドに与えることができる。The method of using light in the wavelength range described in [2] as excitation light reduces the risk of irreversible damage to avocados, as occurs with long-term exposure to ultraviolet light, and can distinguish between the fluorescence originating from chlorophyll and carotenoids and the excitation light, while providing chlorophyll and carotenoids with sufficient energy for excitation.
[3]のような方法は、クロロフィル由来の蛍光及びカロテノイド由来の蛍光の同時検出を比較的容易に行うことができる。Methods such as [3] allow for the simultaneous detection of chlorophyll-derived fluorescence and carotenoid-derived fluorescence with relative ease.
[4]のような方法により、クロロフィル由来の蛍光強度をリファレンスとして、カロテノイド由来の蛍光強度に基づく評価をより正確に行うことができる。By using a method such as [4], it is possible to perform more accurate evaluation based on the fluorescence intensity derived from carotenoids by using the fluorescence intensity derived from chlorophyll as a reference.
[5]のような装置は、本発明のアボカドの評価方法を容易に行うことができる。An apparatus such as [5] can easily carry out the avocado evaluation method of the present invention.
[6]に記載の励起光源の配置は、近距離に対する励起光照射において、充分な光量が確保できる点で有利である。The arrangement of the excitation light source described in [6] is advantageous in that a sufficient amount of light can be ensured when irradiating excitation light at close range.
[7]のような装置は、光源と評価対象の間において、励起光を評価対象に集中させ、且つ、自然光の影響を抑制し、精度の良い評価を行うことができる。A device such as [7] can concentrate the excitation light on the object to be evaluated between the light source and the object to be evaluated, while suppressing the effects of natural light, allowing for highly accurate evaluation.
[8]に記載の波長域の光を励起光源に用いる装置は、紫外光を長く照射した場合のような不可逆的損傷をアボカドに与えるリスクを抑え、クロロフィル及びカロテノイドの由来の蛍光と励起光を比較的容易に弁別でき、且つ、励起に十分なエネルギーをクロロフィル及びカロテノイドに与えることができる。A device that uses light in the wavelength range described in [8] as an excitation light source reduces the risk of irreversible damage to avocados, such as that caused by prolonged exposure to ultraviolet light, can relatively easily distinguish between the fluorescence originating from chlorophyll and carotenoids and the excitation light, and can provide chlorophyll and carotenoids with sufficient energy for excitation.
[9]のような装置は、クロロフィル由来の蛍光及びカロテノイド由来の蛍光の同時検出を比較的容易に行うことができる。Devices such as [9] can relatively easily detect chlorophyll-derived fluorescence and carotenoid-derived fluorescence simultaneously.
[10]のような装置の使用者は、表示部に表示された第一波長域及び第二波長域におけるピーク強度に基づいて、装置による評価結果を検証することができる。A user of a device such as [10] can verify the evaluation results of the device based on the peak intensities in the first and second wavelength ranges displayed on the display unit.
[11]のような装置は、評価結果を視覚的に迅速に得ることができるため、大量のアボカドの非破壊評価に好適である。Devices such as [11] are well suited for non-destructive evaluation of large quantities of avocados, as they can provide visual evaluation results quickly.
[12]のような方法は、クロロフィル由来の蛍光のみならず、熟度に伴う脂肪酸割合の変化に由来する蛍光強度の変化も考慮して、アボカドの熟度をより正確に評価することができる。A method such as [12] can more accurately assess the ripeness of avocados by taking into account not only the fluorescence derived from chlorophyll but also the change in fluorescence intensity resulting from the change in fatty acid ratio that accompanies ripeness.
[13]のような装置は、分光器直下に光源光が集中するため、光源光が進入しにくいアボカドのような果実の表皮からも、蛍光強度を高い効率で得ることができる。In a device like [13], the light from the light source is concentrated directly under the spectrometer, so it is possible to obtain fluorescence intensity with high efficiency even from the skin of a fruit such as an avocado, where the light from the light source has difficulty penetrating.
本発明によれば、クロロフィル由来の蛍光のみならず、カロテノイド由来の蛍光も評価指標に含め、より正確なアボカドの非破壊評価を行うことが可能な評価方法及び評価装置が提供される。The present invention provides an evaluation method and evaluation device that can perform more accurate non-destructive evaluation of avocados by including not only chlorophyll-derived fluorescence but also carotenoid-derived fluorescence as evaluation indices.
以下、添付図面を用いて本発明の実施形態に係るアボカドの評価方法及び評価装置を説明する。なお、以下に示す実施形態は本発明の一例であり、本発明を以下の実施形態に限定するものではない。また、本発明の実施形態に係る評価装置を、符号Xで示す。The following describes an avocado evaluation method and evaluation device according to an embodiment of the present invention with reference to the attached drawings. Note that the embodiment shown below is an example of the present invention, and the present invention is not limited to the following embodiment. The evaluation device according to the embodiment of the present invention is indicated by the symbol X.
  [アボカドの評価方法]
  以下、図1~3を用いて、本発明の実施形態に係るアボカドの評価方法を詳細に説明する。  [How to evaluate avocados]
 Hereinafter, the avocado evaluation method according to the embodiment of the present invention will be described in detail with reference to FIGS.
  <励起工程>
  励起工程S10は、励起光ELをアボカドFVの表皮に照射してアボカドFVの表皮に含まれる自家蛍光物質(クロロフィルやカロテノイド等)を励起する工程である。  <Excitation process>
 The excitation step S10 is a step of irradiating the epidermis of the avocado FV with excitation light EL to excite autofluorescent substances (such as chlorophyll and carotenoids) contained in the epidermis of the avocado FV.
励起工程S10において、アボカドFVの表皮に含まれるクロロフィル及びカロテノイドを、中心波長が同等の励起光ELで同時に励起するために、中心波長が410nm以上480nm未満の励起光ELが好適に用いられる。なお、この理由については後述する。In the excitation step S10, in order to simultaneously excite the chlorophyll and carotenoids contained in the epidermis of the avocado FV with excitation light EL having the same central wavelength, excitation light EL having a central wavelength of 410 nm or more and less than 480 nm is preferably used. The reason for this will be described later.
  <測定工程>
  測定工程S20は、励起工程S10で励起された自家蛍光物質から発せられる蛍光FLを測定する工程である。
  測定工程S20において、特に励起光ELとカロテノイド由来の蛍光FLと、を弁別するために、励起光ELの中心波長よりも10nm以上長い波長の蛍光FLが好適に測定される。このような測定工程S20は、励起光ELの中心波長よりも10nm以上長い波長の光を透過させるロングパスフィルタを用いる蛍光測定により実現することができる。  <Measurement process>
 The measuring step S20 is a step of measuring the fluorescence FL emitted from the autofluorescent substance excited in the exciting step S10.
 In the measurement step S20, in order to distinguish between the excitation light EL and the fluorescence FL derived from carotenoids, the fluorescence FL having a wavelength 10 nm or longer than the central wavelength of the excitation light EL is preferably measured. Such a measurement step S20 can be realized by fluorescence measurement using a long-pass filter that transmits light having a wavelength 10 nm or longer than the central wavelength of the excitation light EL.
以下、図2、図3を用いて、励起光源波長とロングパスフィルタの選択について説明する。Below, we will explain the selection of the excitation light source wavelength and long-pass filter using Figures 2 and 3.
  図2は、UV光源(波長365nm)と、青色可視光源(波長450nm)と、を用いて測定された、アボカド(アボカドFV)の反射蛍光プロファイルを比較する図である。
  図2(A)に示すように、UV光源励起による反射蛍光プロファイルは、波長500nm付近(510nm、550nm)のカロテノイド由来のピークは検出できているが、波長700nm付近(688nm、740nm)のクロロフィル由来のピークは検出できていない。
  一方で、図2(B)に示すように、青色可視光源励起による反射蛍光プロファイルによれば、波長700nm付近(688nm、740nm)のクロロフィル由来のピークは検出できているが、波長500nm(510nm、550nm)付近のカロテノイド由来のピークは励起光のピークと区別がつかなくなっている。  FIG. 2 compares the reflectance fluorescence profiles of avocado (Avocado FV) measured using a UV light source (wavelength 365 nm) and a blue visible light source (wavelength 450 nm).
 As shown in FIG. 2(A), the reflection fluorescence profile excited by a UV light source detects peaks derived from carotenoids near a wavelength of 500 nm (510 nm, 550 nm), but does not detect peaks derived from chlorophyll near a wavelength of 700 nm (688 nm, 740 nm).
 On the other hand, as shown in FIG. 2(B), according to the reflection fluorescence profile obtained by excitation with a blue visible light source, the peaks derived from chlorophyll near a wavelength of 700 nm (688 nm, 740 nm) were detected, but the peaks derived from carotenoids near a wavelength of 500 nm (510 nm, 550 nm) were indistinguishable from the peaks of the excitation light.
  図3は、青色可視光源(波長450nm)を用いて測定されるアボカドの表皮蛍光プロファイル(500~800nm)について、ロングパスフィルタ(波長460nm以上の光を透過)の有無を比較する図である。
  図3(A)に示すように、ロングパスフィルタを用いない測定では、波長700nm付近のクロロフィル由来のピークは検出できているが、波長500nm付近のカロテノイド由来のピークは励起光のピークと区別がつかなくなっている(図2(B)に相当)。
  一方で、図3(B)に示すように、波長460nm以上の光を透過させるロングパスフィルタを用いた場合、バックグラウンドの強度が半分程度となり、全体の感度が低下していることに加え、波長500~600nmのプロファイルが大きく変化する。
  具体的に、励起光の影響が抑制され、波長520nm付近にカロテノイド系の光吸収に由来する谷が見られ、波長550nm付近にカロテノイド由来の蛍光ピークが見られるようになる。  FIG. 3 is a graph comparing the epidermal fluorescence profile (500-800 nm) of an avocado measured using a blue visible light source (wavelength 450 nm) with and without a long-pass filter (transmitting light with wavelengths of 460 nm or longer).
 As shown in Figure 3(A), in measurements without using a long-pass filter, the chlorophyll-derived peak near a wavelength of 700 nm was detectable, but the carotenoid-derived peak near a wavelength of 500 nm was indistinguishable from the excitation light peak (corresponding to Figure 2(B)).
 On the other hand, as shown in FIG. 3B, when a long-pass filter that transmits light with wavelengths of 460 nm or more is used, the background intensity is reduced to about half, and the overall sensitivity is reduced. In addition, the profile of the wavelengths of 500 to 600 nm changes significantly.
 Specifically, the influence of the excitation light is suppressed, a valley due to the light absorption of carotenoids is observed near a wavelength of 520 nm, and a fluorescence peak due to carotenoids is observed near a wavelength of 550 nm.
  以上の通り、アボカドFVの表皮に含まれるクロロフィル及びカロテノイドを、中心波長が同等の励起光で同時に励起するために、中心波長が410nm以上480nm未満の励起光ELが好適に用いられる。
  また、励起光ELとカロテノイド由来の蛍光FLと、を弁別するために、励起光ELの中心波長よりも10nm以上長い波長の蛍光FLが好適に測定される。  As described above, in order to simultaneously excite the chlorophyll and carotenoids contained in the epidermis of avocado FV with excitation light having an equivalent central wavelength, excitation light EL having a central wavelength of 410 nm or more and less than 480 nm is preferably used.
 In order to discriminate between the excitation light EL and the fluorescence FL derived from carotenoids, the fluorescence FL having a wavelength 10 nm or more longer than the central wavelength of the excitation light EL is preferably measured.
  <評価工程>
  評価工程S30は、測定工程S20において測定された蛍光FLにおける第一波長域の蛍光強度及び第二波長域の蛍光強度に基づいてアボカドFVを評価する工程である。
  本実施形態では、第一波長域:680~750nm、第二波長域:480~550nmがそれぞれ設定される。
  なお、第一波長域の蛍光強度及び第二波長域は、実験環境や対象のアボカドFVの種類等により、上記と異なる波長領域が設定されてもよい。  <Evaluation process>
 The evaluation step S30 is a step of evaluating the avocado FV based on the fluorescence intensity in the first wavelength range and the fluorescence intensity in the second wavelength range of the fluorescence FL measured in the measurement step S20.
 In this embodiment, the first wavelength range is set to 680 to 750 nm, and the second wavelength range is set to 480 to 550 nm.
 In addition, the fluorescence intensity of the first wavelength range and the second wavelength range may be set to wavelength ranges different from those described above depending on the experimental environment, the type of avocado FV being targeted, etc.
以下、具体的な評価方法について説明する。The specific evaluation method is explained below.
  本発明者らは、600個のアボカドについて、熟練者による熟度官能検査と、第一波長域及び第二波長域における蛍光強度の測定を行った(励起工程S10及び測定工程S20の方法に準ずる)。
  また、得られた蛍光強度に基づいて未熟・適熟・過熟群のそれぞれについて、クロロフィルに由来する蛍光ピーク(波長740nm)とクロロフィルに由来する蛍光ピーク(波長685nm)の蛍光強度比A1と、カロテノイドに由来する蛍光ピーク(波長550nm)とクロロフィルに由来する蛍光ピーク(波長685nm)の蛍光強度比A2を算出すると共に、これらに基づいてクロロフィル含有量及びカロテノイド含有量を算出した。これらの結果をまとめたものを図4に示した。  The inventors performed a sensory test on ripeness of 600 avocados by an expert and measured the fluorescence intensity in the first wavelength region and the second wavelength region (based on the methods of the excitation step S10 and the measurement step S20).
 Based on the obtained fluorescence intensities, the fluorescence intensity ratio A1 between the fluorescence peak (wavelength 740 nm) derived from chlorophyll and the fluorescence peak (wavelength 685 nm) derived from chlorophyll, and the fluorescence intensity ratioA2 between the fluorescence peak (wavelength 550 nm) derived from carotenoid and the fluorescence peak (wavelength 685 nm) derived from chlorophyll were calculated foreach of the immature, ripe and overripe groups, and the chlorophyll content and carotenoid content were calculated based on these. These results are summarized in Figure 4.
図4(A)によれば、蛍光強度比A1は、未熟群において1.12、適熟群において1.01、過熟群において1.11という値をそれぞれ示しており、熟度とクロロフィル量の間には、未熟時と過熟時に比較して適熟時にクロロフィル量が少なくなる傾向があることが見て取れる。 According to FIG. 4(A), the fluorescence intensity ratioA1 was 1.12 in the immature group, 1.01 in the ripe group, and 1.11 in the overripe group. It can be seen that there is a tendency between ripeness and chlorophyll content, with the chlorophyll content being lower in the ripe group compared to the immature and overripe groups.
よって、アボカドの未熟・適熟・過熟群への分類評価において、クロロフィル由来の蛍光強度比A1のみを指標とした場合、即時的には適熟か否かのみを評価することができる。 Therefore, when classifying avocados into unripe, ripe, and overripe groups, if the chlorophyll-derived fluorescence intensity ratioA1 is used as the only indicator, it is possible to immediately evaluate whether or not the avocado is ripe.
一方で、未熟又は過熟を評価する場合、一個体に対する経時的な測定が必要となり、即時的な評価が困難であることが推察される。On the other hand, when assessing immaturity or overmaturity, measurements must be taken over time for each individual fruit, making instantaneous assessment difficult.
図4(B)によれば、蛍光強度比A2は、未熟群において0.02、適熟群において0.07、過熟群において0.11という値をそれぞれ示しており、熟度とカロテノイド量の間に正の相関があることが見てとれる。 According to FIG. 4(B), the fluorescence intensity ratioA2 was 0.02 in the immature group, 0.07 in the ripe group, and 0.11 in the overripe group, indicating a positive correlation between the degree of ripeness and the amount of carotenoids.
よって、未熟・適熟・過熟群について、上記した各値に基づいてA2の閾値や基準範囲を設定した評価基準を作成することで、評価対象のアボカドを各群に分類評価することができる。 Therefore, by creating evaluation criteria that set thresholds and standard ranges forA2 based on the above-mentioned values for the unripe, ripe, and overripe groups, the avocados to be evaluated can be classified and evaluated into each group.
例えば、図4(B)に示す結果に基づいて、A2<0.05の場合は未熟、0.05≦A2≦0.09の場合は適熟、0.09<A2の場合は過熟、のように評価基準を設定することができる。 For example, based on the results shown in FIG. 4B, the evaluation criteria can be set such that A2 <0.05 is immature, 0.05≦A2 ≦0.09 is ripe, and 0.09<A2 is overripe.
なお、適熟と分類されるアボカドについては、出荷された後の追熟を考慮に入れた出荷時点の適熟(出荷適熟)及び購入後の喫食を想定した購入時点の適熟(購入適熟)の閾値や基準範囲を更に評価基準として含んでもよい。For avocados classified as ripe, the evaluation criteria may further include thresholds and standard ranges for ripeness at the time of shipment (ripeness for shipping), which takes into account ripening after shipment, and ripeness at the time of purchase (ripeness for purchase), which assumes consumption after purchase.
  例えば、図4(B)に示す結果に基づいて、A2<0.05の場合は未熟、0.05≦A2≦0.07の場合は出荷適熟、0.07<A2≦0.09の場合は購入適熟、0.09<A2の場合は過熟、のように評価基準を設定することができる。
  このようにすることで、出荷と購入の両方の場面において、適切な評価を行うことができる。  For example, based on the results shown in FIG. 4B, the evaluation criteria can be set as follows: ifA2 <0.05, it is immature; if 0.05≦A2 ≦0.07, it is ripe for shipping; if 0.07<A2 ≦0.09, it is ripe for purchase; and if 0.09<A2 , it is overripe.
 In this way, appropriate evaluation can be performed at both the shipping and purchasing stages.
即ち、評価工程S30は、評価対象としたいアボカド群について予め定められた第一波長域における蛍光ピーク強度と第二波長域における蛍光ピーク強度の比を未熟・適熟・過熟等の官能指標と関連付けた判定基準を用い、評価対象のアボカドについて測定された第一波長域における蛍光ピーク強度と第二波長域における蛍光ピーク強度の比をその判定基準に照らすことで、評価対象のアボカドを評価する工程である。That is, the evaluation step S30 is a step of evaluating the avocados to be evaluated by using a criterion that associates the ratio of the fluorescence peak intensity in the first wavelength range to the fluorescence peak intensity in the second wavelength range, which is determined in advance for the group of avocados to be evaluated, with a sensory index such as unripe, ripe, or overripe, and comparing the ratio of the fluorescence peak intensity in the first wavelength range to the fluorescence peak intensity in the second wavelength range measured for the avocados to be evaluated against the criterion.
(アボカドが熟して)クロロフィルの消費が進むと、相対的にカロテノイドの蛍光ピーク強度比が増加するため、表皮におけるクロロフィル及びカロテノイドの蛍光ピーク強度比から、内部の熟度を推定評価することが可能となる。As chlorophyll consumption progresses (as the avocado ripens), the fluorescence peak intensity ratio of carotenoids increases relatively, making it possible to estimate the degree of ripeness inside the fruit from the fluorescence peak intensity ratio of chlorophyll and carotenoids in the epidermis.
  [アボカドの評価装置]
  以下、図5~7を用いて、本発明の実施形態に係るアボカドの評価装置を詳細に説明する。  [Avocado evaluation device]
 Hereinafter, the avocado evaluation device according to the embodiment of the present invention will be described in detail with reference to FIGS.
図5は、評価装置Xの機能構成を示すブロック図である。図5に示すように、評価装置Xは、励起光源1と、受光部2と、評価部3と、表示部4と、を備える。Figure 5 is a block diagram showing the functional configuration of the evaluation device X. As shown in Figure 5, the evaluation device X includes an excitation light source 1, a light receiving unit 2, an evaluation unit 3, and a display unit 4.
複数の励起光源1は、その各々の光源中心波長が410nm以上480nm未満である、単色LEDである。特に、光源中心波長が450nm付近の青色LEDが好適に用いられる。The multiple excitation light sources 1 are monochromatic LEDs whose light source central wavelength is 410 nm or more and less than 480 nm. In particular, blue LEDs whose light source central wavelength is around 450 nm are preferably used.
受光部2は、光学フィルタ21を有する分光測定器であって、クロロフィルの蛍光領域における蛍光強度及びカロテノイドの蛍光領域である第二波長域の蛍光強度を測定可能である。The light receiving unit 2 is a spectrometer having an optical filter 21, and is capable of measuring the fluorescence intensity in the chlorophyll fluorescence region and the fluorescence intensity in a second wavelength range, which is the carotenoid fluorescence region.
  光学フィルタ21は、励起光源1の光源中心波長よりも10nm以上長い波長の光を透過させるロングパスフィルタである。
  なお、評価装置Xにおいては、光源中心波長が450nm付近の青色LEDが励起光源1として好適に用いられるため、波長460nm以上の波長の光を透過させるロングパスフィルタが光学フィルタ21として好適に用いられる。  The optical filter 21 is a long-pass filter that transmits light having a wavelength that is 10 nm or longer than the central wavelength of the excitation light source 1 .
 In the evaluation device X, a blue LED with a light source central wavelength of about 450 nm is preferably used as the excitation light source 1, and therefore a long-pass filter that transmits light with a wavelength of 460 nm or more is preferably used as the optical filter 21.
評価部3は、第一波長域における蛍光強度及び第二波長域における蛍光強度を含む分光測定結果に基づいてアボカドFVの評価結果を算出可能である。なお、評価結果としては、数値等の定量的な結果や、「未熟、適熟(出荷適熟、購入適熟)、過熟」等の定性的な結果を算出可能である。The evaluation unit 3 can calculate the evaluation result of avocado FV based on the spectroscopic measurement result including the fluorescence intensity in the first wavelength range and the fluorescence intensity in the second wavelength range. The evaluation result can be a quantitative result such as a numerical value, or a qualitative result such as "unripe, ripe (ripe for shipping, ripe for purchase), overripe, etc."
なお、評価部3の例としては、CPU(Central Processing Unit)、MPU(MicroProcessing Unit)、DSP(Digital Signal Processor)やFPGA(Field Programmable GateArray)を含む回路等が挙げられる。Examples of the evaluation unit 3 include circuits including a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
  また、評価部3は、更に記憶部(図示せず)を有してもよい。記憶部の例としては、RAM(Random  Access  Memory)、ROM(Read  Only  Memory)、SSD(Solid  State  Drive)、HDD(Hard  Disk  Drive)などが挙げられる。
  評価部3が、記憶部を有する場合、所定件数の評価結果や評価条件等を記憶しておくことができる。  The evaluation unit 3 may further include a storage unit (not shown). Examples of the storage unit include a random access memory (RAM), a read only memory (ROM), a solid state drive (SSD), and a hard disk drive (HDD).
 If the evaluation unit 3 has a storage unit, it can store a predetermined number of evaluation results, evaluation conditions, and the like.
表示部4は、液晶画面41と、色彩表示部42と、を有する。The display unit 4 has an LCD screen 41 and a color display unit 42.
液晶画面41は、評価装置XによるアボカドFVの評価結果として、第一波長域における蛍光ピーク強度及び第二波長域における蛍光ピーク強度を、表示することができる。The LCD screen 41 can display the fluorescence peak intensity in the first wavelength range and the fluorescence peak intensity in the second wavelength range as the evaluation result of avocado FV by the evaluation device X.
なお、液晶画面41としては、OLED(Organic Light Emitting Diode)と呼ばれる有機ELディスプレイが好適に用いられるが、文字や数値の描画と表示が可能な任意の素子を用いることができる。The LCD screen 41 is preferably an organic EL display known as an OLED (Organic Light Emitting Diode), but any element capable of drawing and displaying characters and numbers can be used.
  色彩表示部42は、評価装置XによるアボカドFVの評価結果に基づいて、所定の色彩を呈することができる。
  例えば、評価装置XによるアボカドFVの評価結果が「未熟」であれば緑、「適熟」であれば青、「過熟」であれば赤といったように、色彩表示部42は、色彩を呈することができる。  The color display unit 42 can display a predetermined color based on the evaluation result of the avocado FV by the evaluation device X.
 For example, the color display unit 42 can display colors such as green if the evaluation result of the avocado FV by the evaluation device X is "unripe," blue if it is "ripe," and red if it is "overripe."
あるいは、評価装置XによるアボカドFVの評価結果が「未熟」であれば緑、「出荷適熟」であれば青、「購入適熟」であれば黄、「過熟」であれば赤といったように、色彩表示部42は、色彩を呈することができる。Alternatively, the color display unit 42 can display colors such as green if the evaluation result of the avocado FV by the evaluation device X is "unripe," blue if it is "ripe for shipping," yellow if it is "ripe for purchase," and red if it is "overripe."
  なお、色彩表示部42は、多色LED、あるいは単色LEDの組合せ等により好適に実現されるが、評価装置XによるアボカドFVの評価結果に基づいて、所定の色彩を呈することが可能であれば、LEDに限らず任意の素子を用いることができる。
  また、色彩表示部42は、液晶画面41に含まれてもよい。  The color display unit 42 is preferably realized by a combination of multi-color LEDs or single-color LEDs, but any element other than an LED can be used as long as it is capable of presenting a predetermined color based on the evaluation results of avocado FV by the evaluation device X.
 The color display unit 42 may also be included in the liquid crystal screen 41 .
  図5に沿って、評価装置Xを用いたアボカドFVの評価方法を説明する。
  まず、励起光源1からアボカドFVの表皮に対する励起光ELの照射によって、アボカドFVの表皮に含まれる自家蛍光物質(クロロフィルやカロテノイド等)が励起される(励起工程S10)。
  励起された自家蛍光物質において、励起状態の電子が基底状態に戻る際に蛍光FLが発せられ、この蛍光FLを、受光部2が光学フィルタ21を通して受光し、分光測定する(測定工程S20)。
  分光測定の結果から、特に第一波長域における蛍光強度及び第二波長域における蛍光強度に基づいて、評価部3がアボカドFVの評価結果を算出する(評価工程S30)
  なお、評価装置XによりアボカドFVの評価を行った場合、その評価結果は表示部4の液晶画面41若しくは色彩表示部42又はその両方において、定量的(例:数値)若しくは定性的(例:未熟、適熟(出荷適熟、購入適熟)、過熟)又はその両方の形式で表示されうる。  A method for evaluating avocado FV using the evaluation device X will be described with reference to FIG.
 First, the epidermis of the avocado FV is irradiated with excitation light EL from the excitation light source 1, exciting autofluorescent substances (such as chlorophyll and carotenoids) contained in the epidermis of the avocado FV (excitation step S10).
 When excited electrons in the excited autofluorescent substance return to the ground state, fluorescence FL is emitted. The light-receiving unit 2 receives this fluorescence FL through the optical filter 21 and performs spectroscopic measurement (measurement step S20).
 Based on the results of the spectroscopic measurement, particularly the fluorescence intensity in the first wavelength region and the fluorescence intensity in the second wavelength region, the evaluation unit 3 calculates the evaluation result of the avocado FV (evaluation step S30).
 In addition, when the avocado FV is evaluated using the evaluation device X, the evaluation result can be displayed on the liquid crystal screen 41 or the color display unit 42 of the display unit 4, or both, in a quantitative (e.g., numerical) or qualitative (e.g., unripe, ripe (ripe for shipping, ripe for purchase), overripe) form.
  図6はそれぞれ、評価装置Xの(A)斜視図、(B)平面図、(C)底面図、である。
  図6に示すように、評価装置Xは、励起光源1と、受光部2と、表示部4と、遮光部材5と、図6に示していない内部の構成として評価部3を備える。  6A is a perspective view, FIG. 6B is a plan view, and FIG. 6C is a bottom view of the evaluation device X, respectively.
 As shown in FIG. 6, the evaluation device X includes an excitation light source 1, a light receiving section 2, a display section 4, a light blocking member 5, and an evaluation section 3 as an internal configuration not shown in FIG.
  図6(C)に示すように、複数の励起光源1は受光部2を囲むように設けられている。
  また、遮光部材5は複数の励起光源1及び受光部2を被覆するように設けられている。  As shown in FIG. 6C, a plurality of excitation light sources 1 are provided so as to surround the light receiving section 2.
 The light blocking member 5 is provided so as to cover the multiple excitation light sources 1 and the light receiving section 2 .
なお、評価装置Xは、任意の起動用スイッチSと、給電やデータ授受等に用いられる任意のポートPと、を更に備えてもよい。The evaluation device X may further include an optional start-up switch S and an optional port P used for power supply, data transmission, etc.
図7は、評価装置Xの内部及び、励起光源1の配置や遮光部材5等の技術的意義等を説明する図である。なお、図7では光軸を直線矢印にて示した。Figure 7 is a diagram explaining the inside of the evaluation device X, the arrangement of the excitation light source 1, the technical significance of the light blocking member 5, etc. In Figure 7, the optical axis is indicated by a straight arrow.
  図7に示すように、複数の励起光源1は、その各々の投光軸が受光部2の側に傾斜するように設けられている。
  受光部2を囲む複数の励起光源1の各々の投光軸が受光部2の側に傾斜するように設けられていることで、近距離に対する励起光照射において、充分な光量が確保できる。
  本実施形態において、励起光源1の角度θは、10°~20°に設定される。  As shown in FIG. 7, the plurality of excitation light sources 1 are provided so that the light projection axis of each of them is inclined toward the light receiving section 2 side.
 By providing the plurality of excitation light sources 1 surrounding the light receiving section 2 with their respective light projection axes inclined toward the light receiving section 2, a sufficient amount of light can be ensured when irradiating excitation light at close range.
 In this embodiment, the angle θ of the excitation light source 1 is set to 10° to 20°.
  遮光部材5は、複数の励起光源1から見た投光方向及び受光部2から見た受光方向を開放するように、これら複数の励起光源1と受光部2を被覆する。
  即ち、遮光部材5は、励起光源1と評価対象のアボカドFVの間において、励起光ELをアボカドFVの表皮に集中させ、且つ、自然光の影響を抑制し、精度の良い評価を補助することができる。
  本実施形態において、遮光部材5の長さLは、25~35mmの間、好ましくは30mmに設定される。  The light blocking member 5 covers the multiple excitation light sources 1 and the light receiving section 2 so as to open the light projection direction as seen from the multiple excitation light sources 1 and the light receiving direction as seen from the light receiving section 2 .
 In other words, the light-shielding member 5, located between the excitation light source 1 and the avocado FV to be evaluated, concentrates the excitation light EL on the epidermis of the avocado FV, while suppressing the effects of natural light, thereby assisting in accurate evaluation.
 In this embodiment, the length L of the light blocking member 5 is set to between 25 and 35 mm, and preferably to 30 mm.
  <励起光源角度θ及び遮光部材長さLの最適化>
  図12は、従来の光学デバイスと、本発明の評価装置Xの差異を説明する図である。上下の図は、光源及び遮光部材の設計と、これに対応する蛍光強度の位置分布を概念的に示す図である。
  図12(a)に示すように、従来の光学デバイスは、光源1’を多数配置して積分領域を広くとり、積分領域内での蛍光強度の均一化を目的とした設計がなされていた。また、遮光部材5’は単に外光の遮断を意図したものであり、その長さの最適化まではなされていなかった。
  一方、図12(b)に示すように、本発明の評価装置Xは、積分領域は狭いものの、分光器直下の蛍光強度が最大となるように、分光器直下に複数の光源光を集中させるため、遮光部材5の長さと励起光源1の角度が最適化されている。
  即ち、励起光源1の角度θ及び遮光部材5の長さLは、光源光が進入しにくいアボカドのような果実からも、蛍光強度を高い効率で得るために最適化された角度と長さとなっている。  <Optimization of Excitation Light Source Angle θ and Light Blocking Member Length L>
 12 is a diagram for explaining the difference between a conventional optical device and the evaluation device X of the present invention. The upper and lower diagrams are diagrams conceptually showing the design of the light source and the light blocking member, and the corresponding position distribution of the fluorescence intensity.
 As shown in Fig. 12(a), the conventional optical device was designed to have a large integration region by arranging multiple light sources 1' and to homogenize the fluorescence intensity within the integration region. Also, the light shielding member 5' was intended simply to block external light, and its length was not optimized.
 On the other hand, as shown in FIG. 12( b ), the evaluation device X of the present invention has a narrow integral region, but the length of the light-shielding member 5 and the angle of the excitation light source 1 are optimized to concentrate the light from multiple light sources directly below the spectrometer so that the fluorescence intensity directly below the spectrometer is maximized.
 In other words, the angle θ of the excitation light source 1 and the length L of the light-shielding member 5 are optimized to obtain fluorescent intensity with high efficiency even from fruits such as avocados, where the light from the light source has difficulty entering.
  例えば、本発明の評価装置Xにおいて、励起光源角度θ及び遮光部材長さLは、下記の通り調整、最適化される。
  まず、図13(a)に示すような、白色アクリル板の下にカメラ等光学センサが設置された評価ツールを用意する。
  次に、上記ツールのアクリル板部分に対して、評価装置Xの遮光部材5の端部を合わせて励起光源1を発光させると、図13(b1)や図13(b2)に示すように、励起光源1の角度θ及び遮光部材5の長さLに対応する輝度パターンが得られる。
  この輝度パターンにおいて、複数の励起光源1のフォーカスが均一に、かつ、より中心に集まるように励起光源角度θ及び遮光部材長さLを調整することで、これらを最適化することができる。  For example, in the evaluation device X of the present invention, the excitation light source angle θ and the light blocking member length L are adjusted and optimized as follows.
 First, an evaluation tool is prepared, in which an optical sensor such as a camera is installed under a white acrylic plate, as shown in FIG. 13( a ).
 Next, when the end of the light-shielding member 5 of the evaluation device X is aligned with the acrylic plate portion of the tool and the excitation light source 1 is caused to emit light, a luminance pattern corresponding to the angle θ of the excitation light source 1 and the length L of the light-shielding member 5 is obtained, as shown in FIG. 13(b1) and FIG. 13(b2).
 In this luminance pattern, the excitation light source angle θ and the light blocking member length L can be adjusted so that the focus of the multiple excitation light sources 1 is uniform and more centralized, thereby optimizing them.
  [実施例]
  以下に示す方法(実施例、比較例)で、図8に示すアボカドP、Q、Rを含む360個のアボカドを評価対象とした。なお、本実施例における評価の後に、官能検査を行った結果、P:未熟、Q:適熟、R:過熟と評価された。  [Example]
 360 avocados including avocados P, Q, and R shown in Fig. 8 were evaluated using the following methods (Examples and Comparative Examples). After the evaluation in this example, a sensory test was conducted, and the avocados were rated as follows: P: unripe, Q: moderately ripe, R: overripe.
  <実施例>
  励起光源1として、各出力200mW程度の青色LED光源(波長450nm)を4個用いて、アボカド(FV)の表皮に対して励起光ELを照射した(励起工程S10)。
  次に、アボカドの表皮から発せられる蛍光FLについて、波長460nm以上の光を透過させるロングパスフィルタを透過させた後、受光部2(分光器)を用いて蛍光プロファイルを測定した(測定工程S20)。
  なお、図9は、評価装置Xを用いて上記励起工程S10及び測定工程S20を行う様子を示す図である。
  次に、アボカドを、各々得られた蛍光プロファイルにおける第一波長域:680~750nm、第二波長域:480~550nmのピーク強度に基づいて、それぞれ評価した(評価工程S30)。
  具体的には、測定工程S20で得られた蛍光強度に基づいて、クロロフィルに由来する蛍光ピーク(波長740nm)とクロロフィルに由来する蛍光ピーク(波長685nm)の蛍光強度比A1と、カロテノイドに由来する蛍光ピーク(波長550nm)とクロロフィルに由来する蛍光ピーク(波長685nm)の蛍光強度比A2を算出し、その値に基づいてアボカドを分類評価した(図10)。
  図10に示すように、A2<0.05の場合は未熟、0.05≦A2≦0.09の場合は適熟、0.09<A2の場合は過熟、のように評価基準を設定した場合、図10に示すように、各アボカドはP:未熟、Q:適熟、R:過熟と評価され、事後の官能検査結果と一致した。
  なお、例えば、評価装置Xを用いる場合、使用者は、励起光源1及び受光部2をアボカドFVの表皮に向けた状態で起動用スイッチSをオンにするだけで、励起工程S10、測定工程S20、及び評価部3にて行われる評価工程S30を含む本発明の評価方法を行うことができる。加えて、評価装置Xは、起動用スイッチSがオンになったとき、励起工程S10、測定工程S20、及び評価工程S30の後に表示部4にて評価結果を表示するところまでを一連の流れとして自動的に行うことができる。  <Example>
 As the excitation light source 1, four blue LED light sources (wavelength 450 nm) each having an output of about 200 mW were used to irradiate the epidermis of the avocado (FV) with excitation light EL (excitation step S10).
 Next, the fluorescence FL emitted from the avocado skin was passed through a long-pass filter that transmits light with wavelengths of 460 nm or more, and then the fluorescence profile was measured using the light receiving unit 2 (spectroscope) (measurement step S20).
 FIG. 9 is a diagram showing how the excitation step S10 and the measurement step S20 are carried out using the evaluation device X.
 Next, the avocados were evaluated based on the peak intensities in the first wavelength range: 680 to 750 nm and the second wavelength range: 480 to 550 nm in the obtained fluorescence profiles (evaluation step S30).
 Specifically, based on the fluorescence intensities obtained in the measurement step S20, a fluorescence intensity ratioA1 between the fluorescence peak (wavelength 740 nm) derived from chlorophyll and the fluorescence peak (wavelength 685 nm) derived from chlorophyll, and a fluorescence intensity ratioA2 between the fluorescence peak (wavelength 550 nm) derived from carotenoid and the fluorescence peak (wavelength 685 nm) derived from chlorophyll were calculated, and the avocados were classified and evaluated based on these values ( FIG. 10 ).
 As shown in FIG. 10, when the evaluation criteria were set as follows: unripe ifA2 < 0.05, ripe if 0.05≦A2 ≦0.09, and overripe if 0.09<A2 , each avocado was evaluated as P: unripe, Q: ripe, and R: overripe, which was consistent with the results of the post-mortem sensory test.
 For example, when the evaluation device X is used, the user can perform the evaluation method of the present invention including the excitation step S10, the measurement step S20, and the evaluation step S30 performed by the evaluation unit 3 simply by turning on the start-up switch S with the excitation light source 1 and the light receiving unit 2 facing the skin of the avocado FV. In addition, when the start-up switch S is turned on, the evaluation device X automatically performs a series of steps up to displaying the evaluation result on the display unit 4 after the excitation step S10, the measurement step S20, and the evaluation step S30.
このように、本発明の方法によれば、外観やクロロフィル含有量等からは判断しにくいアボカド(アボカドFV)の熟度について、カロテノイド由来の蛍光を含む指標を用いてより正確な評価を行うことができる。In this way, the method of the present invention makes it possible to more accurately evaluate the ripeness of avocados (avocado FV), which is difficult to judge from appearance or chlorophyll content, by using an indicator that includes fluorescence derived from carotenoids.
  <比較例>
  比較例では、実施例と同様の励起工程S10及び測定工程S20の後、アボカドP、Q、Rを、各々得られた蛍光プロファイルにおける第一波長域:680~750nmのピーク強度に基づいて、それぞれ評価した(評価工程S30)。
  具体的には、測定工程S20で得られた蛍光強度に基づいて、クロロフィルに由来する蛍光ピーク(波長740nm)とクロロフィルに由来する蛍光ピーク(波長685nm)の蛍光強度比A1に基づいてアボカドを分類評価した(図11)。
  図11に示すように、A1を評価指標として用いる場合、A1≦1.10の場合は適熟、1.10<A1の場合は未熟又は過熟、のような評価基準を設定すれば、各アボカドはP:未熟又は過熟、Q:適熟、R:未熟又は過熟と一応の評価を下すことができる。
  しかし、アボカドP、Rのように、評価対象の未熟と過熟を区別することができなければ、評価対象が未熟であり追熟させるべきものか、あるいは過熟であり腐敗以前に処分すべきものなのかを、評価者は判断することができない。  Comparative Example
 In the comparative example, after the excitation step S10 and measurement step S20 similar to those in the example, avocados P, Q, and R were each evaluated based on the peak intensity in the first wavelength range: 680 to 750 nm in the obtained fluorescence profile (evaluation step S30).
 Specifically, based on the fluorescence intensity obtained in the measurement step S20, the avocados were classified and evaluated based on the fluorescence intensity ratioA1 between the fluorescence peak (wavelength 740 nm) derived from chlorophyll and the fluorescence peak (wavelength 685 nm) derived from chlorophyll (Figure 11).
 As shown in FIG. 11 , whenA1 is used as an evaluation index, if an evaluation criterion is set such thatA1 ≦1.10 is ripe, and 1.10<A1 is unripe or overripe, each avocado can be tentatively evaluated as P: unripe or overripe, Q: ripe, or R: unripe or overripe.
 However, if it is not possible to distinguish between unripe and overripe avocados, as in the case of avocados P and R, the appraiser will not be able to determine whether the item being evaluated is unripe and should be allowed to ripen further, or overripe and should be disposed of before it spoils.
  よって、クロロフィル由来の蛍光を指標とする従来方法と比較し、カロテノイド由来の蛍光を含む指標を用いる本発明の方法によれば、外観やクロロフィル含有量等からは判断しにくいアボカド(アボカドFV)の熟度について、より正確な評価を行うことができる。
  また、カロテノイド由来の蛍光とクロロフィル由来の蛍光の両方を評価指標として用いる本発明の評価方法は、カロテノイド由来の蛍光に基づいて未熟、適熟、過熟を判定し、
クロロフィル由来の蛍光に基づいて適熟、未熟又は過熟を判定することができるため、カロテノイド由来の蛍光のみを指標とした場合よりも適熟判定の信頼性が高い。  Therefore, compared to conventional methods that use chlorophyll-derived fluorescence as an indicator, the method of the present invention, which uses an indicator including carotenoid-derived fluorescence, enables a more accurate evaluation of the ripeness of avocados (avocado FV), which is difficult to judge from appearance, chlorophyll content, etc.
 In addition, the evaluation method of the present invention, which uses both the fluorescence derived from carotenoids and the fluorescence derived from chlorophyll as evaluation indices, judges whether a fruit is immature, ripe, or overripe based on the fluorescence derived from carotenoids,
 Since ripeness, immatureness, or overripeness can be determined based on fluorescence derived from chlorophyll, ripeness determination can be more reliable than when only fluorescence derived from carotenoids is used as an indicator.
なお、上記の実施形態、実施例等において示した各構成や機能は、あくまでも一例であって、設計要求や実際的事情等に基づき種々変更可能である。Note that the configurations and functions shown in the above embodiments and examples are merely examples and can be modified in various ways based on design requirements, practical circumstances, etc.
  <アボカドが含有する脂肪酸の割合と蛍光強度の関係>
  本発明者らは、図14に示すアボカドA~E(未熟~過熟)のヘタ部分(実線枠内)及び胴部分(破線枠内)について、下記の測定条件で3次元蛍光スペクトル分析を行った。
  (測定条件)
  測定装置:Fluorolog  3-22(HORIBA  Jobin  Yvon)
  光源:キセノンランプ
  検出器:光電子増倍管(PMT)
  励起波長:250~750  nm(10  nm毎)
  観測波長:~850  nm(2  nm毎)
  スリット幅:励起側、観測側、共に  2  nm
  時定数:0.02  s
  <Relationship between the percentage of fatty acids contained in avocado and fluorescence intensity>
 The present inventors performed three-dimensional fluorescence spectrum analysis on the stems (within the solid line frame) and body parts (within the dashed line frame) of avocados A to E (unripe to overripe) shown in FIG. 14 under the following measurement conditions.
 (Measurement conditions)
 Measurement equipment: Fluorolog 3-22 (HORIBA Jobin Yvon)
 Light source: Xenon lamp Detector: Photomultiplier tube (PMT)
 Excitation wavelength: 250 to 750 nm (in 10 nm increments)
 Observation wavelength: up to 850 nm (every 2 nm)
 Slit width: 2 nm on both the excitation side and observation side
 Time constant: 0.02 s
図15は、各アボカドA~Eについて、縦軸に励起波長、横軸に蛍光波長をとり、これらに対応する蛍光強度をヒートマップ形式で示した、3次元蛍光スペクトルである。Figure 15 shows three-dimensional fluorescence spectra for each avocado A to E, with the excitation wavelength on the vertical axis and the fluorescence wavelength on the horizontal axis, and the corresponding fluorescence intensity shown in heat map format.
また、表1は、アボカドA~Eの3次元蛍光スペクトル分析において、励起波長と蛍光波長で分類した発光成分L1~L6の発光強度を数値で示したものである。Table 1 also shows the numerical emission intensities of luminescent components L1 to L6 classified by excitation wavelength and fluorescence wavelength in the three-dimensional fluorescence spectrum analysis of avocados A to E.
  ここで、発光成分L1は芳香環アミノ酸やタンパク質に、発光成分L2はビタミン類やカロテン等に、発光成分L4~L7はクロロフィルに、それぞれ由来するものと考えられる。
  また、図15及び表1より、熟したアボカドEにおいては、クロロフィル由来と考えられた発光成分L4~L7が他と比較してもやや高い傾向にあり、特に発光成分L4,L5が比較的高い強度を示している。  Here, it is believed that the luminescent component L1 is derived from aromatic amino acids and proteins, the luminescent component L2 from vitamins and carotene, and the luminescent components L4 to L7 from chlorophyll.
 Furthermore, from FIG. 15 and Table 1, in ripe avocado E, the luminescence components L4 to L7, which are thought to be derived from chlorophyll, tend to be slightly higher than the others, and in particular the luminescence components L4 and L5 show relatively high intensities.
よって、発光成分L4~L7の変化からは、単にクロロフィル含量の増加のみに留まらない、何らかの発光特性の変化が予想された。Therefore, the changes in luminescent components L4 to L7 were expected to indicate some changes in luminescence characteristics that go beyond a simple increase in chlorophyll content.
  また、本発明者らは、図14に示すアボカドA、E(未熟、過熟)について、下記の条件でGC/FID分析を行い、含有脂肪酸(パルミチン酸、オレイン酸、リノール酸)の定量を行った。
  (測定条件)
  パルミチン酸標準品:富士フイルム和光純薬  試薬特級(純度98.2%)
  オレイン酸標準品:富士フイルム和光純薬  生化学用(純度99.1%)
  リノール酸標準品:富士フイルム和光純薬  和光一級(純度89.4%)
  測定装置:GC6890(Agilent  technologies)
  分析カラム:TG-5SILMS(Thermo  Fisher  Scientific)
  注入口温度:300  ℃
  昇温プログラム(標準溶液):170  ℃→230  ℃
  昇温プログラム(試料溶液):170  ℃→320  ℃
  スプリット比:20
  注入口ガス流量:2  mL/min(ヘリウム、定流量モード)
  注入量:1  μL
  検出器温度:300  ℃  In addition, the present inventors performed GC/FID analysis on avocados A and E (unripe and overripe) shown in FIG. 14 under the following conditions to quantify the fatty acids contained therein (palmitic acid, oleic acid, linoleic acid).
 (Measurement conditions)
 Palmitic acid standard: Fujifilm Wako Pure Chemicals, special grade reagent (purity 98.2%)
 Oleic acid standard: Fujifilm Wako Pure Chemical Industries, biochemical grade (purity 99.1%)
 Linoleic acid standard: Fujifilm Wako Pure Chemical Industries, Wako Grade 1 (purity 89.4%)
 Measurement device: GC6890 (Agilent technologies)
 Analytical column: TG-5SILMS (Thermo Fisher Scientific)
 Inlet temperature: 300℃
 Heating program (standard solution): 170°C → 230°C
 Heating program (sample solution): 170°C → 320°C
 Split ratio: 20
 Inlet gas flow rate: 2 mL/min (helium, constant flow mode)
 Injection volume: 1 μL
 Detector temperature: 300° C.
表2は、アボカドA、Eにおけるパルミチン酸、オレイン酸、リノール酸の各々のGC/FID分析について、分析条件及び各脂肪酸の試料中濃度を数値で示したものである。Table 2 shows the analytical conditions and the sample concentrations of each fatty acid for the GC/FID analysis of palmitic acid, oleic acid, and linoleic acid in avocados A and E.
また、表3は、GC/FID分析に基づく、アボカドA、Eにおけるパルミチン酸、オレイン酸、リノール酸の各々の定量値の概算を質量パーセント濃度で示したものである。Table 3 also shows the approximate quantitative values of palmitic acid, oleic acid, and linoleic acid in avocados A and E, based on GC/FID analysis, in terms of mass percent concentration.
  表3の数値に従い、アボカドA、Eにおける脂肪酸3成分の組成割合を概算すると、下記のようになる。
  A:パルミチン酸14%  オレイン酸76%  リノール酸12%
  E:パルミチン酸24%  オレイン酸62%  リノール酸14%  Based on the values in Table 3, the composition ratios of the three fatty acid components in avocados A and E are roughly calculated as follows:
 A: Palmitic acid 14%, Oleic acid 76%, Linoleic acid 12%
 E: Palmitic acid 24%, Oleic acid 62%, Linoleic acid 14%
  即ち、アボカドA、Eの熟度及びGC/FID分析の結果から、アボカドが熟するにつれてオレイン酸の割合が減少し、パルミチン酸の割合が増加する傾向にあることが示唆された。
  オレイン酸はアボカドが熟するにつれて、加水分解、遊離、酸化・分解を経て、揮発成分の一部となることで減少すると考えられる。
  また、これに伴いパルミチン酸の割合が増加することが、アボカドをハイオイルな熟した状態に近づけると考えられる。  That is, the ripeness of avocados A and E and the results of GC/FID analysis suggested that as the avocado ripens, the proportion of oleic acid tends to decrease and the proportion of palmitic acid tends to increase.
 As avocados ripen, oleic acid is thought to decrease through hydrolysis, liberation, oxidation and decomposition, becoming part of the volatile components.
 In addition, the accompanying increase in the proportion of palmitic acid is thought to bring the avocado closer to a high-oil ripe state.
ここで、3次元蛍光スペクトルにおける発光成分L4~L7(特に発光成分L4,L5)の変化から予想された、アボカドの発光特性の変化は、上記検討から、オレイン酸の減少及び/又はパルミチン酸の増加を伴う成分の変化に関連があると予想される。Here, the change in the luminescence characteristics of avocado predicted from the changes in luminescence components L4 to L7 (especially luminescence components L4 and L5) in the three-dimensional fluorescence spectrum is expected to be related to the change in components accompanying a decrease in oleic acid and/or an increase in palmitic acid, based on the above considerations.
オレイン酸割合の減少及びパルミチン酸割合の増加は、一波長の変化でとらえることは難しいが、蛍光スペクトルの変化と脂肪酸の割合の変化の相関を解析することにより、アボカドの熟度をさらに正確に把握することができる。The decrease in the proportion of oleic acid and the increase in the proportion of palmitic acid are difficult to detect with a change in a single wavelength, but by analyzing the correlation between the change in the fluorescence spectrum and the change in the proportion of fatty acids, it is possible to grasp the ripeness of the avocado more accurately.
そして、脂肪酸割合による変化がよく表れた発光成分L4、L5の励起波長及び蛍光波長は、本発明におけるクロロフィルの励起蛍光領域(第一波長域:励起波長410~480nm、蛍光波長680~750nm)に重なるため、第一波長域の蛍光強度の変化は、アボカドの脂肪酸割合の変化を少なからず反映することが推定される。The excitation wavelength and fluorescence wavelength of the luminescent components L4 and L5, which clearly show changes due to fatty acid ratios, overlap with the excitation fluorescence region of chlorophyll in the present invention (first wavelength region: excitation wavelength 410-480 nm, fluorescence wavelength 680-750 nm), so it is presumed that changes in fluorescence intensity in the first wavelength region reflect changes in the fatty acid ratios of avocados to a certain extent.
  クロロフィル及びカロテノイド由来の蛍光に基づく直接的な熟度予測が成り立つ(図4等)ことに加え、第一波長域の蛍光強度の変化にはアボカドの脂肪酸割合の変化を少なからず反映されることが上記の通り推定された。
  従って、蛍光における第一波長域の蛍光(クロロフィル由来)及び第二波長域の蛍光(カロテノイド由来)に基づいてアボカドを評価する本発明は、脂肪酸割合というアボカド特有の要素も考慮し、一波長の変化に基づく評価手法よりも、さらに正確なアボカドの評価手法を提供することができる。  In addition to the fact that direct prediction of ripeness based on fluorescence derived from chlorophyll and carotenoids is possible (Figure 4, etc.), it was estimated, as described above, that changes in the fluorescence intensity in the first wavelength range reflect, to a certain extent, changes in the fatty acid ratio of the avocado.
 Therefore, the present invention, which evaluates avocados based on fluorescence in a first wavelength range (derived from chlorophyll) and fluorescence in a second wavelength range (derived from carotenoids), also takes into account an avocado-specific factor, namely the fatty acid ratio, and can provide a more accurate avocado evaluation method than evaluation methods based on changes in a single wavelength.
X    評価装置
1    励起光源
2    受光部
21  光学フィルタ
3    評価部
4    表示部
41  液晶画面
42  色彩表示部
5    遮光部材
FV  アボカド
EL  励起光
FL  蛍光
X Evaluation device 1 Excitation light source 2 Light receiving unit 21 Optical filter 3 Evaluation unit 4 Display unit 41 Liquid crystal screen 42 Color display unit 5 Light blocking member FV Avocado EL Excitation light FL Fluorescence
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP2024044892 | 2024-03-21 | ||
| JP2024044892 | 2024-03-21 | 
| Publication Number | Publication Date | 
|---|---|
| JP7649503B1true JP7649503B1 (en) | 2025-03-21 | 
| JP2025146592A JP2025146592A (en) | 2025-10-03 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP2024139595AActiveJP7649503B1 (en) | 2024-03-21 | 2024-08-21 | Avocado evaluation method and evaluation device | 
| Country | Link | 
|---|---|
| JP (1) | JP7649503B1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US20100181496A1 (en) | 2007-06-01 | 2010-07-22 | Force-A | In-situ plant analysis apparatus, method for tracking the state or evolution of a culture and method for managing vegetable processing | 
| CN107064056A (en) | 2017-03-08 | 2017-08-18 | 北京农业智能装备技术研究中心 | A kind of method and device of fruit Non-Destructive Testing | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US20100181496A1 (en) | 2007-06-01 | 2010-07-22 | Force-A | In-situ plant analysis apparatus, method for tracking the state or evolution of a culture and method for managing vegetable processing | 
| CN107064056A (en) | 2017-03-08 | 2017-08-18 | 北京农业智能装备技术研究中心 | A kind of method and device of fruit Non-Destructive Testing | 
| Title | 
|---|
| LAI, A. et al.,Analysis of the main secondary metabolites produced in tomato (Lycopersicon esculentum, Mill.) epica,Postharvest Biology and Technology,2007年,Vol.43,pp.335-342,doi:10.1016/j.postharvbio.2006.09.016 | 
| ULLAH, R. et al.,Non-invasive assessment of mango ripening using fluorescence spectroscopy,Optik,2016年,Vol.127,pp.5186-5189,http://dx.doi.org/10.1016/j.ijleo.2016.03.049 | 
| 斎藤嘉人、外7名,励起蛍光マトリクスを用いたアボカド(Persea americana)の脂質量予測,農業食料工学会誌,2021年,第83巻第4号,第300頁-第302頁 | 
| Publication | Publication Date | Title | 
|---|---|---|
| Hussain et al. | Innovative nondestructive imaging techniques for ripening and maturity of fruits–a review of recent applications | |
| Oliveira et al. | Portable near-infrared spectroscopy for rapid authentication of adulterated paprika powder | |
| Noh et al. | Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality | |
| Jha | Colour measurements and modeling | |
| Jha et al. | Non-destructive determination of firmness and yellowness of mango during growth and storage using visual spectroscopy | |
| US8260402B2 (en) | Noninvasive measurement of carotenoids in biological tissue | |
| Løkke et al. | Color and textural quality of packaged wild rocket measured by multispectral imaging | |
| Ignat et al. | Non-destructive measurement of ascorbic acid content in bell peppers by VIS-NIR and SWIR spectrometry | |
| Tang et al. | Multispectral imaging for predicting sugar content of ‘Fuji’apples | |
| US11435296B2 (en) | Method and system for grading gemstones | |
| Hossain et al. | Fluorescence-based determination of olive oil quality using an endoscopic smart mobile spectrofluorimeter | |
| Fu et al. | Nondestructive and rapid assessment of intact tomato freshness and lycopene content based on a miniaturized Raman spectroscopic system and colorimetry | |
| WO2014181209A1 (en) | Method and device for measuring quality and freshness of vegetable oil using fluorescence spectrophotometry | |
| KR102426135B1 (en) | Meat freshness measurement system and meat freshness measurement method using the same | |
| Huang et al. | Macroscopic and microscopic characterization of fluorescence properties of multiple sweet pepper cultivars (Capsicum annuum L.) using excitation-emission matrix and UV induced fluorescence imaging | |
| Stavrakakis et al. | Application of optical spectroscopic techniques and multivariate statistical analysis as a method of determining the percentage and type of adulteration of extra virgin olive oil | |
| Noh et al. | Integration of hyperspectral reflectance and fluorescence imaging for assessing apple maturity | |
| Al Riza et al. | Mandarin orange (Citrus reticulata Blanco cv. Batu 55) ripeness level prediction using combination reflectance-fluorescence spectroscopy | |
| Hara et al. | Use of the product of mean intensity ratio (PMIR) technique for discriminant analysis of lycopene-rich vegetable juice using a portable NIR-excited Raman spectrometer | |
| Dold et al. | Optical measurement systems in the food packaging sector and research for the non-destructive evaluation of product quality | |
| Ma et al. | Development of a sensitivity-enhanced chlorophyll fluorescence lifetime spectroscopic method for nondestructive monitoring of fruit ripening and postharvest decay | |
| JP7649503B1 (en) | Avocado evaluation method and evaluation device | |
| JP2006226775A (en) | Fruit taste component evaluation method and evaluation apparatus | |
| JP2025146592A (en) | Avocado evaluation method and evaluation device | |
| Arabi et al. | Utilization of spectrochemical analysis and diffuse optical techniques to reveal adulteration of alike fish species and their microbial contamination | 
| Date | Code | Title | Description | 
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20240823 | |
| A871 | Explanation of circumstances concerning accelerated examination | Free format text:JAPANESE INTERMEDIATE CODE: A871 Effective date:20240823 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A821 Effective date:20240821 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20241001 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20241112 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20241217 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20250116 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A821 Effective date:20250116 | |
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20250225 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20250227 | |
| R150 | Certificate of patent or registration of utility model | Ref document number:7649503 Country of ref document:JP Free format text:JAPANESE INTERMEDIATE CODE: R150 |