Movatterモバイル変換


[0]ホーム

URL:


JP6491033B2 - Mortar and its construction method - Google Patents

Mortar and its construction method
Download PDF

Info

Publication number
JP6491033B2
JP6491033B2JP2015093248AJP2015093248AJP6491033B2JP 6491033 B2JP6491033 B2JP 6491033B2JP 2015093248 AJP2015093248 AJP 2015093248AJP 2015093248 AJP2015093248 AJP 2015093248AJP 6491033 B2JP6491033 B2JP 6491033B2
Authority
JP
Japan
Prior art keywords
particles
mortar
bearing effect
refractory
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015093248A
Other languages
Japanese (ja)
Other versions
JP2016210636A (en
Inventor
松井 泰次郎
泰次郎 松井
幸弘 末川
幸弘 末川
裕太郎 山下
裕太郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima CorpfiledCriticalKrosaki Harima Corp
Priority to JP2015093248ApriorityCriticalpatent/JP6491033B2/en
Publication of JP2016210636ApublicationCriticalpatent/JP2016210636A/en
Application grantedgrantedCritical
Publication of JP6491033B2publicationCriticalpatent/JP6491033B2/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Description

Translated fromJapanese

本発明は、煉瓦、プレキャストブロック等の築炉用耐火物により築炉する際に、その築炉用耐火物の接合部に施工する耐火性のモルタル、及びその施工方法に関する。  TECHNICAL FIELD The present invention relates to a refractory mortar to be constructed at a joint portion of a refractory for building construction, such as bricks and precast blocks, and a construction method therefor.

従前より、煉瓦、プレキャストブロック等の築炉用耐火物により築炉する際、これら築炉用耐火物を所定の位置へ正確に設置する技術の確立が望まれていた。築炉用耐火物は、例えば大きさが長さ1m×幅1m×高さ0.5m程度で、重量が300kg程度の大型の重量物であるところ、従来、一般的な大型の重量物の搬送、位置決めにはクレーンを用いる技術があるものの、クレーンによる揚重のみでは所定の位置へ正確に設置できない問題があった。このため、特許文献1に記載されているような位置決め装置の適用や、特許文献2に記載されているような重量物横押し装置の適用が提案されている。  Conventionally, it has been desired to establish a technique for accurately installing these refractories for building construction in a predetermined position when constructing them with refractories for construction such as bricks and precast blocks. Refractories for building furnaces are, for example, large heavy objects having a size of about 1 m long x 1 m wide x 0.5 m high and weighing about 300 kg. Although there is a technique of using a crane for positioning, there is a problem that it cannot be accurately set at a predetermined position only by lifting with a crane. For this reason, application of a positioning device as described inPatent Document 1 and application of a heavy load lateral pressing device as described in Patent Document 2 have been proposed.

しかし、特許文献1に記載の位置決め装置は、築炉用耐火物のように積層の上下にモルタルで接合構造をとるためには、モルタルが位置決め装置に付着固化してしまい接合部の信頼性が低下することから採用できない。また、特許文献2の重量物横押し装置では微調整方向が一方向のみであり、しかも、押送機構の反力を受ける部分が必要であるところ、築炉用耐火物により築炉する際には、このような反力を受ける部分を設けることは困難であるため、同様に採用できない。  However, in the positioning device described inPatent Document 1, in order to take a bonding structure with mortar on the top and bottom of the stack like a refractory for a furnace, the mortar adheres to the positioning device and solidifies, and the reliability of the bonded portion is high. It cannot be adopted because it decreases. In addition, in the heavy load lateral pushing device of Patent Document 2, the fine adjustment direction is only one direction, and a portion that receives the reaction force of the pushing mechanism is necessary. Since it is difficult to provide a portion that receives such a reaction force, it cannot be similarly employed.

したがって、築炉用耐火物においては、特別な装置を使用することなく、作業者の人力によって設置位置の微調整をできる技術が望まれる。  Therefore, in a refractory for a furnace, a technique that can finely adjust the installation position by human power without using a special device is desired.

また、築炉耐火物の築炉においては、築炉耐火物の荷重により築炉耐火物の接合部の目地厚みが潰れないようにする必要もあり、築炉耐火物の接合部の目地厚みを確保できる技術も望まれている。  Also, in the construction of furnace refractories, it is necessary to prevent the joint joint thickness of the furnace refractory from being crushed by the load of the furnace refractory. Technology that can be secured is also desired.

特開平11−130219号公報JP-A-11-130219特開平10−183581号公報Japanese Patent Laid-Open No. 10-183581

本発明が解決しようとする課題は、特別な装置を使用することなく作業者の人力によって、築炉用耐火物の設置位置の微調整を可能とし、かつ、築炉耐火物の接合部の目地厚みを確保できる技術を提供することにある。  The problem to be solved by the present invention is that it is possible to finely adjust the installation position of the refractory for the furnace construction without using a special device, and the joint of the joint of the refractory construction for the furnace construction. The object is to provide a technique capable of ensuring the thickness.

本発明者らは、上記課題を解決するために、築炉用耐火物の接合部に施工するモルタルに、その築炉用耐火物に対してベアリング効果を有する粒子を使用しようと考えた。そして、築炉用耐火物の接合部において、その築炉用耐火物に対してベアリング効果を有する粒子のうち最大径を有するものは、築炉耐火物用の接合部の目地厚み相当の粒子径であることが必要と考え、本発明を完成させるに至った。すなわち、本発明によれば、次のモルタル及びその施工方法が提供される。  In order to solve the above-mentioned problems, the present inventors have considered to use particles having a bearing effect on the refractory for a furnace for the mortar to be applied to the joint of the refractory for a furnace. And, in the joint part of the refractory for a furnace, the one having the largest diameter among the particles having a bearing effect for the refractory for the furnace is a particle diameter corresponding to the joint thickness of the joint for the furnace refractory. Therefore, the present invention has been completed. That is, according to this invention, the following mortar and its construction method are provided.

(1)築炉用耐火物の接合部に施工される耐火性のモルタルであって、
ベアリング効果を有する粒子と、ベアリング効果を有しない粒子とを含み、
前記ベアリング効果を有する粒子のうち最大径のものは、前記ベアリング効果を有しない粒子のうち最大径のものよりも粒子径が大きく、前記ベアリング効果を有する粒子のうち最大径のものは、築炉用耐火物の接合部の目地厚み相当の粒子径であることを特徴とするモルタル。
(1) It is a refractory mortar constructed at the joint of refractories for building furnaces,
Includingparticles having a bearing effect and particles havingno bearing effect ,
Of the particles having the bearing effect, those having the largest diameter are larger in particle size than those having the largest diameter among the particleshaving nobearing effect. A mortar characterized by having a particle diameter equivalent to the joint thickness of the joint part of the refractory for use.

(2)前記ベアリング効果を有する粒子は球状粒子であることを特徴とする(1)に記載のモルタル。(2) The mortar according to (1), wherein the particles having a bearing effect are spherical particles.

(3)前記球状粒子の最大径をd(mm)としたとき、当該球状粒子を当該モルタルの10dcm当たり1個以上含むことを特徴とする(2)に記載のモルタル。(3) The mortar according to (2), wherein one or more spherical particles are contained per 10 dcm3 of the mortar when the maximum diameter of the spherical particles is d (mm).

(4)前記ベアリング効果を有する粒子は、前記ベアリング効果を有しない粒子よりも高い圧縮強度を有することを特徴とする(1)から(3)のいずれか一項に記載のモルタル。(4) particles having a bearing effect, the mortar according to any one ofthehaving a higher compressive strength than no particles bearing effectcharacterized by (1) to (3).

(5)モルタルを築炉用耐火物の接合部に施工するモルタルの施工方法において、
前記築炉用耐火物の接合面上に、ベアリング効果を有する粒子と、ベアリング効果を有しない粒子とを含み、前記ベアリング効果を有する粒子のうち最大径のものは、前記ベアリング効果を有しない粒子のうち最大径のものよりも粒子径が大きいモルタルを塗布し、その塗布後の接合面100cmの領域内に、前記ベアリング効果を有する粒子であって当該粒子のうち最大径のものが前記築炉用耐火物の接合部の目地厚み相当の粒子径であるものを少なくとも1個以上配置することを特徴とするモルタルの施工方法。
(5) In the construction method of the mortar in which the mortar is constructed at the junction of the refractory for the furnace construction,
Particles having a bearing effect and particles not having a bearing effect are included on the joint surface of the refractory for building construction,and the particles having the largest diameter among the particles having the bearing effect have no bearing effect. mortarparticle size greater than that of the maximum diameter was coatedout of, its area on the bonding surface 100 cm2 after application, the is the largest diameter Built among the particles be particles havinga bearing effect A mortar construction method characterized by disposing at least one particle having a particle diameter corresponding to the joint thickness of a joint portion of a furnace refractory.

(6)前記ベアリング効果を有する粒子は、前記ベアリング効果を有しない粒子よりも高い圧縮強度を有するものを使用することを特徴とする(5)に記載のモルタルの施工方法。(6) The mortar construction method accordingto (5),wherein the particles having the bearing effect are those having higher compressive strength than the particles not having the bearing effect.

本発明によれば、モルタルにベアリング効果を有する粒子を含み、この粒子のうち最大径のものは築炉用耐火物の接合部の目地厚み相当の粒子径であるので、特別な装置を使用することなく作業者の人力によって築炉用耐火物の設置位置の微調整が可能となり、かつ、築炉耐火物の接合部の目地厚みを確保することができる。  According to the present invention, particles having a bearing effect are included in the mortar, and among these particles, the largest diameter is a particle diameter corresponding to the joint thickness of the joint portion of the refractory for building furnaces, and thus a special apparatus is used. Therefore, it is possible to finely adjust the installation position of the refractory for the furnace construction by the operator's human power, and to secure the joint thickness of the joint portion of the refractory for the construction furnace.

球状粒子の圧縮強度の測定方法を示す図である。It is a figure which shows the measuring method of the compressive strength of a spherical particle.築炉用耐火物の設置位置の微調整の容易性を評価する方法を示す図である。It is a figure which shows the method of evaluating the ease of fine adjustment of the installation position of the refractory for building furnaces.

本発明のモルタルは、ベアリング効果を有する粒子を含み、この粒子のうち最大径のものは、築炉用耐火物の接合部の目地厚み相当の粒子径であることを特徴とする。ベアリング効果を有する粒子は、築炉用耐火物の微調整が可能となる粒子であれば形状は問わない。例えば、ベアリング効果を有する粒子としては、球状、円柱状、卵型状のものが挙げられる。ベアリング効果を有する粒子のうち最大径のものについては、粒子の重心が最も低い位置となったときにおける鉛直方向の寸法を最大径と定義とした。  The mortar of the present invention contains particles having a bearing effect, and the largest diameter among these particles is a particle diameter corresponding to the joint thickness of the joint portion of the refractory for a furnace. The shape of the particles having a bearing effect is not limited as long as the particles can finely adjust the refractory for a furnace. For example, the particles having a bearing effect include spherical, cylindrical, and egg-shaped particles. For particles having the maximum diameter among the particles having a bearing effect, the dimension in the vertical direction when the center of gravity of the particles is the lowest is defined as the maximum diameter.

また、ベアリング効果を有する粒子が球状粒子の場合、球状粒子の最大径をd(mm)としたとき、モルタルの10dcm当たり1個以上含むのが好ましい。これは、本発明のモルタルを施工した築炉用耐火物の接合部において、その接合面100cmの領域内に球状粒子が1個以上含まれるようにすると、よりベアリング効果を発揮し得るからである。
すなわち、本発明のモルタルを施工した築炉用耐火物の接合部の目地厚みは、ベアリング効果を奏する粒子のうち最大径を有する粒子径と実質的に等しくなるので、球状粒子がモルタルの10dcm(10cm×10cm×d/10cm)当たり1個以上含まれていれば、接合面100cmの領域内に球状粒子が1個以上含まれることになる。
Moreover, when the particle | grains which have a bearing effect are spherical particles, when the maximum diameter of a spherical particle is made into d (mm), it is preferable to contain 1 or more per 10 dcm <3 > of mortar. This is because in the joint portion of the refractory for building furnaces in which the mortar of the present invention is applied, if one or more spherical particles are included in the region of the joint surface 100 cm2 , the bearing effect can be exhibited more. is there.
That is, the joint thickness of the joint portion of the refractory for building furnace in which the mortar of the present invention is applied is substantially equal to the particle diameter having the maximum diameter among the particles exhibiting the bearing effect, so that the spherical particles are 10 dcm3 of the mortar. If one or more particles are included per (10 cm × 10 cm × d / 10 cm), one or more spherical particles are included in the region of the bonding surface 100 cm2 .

ここで、例えば、特開昭62−207744号公報や特開平10−101442号公報に開示されているように、モルタルに球状粒子を添加することは公知であるが、この球状粒子は、モルタル自体の流動性を向上させるために使用されており、築炉用耐火物の設置位置の微調整を可能とし、築炉耐火物の接合部の目地厚みを確保できる効果を狙ったものではない。すなわち、単に球状粒子を使用するだけでは、接合部の築炉用耐火物に対しては十分なベアリング効果は得られず、本発明のように、ベアリング効果を有する粒子の最大径のものが、築炉用耐火物の接合部の目地厚み相当の粒子径であることにより、初めて接合部の築炉用耐火物に対して十分なベアリンク効果が得られ、かつ、築炉耐火物の接合部の目地厚を確保する効果が得られる。  Here, for example, as disclosed in JP-A-62-207744 and JP-A-10-101442, it is known to add spherical particles to the mortar. It is used to improve the fluidity of the refractory, and does not aim at the effect of enabling fine adjustment of the installation position of the refractory for building furnaces and ensuring the joint thickness of the joint of the refractory for building furnaces. That is, by simply using spherical particles, it is not possible to obtain a sufficient bearing effect for the refractory for the furnace construction of the joint, as in the present invention, the particles having the maximum diameter of the bearing effect, By having a particle diameter equivalent to the joint thickness of the joint of the refractory for building furnaces, a sufficient bare link effect can be obtained for the refractory for construction of the joint for the first time, and the joint of the refractory for building furnaces. The effect of securing the joint thickness can be obtained.

なお、ベアリング効果を有する粒子が球状である場合、よりベアリング効果を発揮する点から、球状粒子の真円度(最大径−最小径)/最大径は30%以下であることが好ましい。  In addition, when the particle | grains which have a bearing effect are spherical, it is preferable that roundness (maximum diameter-minimum diameter) / maximum diameter of a spherical particle is 30% or less from the point which exhibits a bearing effect more.

また、ベアリング効果を有する粒子が球状粒子の場合、球状粒子の個数は上述のとおりモルタルの10dcm当たり又は接合面100cmの領域内に1個以上であればよく、その個数の上限はベアリング効果の点からは制限はない。一方、築炉用耐火物の接合面100cmに配列できる球状粒子の個数の上限は計算上、(100/d)×(100/d)=10000/d(個)であるから、この個数を実質的な上限と考えることができる。When the particles having a bearing effect are spherical particles, the number of spherical particles may be one or more per 10 dcm3 of the mortar or in the region of 100 cm2 of the joint surface as described above, and the upper limit of the number is the bearing effect. There is no limit from this point. On the other hand, since the upper limit of the number of spherical particles that can be arranged on the joint surface 100 cm2 of the refractory for a furnace is calculated as (100 / d) × (100 / d) = 10000 / d2 (pieces), this number Can be considered as a practical upper limit.

本発明のモルタルは、築炉用耐火物の接合部に直接的に施工することができる。すなわち、モルタルを築炉用耐火物の接合面上に塗布することができる。  The mortar of the present invention can be applied directly to the joint portion of the refractory for building furnaces. That is, the mortar can be applied on the joint surface of the refractory for building furnaces.

一方、本発明では、築炉用耐火物の接合面上にモルタルを塗布し、その塗布後の接合面にベアリング効果を有する粒子を配置することもできる。この場合、その塗布後の接合面100cmの領域内にベアリング効果を有する粒子であって最大径のものが築炉用耐火物の接合部の目地厚み相当の粒子径であるものを少なくとも1個以上配置すれば、本発明のモルタルを使用した場合と同様の効果を得ることができる。On the other hand, in this invention, mortar can be apply | coated on the joint surface of the refractory material for furnace construction, and the particle | grains which have a bearing effect can also be arrange | positioned on the joint surface after the application | coating. In this case, at least one particle having a bearing effect in the region of the bonded surface 100 cm2 after the application, the particle having the maximum diameter corresponding to the joint thickness of the joint portion of the refractory for building furnaces. If it arrange | positions above, the effect similar to the case where the mortar of this invention is used can be acquired.

また、ベアリング効果を有する粒子は、モルタル中のベアリング効果を有しない粒子よりも高い圧縮強度を有することが好ましい。ベアリング効果を有する粒子が築炉用耐火物の微調整を安定的に奏することができるようにするためである。  Moreover, it is preferable that the particle | grains which have a bearing effect have higher compressive strength than the particle | grains which do not have a bearing effect in mortar. This is because the particles having a bearing effect can stably perform fine adjustment of the refractory for building furnaces.

また、ベアリング効果を有する粒子のうち最大径のものは、施工対象である築炉用耐火物の接合部の目地厚み相当の粒子径であるので、築炉耐火物の接合部の目地厚を確保できる効果も奏する。  In addition, the largest particle size of the bearing effect particles is the particle size equivalent to the joint thickness of the refractory for furnace construction, which is the object of construction. There is also an effect that can be done.

なお、本発明において、モルタルを構成する粒子の材質は、特に限定されず、築炉用耐火物の接合部に一般的に使用されている材質であれば、問題なく使用できる。また、築炉耐火物の接合部の目地厚み相当の粒子径以外の小径の粒子を使用することもできる。  In addition, in this invention, the material of the particle | grains which comprise mortar is not specifically limited, If it is the material generally used for the junction part of the refractory material for furnace construction, it can be used without a problem. In addition, particles having a small diameter other than the particle diameter corresponding to the joint thickness of the joint portion of the furnace refractory can be used.

表1に示す本発明の実施例及び比較例のモルタルについて、人力による築炉用耐火物の設置位置の微調整の容易性を評価した。  About the mortar of the Example of this invention shown in Table 1, and the comparative example, the ease of the fine adjustment of the installation position of the refractory for furnace construction by human power was evaluated.

モルタルを構成する耐火骨材としては、最大径が1mmの珪石を使用した。また、ベアリング効果を有する粒子としては、ガラスビーズ及び鋳物砂を使用した。ガラスビーズは球状であり、鋳物砂は卵型状である。これらのベアリング効果を有する粒子の最大径はいずれも4mmであり、築炉用耐火物の接合部の目地厚み相当の粒子径である。なお、本実施例において耐火骨材(珪石)はベアリング効果を有しないものとする。  As the refractory aggregate constituting the mortar, silica stone having a maximum diameter of 1 mm was used. Further, glass beads and foundry sand were used as particles having a bearing effect. Glass beads are spherical and foundry sand is oval. The maximum diameters of these particles having the bearing effect are all 4 mm, which is a particle diameter corresponding to the joint thickness of the joint portion of the refractory for building furnace. In this embodiment, the refractory aggregate (silica stone) does not have a bearing effect.

これらの耐火骨材及びベアリング効果を有する粒子(球状粒子、卵型状粒子)の圧縮強度は、珪石が50MPa、ガラスビーズが180MPa、鋳物砂が80MPaであった。なお、耐火骨材(珪石)の圧縮強度はJIS R 2575に準拠して測定した。また、ガラスビーズ、鋳物砂の圧縮強度は、微小圧縮試験機(MCT−510(島津製作所))を用いて測定した。具体的には、図1に示すように、試料台に試料として粒子を散布し、圧子により1粒ずつ圧縮試験を行い、5回(5粒)の圧縮試験の平均値を圧縮強度とした。  The compressive strength of these refractory aggregates and particles having a bearing effect (spherical particles, oval particles) were 50 MPa for silica, 180 MPa for glass beads, and 80 MPa for foundry sand. The compressive strength of the refractory aggregate (silica stone) was measured according to JIS R 2575. The compressive strength of glass beads and foundry sand was measured using a micro compression tester (MCT-510 (Shimadzu Corporation)). Specifically, as shown in FIG. 1, particles were dispersed as a sample on a sample stage, a compression test was performed one by one with an indenter, and an average value of five (5) compression tests was defined as a compression strength.

また、人力による築炉用耐火物の設置位置の微調整の容易性は、図2に示す要領で評価した。すなわち、モルタル1を、下段の築炉用耐火物2の上面(接合面)に6mm程度の厚みで塗布し、その上に上段の築炉用耐火物2をクレーンで吊り下げて設置した。その後、ロードセル3を固定したジャッキ4を上段の築炉用耐火物2の側端面にセットした。築炉用耐火物2をセットした際に端部からはみ出したモルタルは鏝にて除去した。  Moreover, the ease of fine adjustment of the installation position of the refractory for building furnaces by human power was evaluated in the way shown in FIG. That is, themortar 1 was applied to the upper surface (joint surface) of the lower-stage furnace refractory 2 with a thickness of about 6 mm, and the upper-stage furnace refractory 2 was suspended by a crane and installed. Then, the jack 4 which fixed theload cell 3 was set to the side end surface of the refractory material 2 for an upper furnace. The mortar that protruded from the end when the refractory material for building furnace 2 was set was removed with a scissors.

そして、モルタル1の塗布完了(上段の築炉用耐火物2の設置)から10分経過後にジャッキ4を回転することにより、上段の築炉用耐火物2へ水平方向の外力を付与し、上段の築炉用耐火物2が水平方向に動いた時のロードセル3の荷重を測定した。  Then, by rotating the jack 4 after 10 minutes from the completion of the application of the mortar 1 (installation of the upper-stage furnace refractory 2), a horizontal external force is applied to the upper-stage refractory 2 for construction. The load of theload cell 3 was measured when the refractory for building furnace 2 moved in the horizontal direction.

このロードセル3の荷重により、人力による築炉用耐火物の設置位置の微調整の容易性を評価した。すなわち、ロードセル3の荷重が2N(ニュートン)未満の場合を「容易」、2N以上3N未満の場合を「可能」、3N以上の場合を「不可」とした。  The ease of fine adjustment of the installation position of the refractory for building furnace by human power was evaluated by the load of theload cell 3. That is, the case where the load of theload cell 3 is less than 2N (Newton) is “easy”, the case where it is 2N or more and less than 3N is “possible”, and the case where it is 3N or more is “impossible”.

なお、築炉用耐火物2としては、長さ0.25m×幅0.25m×高さ0.6mで重量が86kgのプレキャストブロックを使用した。また、築炉用耐火物2の接合部の厚みを、モルタルの塗布完了から24時間経過後に測定したところ、いずれも4mmであった。  In addition, as the refractory material 2 for a furnace, a precast block having a length of 0.25 m, a width of 0.25 m, a height of 0.6 m and a weight of 86 kg was used. Moreover, when the thickness of the junction part of the refractory material 2 for building furnaces was measured 24 hours after the completion of application | coating of mortar, all were 4 mm.

Figure 0006491033
Figure 0006491033

表1中の実施例1〜4は本発明のモルタルを施工した例で、人力による築炉用耐火物の設置位置の微調整の容易性は、「容易」又は「可能」であった。また、実施例4より、目地厚相当の粒子より小径の粒子を含む場合であっても、人力による築炉用耐火物の微調整は可能であることがわかる。  Examples 1 to 4 in Table 1 are examples in which the mortar of the present invention was applied, and the ease of fine adjustment of the installation position of the refractory for building construction by human power was “easy” or “possible”. In addition, it can be seen from Example 4 that fine adjustment of the refractory for building construction by human power is possible even when particles having a diameter smaller than the particles corresponding to the joint thickness are included.

これに対して、比較例1は、目地厚相当の粒子より小径のガラスビーズのみを含む例である。人力による築炉用耐火物の設置位置の微調整の容易性は「不可」であった。比較例2は、ベアリング効果を有する粒子を使用しなかった例である。当然ではあるが、人力による築炉用耐火物の設置位置の微調整の容易性は「不可」であった。  On the other hand, the comparative example 1 is an example including only glass beads having a smaller diameter than particles corresponding to the joint thickness. The ease of fine-tuning the installation position of refractories for building furnaces by human power was “impossible”. Comparative Example 2 is an example in which particles having a bearing effect were not used. Naturally, the ease of fine adjustment of the installation position of the refractory for building furnaces by human power was “impossible”.

1 モルタル
2 築炉用耐火物
3 ロードセル
4 ジャッキ
1 Mortar 2 Refractory forfurnace construction 3 Load cell 4 Jack

Claims (6)

Translated fromJapanese
築炉用耐火物の接合部に施工される耐火性のモルタルであって、
ベアリング効果を有する粒子と、ベアリング効果を有しない粒子とを含み、
前記ベアリング効果を有する粒子のうち最大径のものは、前記ベアリング効果を有しない粒子のうち最大径のものよりも粒子径が大きく、前記ベアリング効果を有する粒子のうち最大径のものは、築炉用耐火物の接合部の目地厚み相当の粒子径であることを特徴とするモルタル。
It is a refractory mortar constructed at the joint of refractories for building furnaces,
Includingparticles having a bearing effect and particles havingno bearing effect ,
Of the particles having the bearing effect, those having the largest diameter are larger in particle size than those having the largest diameter among the particleshaving nobearing effect. A mortar characterized by having a particle diameter equivalent to the joint thickness of the joint part of the refractory for use.
前記ベアリング効果を有する粒子は球状粒子であることを特徴とする請求項1に記載のモルタル。  The mortar according to claim 1, wherein the particles having a bearing effect are spherical particles. 前記球状粒子の最大径をd(mm)としたとき、前記球状粒子を当該モルタルの10dcm当たり1個以上含むことを特徴とする請求項2に記載のモルタル。3. The mortar according to claim 2, wherein one or more spherical particles are included per 10 dcm3 of the mortar, where d (mm) is the maximum diameter of the spherical particles. 前記ベアリング効果を有する粒子は、前記ベアリング効果を有しない粒子よりも高い圧縮強度を有することを特徴とする請求項1から3のいずれか一項に記載のモルタル。It said particles having a bearing effect, the mortar according to any one of claims 1 to3, characterized in that it has a high compressive strength than no particlesthe bearing effect. モルタルを築炉用耐火物の接合部に施工するモルタルの施工方法において、
前記築炉用耐火物の接合面上に、ベアリング効果を有する粒子と、ベアリング効果を有しない粒子とを含み、前記ベアリング効果を有する粒子のうち最大径のものは、前記ベアリング効果を有しない粒子のうち最大径のものよりも粒子径が大きいモルタルを塗布し、その塗布後の接合面100cmの領域内に、前記ベアリング効果を有する粒子であって当該粒子のうち最大径のものが前記築炉用耐火物の接合部の目地厚み相当の粒子径であるものを少なくとも1個以上配置することを特徴とするモルタルの施工方法。
In the mortar construction method, which constructs mortar at the junction of refractories for furnace construction,
Particles having a bearing effect and particles not having a bearing effect are included on the joint surface of the refractory for building construction,and the particles having the largest diameter among the particles having the bearing effect have no bearing effect. mortarparticle size greater than that of the maximum diameter was coatedout of, its area on the bonding surface 100 cm2 after application, the is the largest diameter Built among the particles be particles havinga bearing effect A mortar construction method characterized by disposing at least one particle having a particle diameter corresponding to the joint thickness of a joint portion of a furnace refractory.
前記ベアリング効果を有する粒子は、前記ベアリング効果を有しない粒子よりも高い圧縮強度を有するものを使用することを特徴とする請求項5に記載のモルタルの施工方法。The mortar construction method accordingto claim 5,wherein the particles having a bearing effect are those having a higher compressive strength than particles having no bearing effect.
JP2015093248A2015-04-302015-04-30 Mortar and its construction methodActiveJP6491033B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2015093248AJP6491033B2 (en)2015-04-302015-04-30 Mortar and its construction method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2015093248AJP6491033B2 (en)2015-04-302015-04-30 Mortar and its construction method

Publications (2)

Publication NumberPublication Date
JP2016210636A JP2016210636A (en)2016-12-15
JP6491033B2true JP6491033B2 (en)2019-03-27

Family

ID=57551033

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2015093248AActiveJP6491033B2 (en)2015-04-302015-04-30 Mortar and its construction method

Country Status (1)

CountryLink
JP (1)JP6491033B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS609234B2 (en)*1978-03-241985-03-08住友金属工業株式会社 Brick joint construction method during furnace construction
FR2458520B1 (en)*1979-06-111983-07-22Produits Refractaires
JPS5969478A (en)*1982-10-091984-04-19黒崎窯業株式会社Refractory mortar
JPH03141166A (en)*1989-10-261991-06-17Kawasaki Refract Co LtdMortar for blast furnace sic brick
JPH07267745A (en)*1994-03-311995-10-17Nippon Steel Corp Refractory for casting
JPH10101442A (en)*1996-10-021998-04-21Nippon Tokushu Rozai Kk Refractory for press fitting
JP4828586B2 (en)*2008-09-192011-11-30新日本製鐵株式会社 Refractory construction method

Also Published As

Publication numberPublication date
JP2016210636A (en)2016-12-15

Similar Documents

PublicationPublication DateTitle
Ghoddousi et al.Effects of particle packing density on the stability and rheology of self-consolidating concrete containing mineral admixtures
CN104655463B (en)Vibration table-based sample preparation device and vibration table-based sample preparation method for large-scale triaxial test of coarse grained soil
EA033535B1 (en) CARBON MATERIALS
CN102912937B (en)Embedded type steel high-ductility fiber concrete combination column
JP6596521B2 (en) Bearing structural member, holder, joint module and box module
JP6491033B2 (en) Mortar and its construction method
CN102173681B (en)Method for preparing concrete with high fire resistance
CN104418240B (en)The lifting of a kind of flue and group are to method
CN106223369B (en)A kind of loading case that can be used for spread foundation axle center and bias-load
US9550692B2 (en)Method of manufacturing a feeder channel for molten glass
CN204325931U (en)Hierarchical loading device of high pier top support of bridge
CN104831934B (en)A kind of pneumatic flat-plate vibrator
JP2017179952A (en) Bridge girder support stopper and bridge girder support structure including the same
CN217296905U (en)Reinforced concrete pipe lifting device
CN101666395A (en)Supporting device
CN209858374U (en)Quick survey device of mountain flour content in artifical grit aggregate
CN204608614U (en)Steel box beam erection bracing or strutting arrangement
JP2015218472A (en)Quake-absorbing structure
Nežerka et al.Fracture-micromechanics based model of mortars susceptible to shrinkage
Cai et al.Evolution of the interfacial transition zone of alkali-activated concrete with aging
CN204850119U (en)Building shock mounting
CN105130297A (en)Super-fluid PVA fiber concrete and preparation method thereof
CN204666375U (en)Easy structure model test apparatus
CN112066081B (en)High-temperature-resistant wear-resistant nano ceramic valve plate and process thereof
CN218619744U (en) A construction material quantitative lifting device

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20180320

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20181012

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20181106

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20181225

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20190205

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20190228

R150Certificate of patent or registration of utility model

Ref document number:6491033

Country of ref document:JP

Free format text:JAPANESE INTERMEDIATE CODE: R150

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250


[8]ページ先頭

©2009-2025 Movatter.jp