


この発明は、高い機械的強度を有するNb−Ti−Ni合金で構成され、したがって、厚さ:0.07mm(70μm)以下の薄膜化を可能とし、この結果実用に際して、薄膜化による水素透過分離性能の著しい向上を可能とした水素透過分離薄膜に関するものである。 The present invention is composed of an Nb—Ti—Ni alloy having high mechanical strength, and thus enables a thin film with a thickness of 0.07 mm (70 μm) or less. The present invention relates to a hydrogen permeation separation thin film that can significantly improve performance.
  近年、例えば水素燃料電池や水素ガスタービンなどのエネルギーシステムの燃料ガスとして高純度水素ガスが注目されており、この高純度水素ガスが、水を電気分解して得られた混合ガスや液化天然ガス(LNG)を水蒸気改質して得られた混合ガスなどの水素含有原料ガスから、例えば図3に概略説明図で示される通り、外周部を例えばNi製などの枠体で補強され、かつ材質的に水素だけが透過できる機能を有する厚さ:0.1〜3mmの水素透過分離膜で左右両側室に仕切られ、左側室には水素含有原料ガス導入管と排ガス取出管が、右側室には高純度水素ガス取出管が取り付けられた、例えばステンレス鋼製などの反応室を中央部に設けた構造の水素高純度精製装置を用い、前記反応室を200〜300℃に加熱し、前記導入管より水素含有原料ガスを導入し、前記水素透過分離膜を通して分離精製された高純度水素ガスが存在する右側室の内圧を0.1MPaに保持し、一方前記水素含有原料ガスの存在する左側室の内圧を0.2〜0.5MPaに保持した条件で前記水素透過分離膜を通して高純度水素ガスを分離精製することにより生産されることが知られている。
  また、上記の水素透過分離膜が、水素の選択的移動を前記水素透過分離膜を通して行なう、例えば炭化水素の水蒸気改質プロセスや、ベンゼン⇔シクロヘキサン反応などの水添/脱水素プロセスなどの化学反応プロセスに広く用いられていることもよく知られるところである。In recent years, high-purity hydrogen gas has attracted attention as a fuel gas for energy systems such as hydrogen fuel cells and hydrogen gas turbines, and this high-purity hydrogen gas is a mixed gas or liquefied natural gas obtained by electrolyzing water. As shown in the schematic explanatory view of FIG. 3, for example, the outer peripheral portion is reinforced with a frame body made of Ni, for example, as shown in the schematic explanatory diagram of FIG. Thickness capable of only hydrogen permeation: 0.1 to 3 mm hydrogen permeable separation membrane partitioned into left and right side chambers, hydrogen-containing source gas introduction pipe and exhaust gas extraction pipe in left side chamber, right side chamber Is a high-purity hydrogen purifier having a structure in which a reaction chamber made of high-purity hydrogen gas is attached, for example, made of stainless steel, in the center, and the reaction chamber is heated to 200 to 300 ° C. Than tube The internal pressure of the right side chamber where the high-purity hydrogen gas separated through the hydrogen permeation separation membrane is introduced is kept at 0.1 MPa, while the internal pressure of the left side chamber where the hydrogen-containing source gas exists is introduced. It is known that it is produced by separating and refining high-purity hydrogen gas through the hydrogen permeable separation membrane under the condition that is maintained at 0.2 to 0.5 MPa.
 Further, the hydrogen permeable separation membrane performs a selective hydrogen transfer through the hydrogen permeable separation membrane, for example, a chemical reaction such as a hydrocarbon steam reforming process or a hydrogenation / dehydrogenation process such as a benzene-cyclohexane reaction. It is well known that it is widely used in processes.
  さらに、上記の水素透過分離膜が、
(a)  Ni:25〜45原子%、  Ti:26〜50原子%、
を含有し、残りがNbと不可避不純物(ただし、Nb:11〜48原子%含有)からなる成分組成、
(b)鋳造インゴットから放電加工により切り出された厚さ:0.1〜3mmの鋳造薄板材にして、図2に走査型電子顕微鏡による組織写真(倍率:4000倍)で示される通り、Niを固溶したNbTi相とNbを固溶したNiTi相との共晶組織を素地とし、この素地に初晶NbTi相(図2では白色島状のもの)が分散分布した合金組織、
以上(a)の成分組成および(b)の合金組織を有するNi−Ti−Nb合金で構成されることも知られている。
 (A) Ni: 25-45 atomic%, Ti: 26-50 atomic%,
 And the remainder is composed of Nb and inevitable impurities (however, Nb: 11 to 48 atom%),
 (B) Thickness cut out from the cast ingot by electric discharge machining: 0.1 to 3 mm cast thin plate material, and Ni is shown in FIG. 2 as a structure photograph (magnification: 4000 times) by a scanning electron microscope. An alloy structure in which a eutectic structure of a solid solution NbTi phase and a NiTi phase solid solution of Nb is used as a base, and a primary crystal NbTi phase (in the form of white islands in FIG. 2) is dispersed and distributed on the base.
 It is also known that it is composed of a Ni—Ti—Nb alloy having the component composition (a) and the alloy structure (b).
一方、上記の水素高純度精製装置を含め各種の化学反応装置の高性能化に対する要求はきわめて強く、これに伴ない、前記装置の構造部材として用いられている水素透過分離膜にはより一段と高い水素透過分離性能を具備することが求められ、また、一般に前記水素透過分離膜の場合、これの膜厚を薄くすればするほど水素透過分離性能が向上するようになることも知られていることから、前記水素透過分離膜を構成するNi−Ti−Nb合金の高強度化に関する開発が盛んに行なわれているが、上記の従来水素透過分離膜においては、これを構成するNi−Ti−Nb合金の具備する機械的強度が十分でないために、0.1mm以下の厚さに薄膜化することができず、このため満足な水素透過分離性能の向上が図れないのが現状である。 On the other hand, the demand for high performance of various chemical reaction apparatuses including the above-described hydrogen high-purity purification apparatus is extremely strong, and accordingly, the hydrogen permeation separation membrane used as a structural member of the apparatus is much higher. It is required to have hydrogen permeation separation performance, and generally, in the case of the hydrogen permeation separation membrane, it is known that the hydrogen permeation separation performance is improved as the film thickness is reduced. From the above, the development relating to the strengthening of the Ni—Ti—Nb alloy constituting the hydrogen permeable separation membrane has been actively carried out. However, in the conventional hydrogen permeable separation membrane, the Ni—Ti—Nb constituting this has been developed. Since the mechanical strength of the alloy is not sufficient, it cannot be thinned to a thickness of 0.1 mm or less, so that satisfactory hydrogen permeation separation performance cannot be improved at present.
  そこで、本発明者等は、上述のような観点から、上記の各種化学反応装置の高性能化に対応すべく、特にこれの構造部材である水素透過分離膜の薄膜化を可能ならしめる目的で、前記水素透過分離膜の高強度化に着目し、研究を行った結果、前記水素透過分離膜を、原子%(以下、%は原子%を示す)で、
  Ni:10〜32%、  Ti:15〜33%、
を含有し、残りがNbと不可避不純物(ただし、Nb:48〜70%含有)からなる成分組成に特定した上で、これの合金溶湯を、ロール急冷法により厚さ:0.07mm以下の鋳造箔材とし、この鋳造箔材に、酸化を防止する目的で不活性ガス雰囲気中、または真空雰囲気中で、温度:300〜1100℃に所定時間加熱保持の条件で調質熱処理を施すと、この結果の調質熱処理材は、図1に走査型電子顕微鏡による組織写真(倍率:4000倍)で示される通り、NbにNiおよびTiが固溶してなるNb基固溶合金からなる素地(図1に白色で示されている)に、Ni−Ti金属間化合物におけるTiの一部をNbが置換する状態で固溶含有したNi−Ti(Nb)金属間化合物の微細粒(図1に黒色で示されている)が分散分布した合金組織をもつようになり、この合金組織のNb−Ti−Ni合金は、前記素地のNb基固溶合金によってすぐれた水素透過分離性能が確保され、さらに前記微細粒のNi−Ti(Nb)金属間化合物が素地に分散分布することによってきわめて高い機械的強度を具備するようになり、したがって水素透過分離膜としての実用に際しては、膜厚を0.07mm以下に薄肉化することが可能となり、この水素透過分離膜の薄膜化による水素透過分離性能の向上と前記Nb基固溶合金素地のもつすぐれた水素透過分離性能と相俟って、一段とすぐれた水素透過分離性能を長期に亘って発揮するようになる、という研究結果を得たのである。In view of the above, the present inventors have made it possible to reduce the thickness of the hydrogen permeable separation membrane, which is a structural member, in order to cope with the high performance of the various chemical reaction devices described above. As a result of conducting research while focusing on increasing the strength of the hydrogen permeable separation membrane, the hydrogen permeable separation membrane is expressed in atomic% (hereinafter,% indicates atomic%),
 Ni: 10 to 32%, Ti: 15 to 33%,
 And the balance is Nb and an inevitable impurity (however, Nb: 48 to 70% contained), and the alloy melt is casted to a thickness of 0.07 mm or less by a roll quenching method. When a tempering heat treatment is applied to the cast foil material in an inert gas atmosphere or a vacuum atmosphere for the purpose of preventing oxidation under a condition of heating and holding at a temperature of 300 to 1100 ° C. for a predetermined time, The resulting tempered heat-treated material is a substrate made of an Nb-based solid solution alloy in which Ni and Ti are solid-dissolved in Nb, as shown in a structural photograph (magnification: 4000 times) by a scanning electron microscope in FIG. 1 (shown in white), fine particles of Ni—Ti (Nb) intermetallic compound containing a solid solution in which Ni is substituted for a part of Ti in the Ni—Ti intermetallic compound (black in FIG. 1). Distributed) The Nb—Ti—Ni alloy having a gold structure has excellent hydrogen permeation separation performance by the Nb-based solid solution alloy of the base material, and further, the fine-grained Ni—Ti (Nb) The intermetallic compound is dispersed and distributed on the substrate, so that it has extremely high mechanical strength. Therefore, in practical use as a hydrogen permeable separation membrane, it becomes possible to reduce the thickness to 0.07 mm or less, Combined with the improvement of hydrogen permeation separation performance by thinning of this hydrogen permeation separation membrane and the excellent hydrogen permeation separation performance of the Nb-based solid solution alloy substrate, the hydrogen permeation separation performance is further improved over a long period of time. The research result that it comes to do is obtained.
  この発明は、上記の研究結果に基づいてなされたものであって、
(a)  Ni:10〜32%、  Ti:15〜33%、
を含有し、残りがNbと不可避不純物(ただし、Nb:48〜70%含有)からなる成分組成、
(b)ロール急冷法による厚さ:0.07mm以下の鋳造箔材の調質熱処理材にして、NbにNiおよびTiが固溶してなるNb基固溶合金からなる素地に、Ni−Ti金属間化合物におけるTiの一部をNbが置換する状態で固溶含有したNi−Ti(Nb)金属間化合物の微細粒が分散分布した合金組織、
以上(a)の成分組成および(b)の合金組織を有する高強度Nb−Ti−Ni合金で構成してなる、すぐれた水素透過分離性能を発揮する水素透過分離薄膜に特徴を有するものである。This invention was made based on the above research results,
 (A) Ni: 10 to 32%, Ti: 15 to 33%,
 And the remainder is composed of Nb and inevitable impurities (however, Nb: 48 to 70% contained),
 (B) Thickness by roll quenching method: Refining heat treatment material of cast foil material of 0.07 mm or less, and Ni-Ti on a base made of Nb-based solid solution alloy in which Ni and Ti are dissolved in Nb An alloy structure in which fine particles of Ni-Ti (Nb) intermetallic compound containing a solid solution in a state where Nb substitutes a part of Ti in the intermetallic compound is dispersed;
 It is characterized by a hydrogen permeation separation thin film that exhibits excellent hydrogen permeation separation performance and is composed of a high-strength Nb—Ti—Ni alloy having the component composition (a) and the alloy structure (b). .
  つぎに、この発明の水素透過分離薄膜において、これを構成するNb−Ti−Ni合金の組成を上記の通りに限定した理由を説明する。
  (a)Nb
  Nb成分には、上記の通り、NiおよびTiを固溶含有したNb基固溶合金からなる素地を形成して、すぐれた水素透過分離性能を発揮する作用を有するほか、Ni−Ti金属間化合物におけるTiの一部を置換した形で含有して、Ni−Ti(Nb)金属間化合物の微細粒を形成し、前記微細粒の水素透過分離性能を向上させる作用があるが、その含有量が48%未満になると、上記の合金組織を安定して得ることが難しくなり、膜特性にバラツキが生じるようになり、一方その含有量が70%を越えると、前記Ni−Ti(Nb)金属間化合物微細粒の分布割合が急激に低下し、この結果薄膜の機械的強度が低下して、膜厚を0.07mm以下に薄肉化した状態で実用に供することができなくなることから、その含有量を48〜70%と定めた。Next, the reason why the composition of the Nb—Ti—Ni alloy constituting the hydrogen permeation separation thin film of the present invention is limited as described above will be described.
 (A) Nb
 As described above, the Nb component has a function of exhibiting excellent hydrogen permeation separation performance by forming a base made of an Nb-based solid solution alloy containing Ni and Ti as a solid solution, and a Ni-Ti intermetallic compound. In a form in which a part of Ti is substituted, Ni-Ti (Nb) intermetallic compound fine particles are formed, and the hydrogen permeation separation performance of the fine particles is improved. If it is less than 48%, it will be difficult to stably obtain the above alloy structure, and the film characteristics will vary. On the other hand, if the content exceeds 70%, the Ni-Ti (Nb) metal inter- The distribution ratio of the compound fine particles is drastically reduced, and as a result, the mechanical strength of the thin film is lowered, and the film thickness cannot be put to practical use in a state where the film thickness is reduced to 0.07 mm or less. 48-70% Meta.
  (b)TiおよびNi
  TiおよびNi成分には、素地に分散分布するNi−Ti(Nb)金属間化合物微細粒を形成して、薄膜の機械的強度を向上させ、もって、厚さが0.07mm以下の薄膜の実用化を可能とするほか、前記素地を構成するNb基固溶合金に固溶して、これの機械的強度を高める作用があるが、TiおよびNiのいずれかの含有量が、Ti:15%未満、Ni:10%未満になると、薄膜に所望の機械的強度を確保することができず、この結果0.07mm以下の厚さでの実用化困難になり、一方TiおよびNiのいずれかの含有量でも、Ti:33%、Ni:32%を越えると、水素透過分離性能の低下が避けられなくなることから、その含有量を、それぞれTi:15〜33%、Ni:10〜32%と定めた。(B) Ti and Ni
 In the Ti and Ni components, Ni—Ti (Nb) intermetallic compound fine particles dispersed and distributed in the substrate are formed to improve the mechanical strength of the thin film, so that a thin film having a thickness of 0.07 mm or less is practically used. In addition to making it possible to solidify in the Nb-based solid solution alloy constituting the substrate and increasing the mechanical strength thereof, the content of either Ti or Ni is Ti: 15% If Ni is less than 10%, the desired mechanical strength cannot be ensured for the thin film, and as a result, it becomes difficult to put it into practical use at a thickness of 0.07 mm or less. Even if the content exceeds Ti: 33% and Ni: 32%, a decrease in hydrogen permeation separation performance is unavoidable, so the contents are Ti: 15-33% and Ni: 10-32%, respectively. Determined.
この発明の水素透過分離薄膜は、すぐれた水素透過分離性能を有するNb基固溶合金からなる素地に、Ni−Ti(Nb)金属間化合物の微細粒が分散分布するこによって高い機械的強度が確保され、この結果薄膜の0.07mm以下の厚さへの薄肉化が可能となり、この薄肉化による水素透過分離性能の向上と、前記Nb基固溶合金素地のもつすぐれた水素透過分離性能と相俟って、一段とすぐれた水素透過分離性能を長期に亘って発揮するものである。 The hydrogen permeation separation thin film of the present invention has high mechanical strength due to the fine distribution of Ni—Ti (Nb) intermetallic compound dispersed on a base made of an Nb-based solid solution alloy having excellent hydrogen permeation separation performance. As a result, the thin film can be thinned to a thickness of 0.07 mm or less, the hydrogen permeation separation performance is improved by this thinning, and the excellent hydrogen permeation separation performance of the Nb-based solid solution alloy substrate In combination, it exhibits excellent hydrogen permeation separation performance over a long period of time.
つぎに、この発明の水素透過分離薄膜を実施例により具体的に説明する。 Next, the hydrogen permeation separation thin film of the present invention will be specifically described with reference to examples.
原料として、純度:99.9%の高純度Nbショット材、同99.9%の高純度Niショット材、および同99.5%の高純度Tiスポンジ材を用い、これら原料をそれぞれ表1に示される割合に配合し、高純度Ar雰囲気中でアーク溶解して、鋳塊とし、この鋳塊を20mm角に切断した状態で、底部に長さ:20mm×幅:0.3mmの寸法をもったスリットが形成された黒鉛ルツボに装入し、0.06MPaの減圧アルゴン雰囲気中で高周波誘導加熱炉で再溶解し、この溶湯を前記スリットから20m/secのロール速度で回転する水冷銅ロールの表面に0.05MPaの噴射圧で吹き付けて、いずれも長さ:20m×幅:20mmの平面寸法を有するが、厚さはそれぞれ表1に示される平均厚さ(任意5ヶ所の平均値)をもったNi−Ti−Nb合金の鋳造箔材を形成し、つぎに、これを真空炉に装入し、10−2Pa以下の真空中、それぞれ300〜1100℃の範囲内の所定の温度に5時間保持後炉冷の条件で調質熱処理を施し、調質熱処理後、幅:20mm×長さ:60mmの平面寸法に切り出すことにより本発明水素透過分離薄膜(以下、本発明水素透過薄膜という)1〜13をそれぞれ製造した。Purity: 99.9% high purity Nb shot material, 99.9% high purity Ni shot material, and 99.5% high purity Ti sponge material were used. Blended at the indicated ratio, arc melted in a high purity Ar atmosphere to form an ingot, and this ingot is cut into 20 mm squares, and the bottom has a length: 20 mm x width: 0.3 mm. Of a water-cooled copper roll that is charged into a graphite crucible having a slit formed therein, re-melted in a high-frequency induction heating furnace in a reduced pressure argon atmosphere of 0.06 MPa, and the molten metal is rotated at a roll speed of 20 m / sec from the slit. Each surface was sprayed with an injection pressure of 0.05 MPa, and each had a planar dimension of length: 20 m × width: 20 mm, but the thicknesses were the average thicknesses shown in Table 1 (average values at five arbitrary locations). Ni -A cast foil material of Ti-Nb alloy is formed, and then this is charged into a vacuum furnace and kept at a predetermined temperature within a range of 300 to 1100 ° C for 5 hours in a vacuum of 10-2 Pa or less. Heat treatment is performed under conditions of post furnace cooling, and after the heat treatment, the hydrogen permeation separation thin film of the present invention (hereinafter referred to as the present hydrogen permeation thin film) 1 to 2 is cut out into a plane dimension of width: 20 mm × length: 60 mm. 13 were produced respectively.
また、比較の目的で、同じく原料として、純度:99.9%の高純度Nbショット材、同99.9%の高純度Niショット材、および同99.5%の高純度Tiスポンジ材を用い、これら原料をそれぞれ表1に示される割合に配合し、高純度Ar雰囲気中でアーク溶解し、鋳造して、直径:80mm×厚さ:10mmの寸法をもったNi−Ti−Nb合金鋳塊とし、この鋳塊から、放電加工にて、いずれも幅:20mm×長さ:60mmの平面寸法を有するが、厚さをそれぞれ表1に示される平均厚さ(任意5ヶ所の平均値)とした薄板材に切出すことにより、鋳物切出し薄板材からなる従来水素透過分離膜(以下、従来水素透過膜という)1〜10をそれぞれ製造した。 For the purpose of comparison, as a raw material, a high purity Nb shot material having a purity of 99.9%, a high purity Ni shot material having a purity of 99.9%, and a high purity Ti sponge material having a purity of 99.5% are used. These raw materials are blended in the proportions shown in Table 1 and arc-melted in a high-purity Ar atmosphere and cast into a Ni—Ti—Nb alloy ingot having a diameter of 80 mm × thickness of 10 mm. From this ingot, both have a plane dimension of width: 20 mm × length: 60 mm by electric discharge machining, and the thicknesses are the average thicknesses (average values at five arbitrary locations) shown in Table 1, respectively. The conventional hydrogen permeation separation membranes (hereinafter referred to as conventional hydrogen permeation membranes) 1 to 10 each made of a cast cut thin plate material were produced by cutting the thin plate material.
この結果得られた本発明水素透過薄膜1〜13および従来水素透過膜1〜10について、その成分組成をエネルギー分散型蛍光X線分析装置を用いて測定したところ、いずれも表1に示される配合組成と実質的に同じ分析値を示し、また、その組織を走査型電子顕微鏡およびX線回折装置を用いて観察したところ、前記本発明水素透過薄膜1〜13では、図1に本発明水素透過薄膜6の合金組織を示す通り、いずれもNbにNiおよびTiが固溶してなるNb基固溶合金からなる素地に、Ni−Ti金属間化合物におけるTiの一部をNbが置換する状態で固溶含有したNi−Ti(Nb)金属間化合物の微細粒が分散分布した合金組織を示し、一方、上記従来水素透過膜1〜10では、図2に従来水素透過膜8の合金組織を示す通り、いずれもNiを固溶したNbTi相とNbを固溶したNiTi相との共晶組織を素地とし、この素地に初晶NbTi相が分散分布した合金組織、を示した。 When the component composition of the hydrogen permeable thin films 1 to 13 of the present invention and the conventional hydrogen permeable membranes 1 to 10 obtained as a result was measured using an energy dispersive X-ray fluorescence spectrometer, the combination shown in Table 1 was obtained. The analysis value was substantially the same as the composition, and the structure was observed using a scanning electron microscope and an X-ray diffractometer. As a result, in the hydrogen permeable thin films 1 to 13 of the present invention, FIG. As shown in the alloy structure of the thin film 6, in a state in which Nb substitutes a part of Ti in the Ni—Ti intermetallic compound on a base made of an Nb-based solid solution alloy in which Ni and Ti are solid-solved in Nb. FIG. 2 shows the alloy structure of the conventional hydrogen permeable film 8 in the conventional hydrogen permeable membranes 1 to 10. FIG. 2 shows the alloy structure in which fine particles of the solid solution containing Ni—Ti (Nb) intermetallic compound are dispersed and distributed. Street, Izu Also eutectic structure with NiTi phase solid solution of NbTi phase and Nb was dissolved the Ni and the matrix, the primary crystal NbTi phase showed alloy structure, dispersed distributed in this matrix.
ついで、上記の本発明水素透過薄膜1〜13および従来水素透過膜1〜10のそれぞれの両面に、スパッタリング法により厚さ:0.1μmのPd薄膜を蒸着形成し(この場合電気メッキ法により形成しても良い)、かつそれぞれ横外寸:20mm×縦外寸:60mm×枠幅:5mm×枠厚:0.5mmの寸法をもった2枚の銅製補強枠体で両側から挟み、前記各種の透過膜を前記補強枠体に固定した状態で、図3に示される構造の水素高純度精製装置と同じ構造の水素透過評価装置の反応室内に設置し、前記反応室内を300℃に加熱し、反応室の左側室に、水素ガスを導入して、まず、反応室の左側室および右側室の内圧を0.1MPaとし、ついで、前記右側室の内圧を0.1MPa保持しながら、前記左側室の内圧を0.1MPa当たり5分の速度で、本発明水素透過薄膜1〜13については、いずれも0.3MPaまで、一方従来水素透過膜1,2については0.7MPaまで、従来水素透過膜3〜9については0.5MPaまで、そして従来水素透過膜10については0.3MPaまで、それぞれ昇圧し、この条件で1時間保持した時点で、透過した水素ガスの流量(表1に初期透過水素流量で示す)をガスフローメーターで測定し、さらにこの条件で20時間続行した時点で、同じく透過した水素ガスの流量(表1に後期透過水素流量で示す)を測定し、これらの測定結果を表1に示した。 Subsequently, a Pd thin film having a thickness of 0.1 μm is deposited on both surfaces of the hydrogen permeable thin films 1 to 13 of the present invention and the conventional hydrogen permeable films 1 to 10 by sputtering (in this case, formed by electroplating). Each of which is sandwiched from two sides by two copper reinforcing frames having dimensions of 20 mm × vertical outer dimensions: 60 mm × frame width: 5 mm × frame thickness: 0.5 mm. In a state where the permeable membrane is fixed to the reinforcing frame, it is installed in a reaction chamber of a hydrogen permeation evaluation apparatus having the same structure as the hydrogen high-purity purification apparatus having the structure shown in FIG. 3, and the reaction chamber is heated to 300 ° C. Then, hydrogen gas is introduced into the left chamber of the reaction chamber, first, the internal pressure of the left chamber and the right chamber of the reaction chamber is set to 0.1 MPa, and then the internal pressure of the right chamber is maintained at 0.1 MPa, Chamber internal pressure per 0.1 MPa Min. For the hydrogen permeable thin films 1 to 13 of the present invention, all up to 0.3 MPa, while the conventional hydrogen permeable membranes 1 and 2 are up to 0.7 MPa, and the conventional hydrogen permeable membranes 3 to 9 are 0.5 MPa. Up to 0.3 MPa for the conventional hydrogen permeable membrane 10 and when the pressure is maintained for 1 hour under these conditions, the flow rate of the permeated hydrogen gas (shown as the initial permeated hydrogen flow rate in Table 1) is a gas flow meter. When the measurement was continued for 20 hours under these conditions, the flow rate of the permeated hydrogen gas (shown as the late permeate hydrogen flow rate in Table 1) was also measured. The measurement results are shown in Table 1.
表1に示される通り、本発明水素透過薄膜1〜13は、いずれも高い機械的強度が素地に分散分布するNi−Ti(Nb)金属間化合物の微細粒によって確保され、0.07mm以下の厚さへの薄肉化が可能となるので、水素透過分離性能の一段の向上がもたらされ、かつ前記素地のNb基固溶合金のもつすぐれた水素透過分離性能と相俟って、すぐれた水素透過分離性能を長期に亘って発揮するのに対して、従来水素透過膜1〜10は、いずれも機械的強度の面から膜厚を0.1mm以下にすることができず、このため水素透過分離性能の低いものとなることが明らかである。 As shown in Table 1, each of the hydrogen permeable thin films 1 to 13 of the present invention is ensured by fine grains of Ni—Ti (Nb) intermetallic compound having high mechanical strength dispersed and distributed in the substrate, and is 0.07 mm or less. Since the thickness can be reduced, the hydrogen permeation separation performance is further improved, and in combination with the excellent hydrogen permeation separation performance of the Nb-based solid solution alloy of the substrate, it is excellent. Whereas hydrogen permeation separation performance is demonstrated over a long period of time, none of the conventional hydrogen permeation membranes 1 to 10 can be made to have a film thickness of 0.1 mm or less in terms of mechanical strength. It is clear that the permeation separation performance is low.
上述のように、この発明の水素透過分離薄膜は、高い機械的強度およびすぐれた水素透過分離性能を有するNb−Ti−Ni合金で構成され、厚さ:0.07mm以下への薄膜化が可能となるので、実用に際しては、すぐれた水素透過分離性能を長期に亘って発揮するものであるから、水素透過分離膜が構造部材として用いられている各種の化学反応装置の高性能化の要求に満足に対応できるものである。 As described above, the hydrogen permeation separation thin film of the present invention is composed of an Nb—Ti—Ni alloy having high mechanical strength and excellent hydrogen permeation separation performance, and can be thinned to a thickness of 0.07 mm or less. Therefore, in practical use, it exhibits excellent hydrogen permeation separation performance over a long period of time. Therefore, it is necessary to improve the performance of various chemical reactors in which hydrogen permeation separation membranes are used as structural members. It can respond to satisfaction.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP2006062923AJP4953279B2 (en) | 2006-03-08 | 2006-03-08 | Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance | 
| PCT/JP2007/054552WO2007105594A1 (en) | 2006-03-08 | 2007-03-08 | Hydrogen-permeable separation thin membranes | 
| CN2007800078803ACN101394918B (en) | 2006-03-08 | 2007-03-08 | Hydrogen Permeation Separation Membrane | 
| AU2007225886AAU2007225886B2 (en) | 2006-03-08 | 2007-03-08 | Hydrogen-permeable separation thin membranes | 
| EP07738042AEP1992401B1 (en) | 2006-03-08 | 2007-03-08 | Hydrogen-permeable separation thin membranes | 
| US12/281,663US8105424B2 (en) | 2006-03-08 | 2007-03-08 | Hydrogen permeation/separation thin membrane | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP2006062923AJP4953279B2 (en) | 2006-03-08 | 2006-03-08 | Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance | 
| Publication Number | Publication Date | 
|---|---|
| JP2007239021A JP2007239021A (en) | 2007-09-20 | 
| JP4953279B2true JP4953279B2 (en) | 2012-06-13 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP2006062923AExpired - Fee RelatedJP4953279B2 (en) | 2006-03-08 | 2006-03-08 | Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance | 
| Country | Link | 
|---|---|
| JP (1) | JP4953279B2 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2010053379A (en)* | 2008-08-27 | 2010-03-11 | Mitsubishi Materials Corp | Hydrogen permeable separating thin film having excellent mechanical property and hydrogen permeable separating performance | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2000159503A (en)* | 1998-11-20 | 2000-06-13 | Mitsubishi Heavy Ind Ltd | Hydrogen separating film of niobium alloy | 
| JP3935851B2 (en)* | 2002-05-20 | 2007-06-27 | 福田金属箔粉工業株式会社 | Hydrogen separation membrane and method for producing the same | 
| JP4363633B2 (en)* | 2004-02-17 | 2009-11-11 | 株式会社アルバック | Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof | 
| JP3749952B1 (en)* | 2004-09-22 | 2006-03-01 | 国立大学法人北見工業大学 | Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane | 
| JP3749953B1 (en)* | 2005-03-24 | 2006-03-01 | 国立大学法人北見工業大学 | Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane | 
| Publication number | Publication date | 
|---|---|
| JP2007239021A (en) | 2007-09-20 | 
| Publication | Publication Date | Title | 
|---|---|---|
| KR20130142467A (en) | Titanium-based bulk amorphous matrix composite and method of fabricating thereof | |
| JP5152433B2 (en) | Hydrogen separation alloy and manufacturing method thereof | |
| CN106834855B (en) | Alloy and preparation method are penetrated using the Nb base hydrogen of special elements doping | |
| JP4953278B2 (en) | Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance | |
| Li et al. | Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability | |
| EP1992401B1 (en) | Hydrogen-permeable separation thin membranes | |
| US7708809B2 (en) | Hydrogen permeable membrane | |
| JP5199760B2 (en) | Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance | |
| JP4953279B2 (en) | Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance | |
| JP2006118035A (en) | Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane | |
| JP5463557B2 (en) | Dual-phase hydrogen permeable alloy and method for producing the same | |
| JP4250684B2 (en) | Hydrogen separation and permeable membrane with excellent hydrogen separation and permeation function and high temperature amorphous stability | |
| JP7359381B2 (en) | Hydrogen separation alloy | |
| JP2009072685A (en) | Hydrogen permeation separation thin film with excellent mechanical properties and hydrogen permeation separation performance | |
| JP5549205B2 (en) | Hydrogen separation alloy, hydrogen separation alloy rolling forming material, method for producing hydrogen separation alloy, and hydrogen separation apparatus | |
| JP2010053379A (en) | Hydrogen permeable separating thin film having excellent mechanical property and hydrogen permeable separating performance | |
| Sipatov et al. | Structure and properties study of V-based membrane alloys for ultra-high purity hydrogen production | |
| JP4250679B2 (en) | Hydrogen separation and permeable membrane with excellent high temperature amorphous stability | |
| JP2006283076A (en) | Dual phase alloy for separating/refining hydrogen | |
| JPH0819500B2 (en) | Hydrogen storage alloy thin film body and method for producing the same | |
| JP4250683B2 (en) | Hydrogen separation and permeable membrane with excellent hydrogen separation and permeation function and high temperature amorphous stability | |
| JP4608657B2 (en) | Hydrogen separation and permeation membrane that exhibits excellent hydrogen separation and permeation function over a long period of time by high pressure operation of high purity hydrogen purifier | |
| JP4250680B2 (en) | Hydrogen separation and permeable membrane with excellent high temperature amorphous stability | |
| CN111644600A (en) | Nb-Zr-Co hydrogen separation material with continuous hydrogen permeation phase and preparation method and application thereof | |
| JP4250681B2 (en) | Hydrogen separation / permeation membrane with excellent hydrogen separation / permeation function | 
| Date | Code | Title | Description | 
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20090224 | |
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20120307 | |
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20120308 | |
| R150 | Certificate of patent or registration of utility model | Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20150323 Year of fee payment:3 | |
| S111 | Request for change of ownership or part of ownership | Free format text:JAPANESE INTERMEDIATE CODE: R313115 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| S533 | Written request for registration of change of name | Free format text:JAPANESE INTERMEDIATE CODE: R313533 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| LAPS | Cancellation because of no payment of annual fees |