Movatterモバイル変換


[0]ホーム

URL:


JP4951838B2 - Tempered glass - Google Patents

Tempered glass
Download PDF

Info

Publication number
JP4951838B2
JP4951838B2JP2001536482AJP2001536482AJP4951838B2JP 4951838 B2JP4951838 B2JP 4951838B2JP 2001536482 AJP2001536482 AJP 2001536482AJP 2001536482 AJP2001536482 AJP 2001536482AJP 4951838 B2JP4951838 B2JP 4951838B2
Authority
JP
Japan
Prior art keywords
glass
less
coefficient
tempered glass
na2o
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001536482A
Other languages
Japanese (ja)
Inventor
啓充 瀬戸
成和 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co LtdfiledCriticalNippon Sheet Glass Co Ltd
Priority to JP2001536482ApriorityCriticalpatent/JP4951838B2/en
Application grantedgrantedCritical
Publication of JP4951838B2publicationCriticalpatent/JP4951838B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
本発明は、強化用板ガラスに係り、特にガラスの表面圧縮応力値(MPa)を板厚(mm)により除した商で表される熱強化係数(=[表面圧縮応力]/[厚])が特定範囲にある強化用板ガラスに関する。
【0002】
【従来の技術】
ガラスの破壊は特殊な場合を除き表面から始まり、外力によってガラス表面に現れる引張応力がガラスの引張強度を超えることで生じる。ガラスの引張応力に対する耐久性は、ガラス表面に存在するグリフィス傷(Griffith flaw)と呼ばれる微小傷によって大きく影響される。従って、ガラスの強度を高めるには、ガラス表面に圧縮応力層を設けることで外力による引張応力を緩和し、亀裂の進展を妨げることが効果的である。ガラス表面の圧縮応力層は、化学強化法と物理強化法により形成される。
【0003】
この物理強化法によれば、高温のガラスが急冷され、常温になった状態でガラスの厚味方向に残留応力を発生させ、表面に圧縮応力層が形成される。物理強化法として最も広く実用化されているのは、空気によって冷却する風冷強化法である。風冷強化法によれば、ガラスが軟化点付近の温度まで加熱され、而る後ガラスの表面が加圧した空気流によって急冷され、ガラス表面に圧縮応力層が形成され、内部に引張応力層が形成される。
【0004】
風冷強化法により生じるガラス板の表面残留応力は、冷却中の表面と内部の温度差に依存することが知られている。最も簡単な近似として高温状態のガラスの急冷を考える場合、ガラスからの放熱量Qを一定と仮定すると、ガラス表面と内部の最大温度差(Δθ)maxは

(Δθ)max=tQ/8k
[t:ガラス厚(m),Q:放熱量(J/m・h),k:熱伝導率(J/m・h・℃)]
と近似される。歪緩和の時間が十分小さく、かつ冷却段階で温度勾配の変化が生じないと仮定すれば、室温でのガラス表面の圧縮応力Fは数1のようになる。
【0005】
【数1】

Figure 0004951838
【0006】
熱伝導率、線膨張率、ヤング率、ポアソン比の各パラメータは、ガラスの組成によって決まる値である。ここで、ガラス板の圧縮応力値が、ガラス厚に対して近似的には比例関係にあることから、これを板厚で除してやることで、ガラスの持つ物性自体で決まる圧縮応力の大きさ、すなわち、ガラス組成の圧縮応力値に対する寄与が求まる。ここでは、この値を熱強化係数と呼ぶことにする。熱強化係数の大きい方が、より強化の入りやすい組成を持つガラスであることを示している。
【0007】
従来、自動車用窓に用いられているフロート板ガラスの厚は、主に3.5〜4.8mmであった。近年、自動車の軽量化による燃費向上のため、窓ガラスにも薄板化の要請が強い。面積が同じなら板厚が薄くなるほどガラス板の熱容量は小さくなり、強化が入りにくくなるため、これを補うため幾つかの強化ガラスが提案されてきた。
【0008】
特公平6−53592号公報に記載された強化ガラスの製造方法は、重量%表示で実質的に、
SiO2:63〜75、
Al2O3:1.5〜7、
TiO2:0〜6、
Al2O3+TiO2:3〜7、
CaO:5〜15、
MgO:0〜10、
CaO+MgO:6〜20、
Na2O:8〜18、
K2O:0〜5、
Na2O+K2O:10〜20
からなり、該ガラスの液相温度が1150℃以下である強化ガラスの製造方法である。
【0009】
特公平4−60059号公報に開示された易強化ガラス組成物は、重量%で表示して、
SiO2:68.0〜71.0、
Al2O3:1.6〜3.0、
CaO:8.5〜11.0、
MgO:2.0〜4.0、
Na2O:12.5〜16.0、
K2O:0.9〜3.0、
これらの成分の総和が97%以上であって、かつ
SiO2+Al2O3:70.0〜73.0、
CaO+MgO:12.0〜15.0、
Na2O+K2O:13.5〜17.0
の組成成分範囲からなり、しかも10ポイズになる粘性温度が650〜685℃ならびに1012ポイズになる粘性温度が555〜585℃であり、かつ両者の温度差が96〜103℃になることを特徴とする易強化ガラス組成物である。
【0010】
前記特公平6−53592号公報に記載された強化ガラスの製造方法では、Al2O3添加量が多く、またAl2O3+TiO2量で見れば3%以上必要とする。クリアなガラスを得るためにはTiO2の添加を避け多量のAl2O3を添加する必要があり、非常に溶解しにくい組成となるという不具合があった。また、実施例中では3mm厚のガラスの強化例が示されているが、強化条件を向上させているにも関わらず、表面圧縮応力値で見れば不十分であった。
【0011】
また前記特公平4−60059号公報に開示された平板ガラス組成物は、粘性温度を調節することで易強化ガラスを得るものだが、10ポイズと1012ポイズの温度差として許容される範囲は僅かに7℃と非常に狭く、従って許容される組成範囲が非常に狭いため、生産が困難になると言う不具合があった。
【0012】
【発明が解決しようとする課題】
本発明は上記従来技術の問題点に鑑みてなされたものであって、6mm以下、より好ましくは3.1mm以下の実厚を有するガラス板で、実質的な強化プロセスの能力増強を要することなく、充分な表面圧縮応力値を持つ薄板強化ガラスとこれを構成するガラス組成、及び該組成から成る板ガラスを提供することを目的とする。
【0013】
本発明の強化用板ガラスは、該板ガラスに強化処理を施したときに表面圧縮応力値(MPa)を板厚(mm)により除した商で表される熱強化係数が35〜75となる。
【0014】
【発明の実施の形態】
この板ガラスは、好ましくは6mm以下、より好ましくは3.1mm以下の実厚を有する。
【0015】
この、強化用板ガラスは風冷強化法によって強化されることが好ましい。
【0016】
前記熱強化係数は45〜65であることがより好ましい。
【0017】
50℃〜350℃における平均線膨張率(℃−1)とヤング率(GPa)の積で表される熱応力係数は、好ましくは0.70〜1.20MPa/℃より好ましくは0.72〜0.80MPa/℃である。
【0018】
この強化用板ガラスは、好ましくは50℃〜350℃における平均線膨張率が92×10−7〜105×10−7−1、かつヤング率が75〜92GPaである。さらに好ましくはこの強化用板ガラスは、該平均線膨張率が95×10−7〜100×10−7−1、かつヤング率が77〜85GPaである。
【0019】
強化用板ガラスの第1の参考例に係る基礎ガラス組成は、モル分率で表して、
45〜70%のSiO2、
0〜5%のB2O3、
0.5〜15%のAl2O3、
2.5〜20%のMgO、
7.5〜30%のCaO、
0〜10%のSrO、
0〜10%のBaO、(但し、MgO,CaO,SrO,BaO量の総和が10%より多く50%以下、)
0〜10%のLi2O、
9〜25%のNa2O、
0〜15%のK2O、(但し、Li2O,Na2O,K2O量の総和が10%以上40%以下、)
0〜15%のY2O3、
0〜15%のLa2O3、
及び0〜15%のZrO2
この基礎ガラス組成は、モル分率で表して、次の着色成分を含有してもよく、これにより、紫外光、赤外光及び可視光の透過率が調整される。
0.3〜4%のFe2O3に換算した全酸化鉄(T−Fe2O3)
0.01〜1%のTiO2、
0〜3%のCeO2
0〜0.01%のSe、
0〜0.05%のCo、
0〜0.2%のNiO、
0〜0.2%のCr2O3
を含むことで、紫外光、赤外光、可視光各透過率を調整することができる。
【0020】
参考例における基礎ガラス組成の各成分の限定理由について以下に詳述する。以下の組成はモル%で表示したものである。
【0021】
SiO2(シリカ)はガラスの骨格を形成する主成分である。SiO2が45%未満ではガラスの耐久性が低下する。SiO2が多い方が耐久性は向上するが、ガラスの強化性に深く関わる線膨張率は小さくなる。充分な線膨張率を得るため、SiO2が70%以下であることが好ましく、68%未満であることがより好ましい。
【0022】
B2O3はガラスの耐久性向上のため、あるいは溶解助剤としても使用される成分である。B2O3が5%を超えると、揮発等による成形時の不都合が生じるので5%を上限とする。
【0023】
Al2O3はガラスの耐久性を向上させ、またガラスの強化性に深く関わるヤング率の向上にも寄与する成分である。しかし15%を超えるとガラスの溶解が困難になり、またAl2O3の添加は線膨張率を引き下げる効果もある。Al2O3の好ましい範囲は0.5〜15%である。
【0024】
MgO、CaO、SrO、BaOといったアルカリ土類酸化物はガラスの耐久性を向上させるとともに、成形時の失透温度、粘度、膨張率、ヤング率を調整するために添加される。MgOが2.5%未満では失透温度の低減効果が現れず、20%を超えると逆に失透温度が上昇し、生産上の不具合を生じる。
【0025】
本発明の高いヤング率と線膨張率をあわせ持つガラスでは、CaOは特に重要な組成の一つである。CaOが7.5%未満では線膨張率、ヤング率が小さくなり、充分な特性が得られなくなる。また30%を超えると失透温度が上昇するため、生産上の不具合を生じる。
【0026】
SrO,BaOは原料が高価なため、多量の使用はバッチコストを押し上げる。SrO,BaOの添加は失透温度低減効果があるため好ましいが、その量はコスト面からそれぞれが10%を超えないことが好ましい。
【0027】
これらアルカリ土類量の総和が10%以下では充分な熱強化係数を持つガラスが得られず、50%を超えると失透温度が上昇し、生産上の不具合を生じる。
【0028】
Li2O、Na2O、K2Oといったアルカリ酸化物はガラスの溶解を促進させる。このうちLi2Oの添加は溶解促進効果の他に、ガラス転移温度を著しく引き下げる効果もある。このことは通常のフロート法での生産において操業条件の変更を要するため好ましくない。Li2O添加量は10%を超えないことが好ましい。
【0029】
Na2Oが9%未満あるいはアルカリ酸化物量の合計が10%未満では溶解促進効果が乏しく、Na2Oが20%を超えるか、またはアルカリ量の合計が40%を超えるとガラスの耐久性が低下する。K2O量が多いとコストが高くなるため、K2Oは15%以下に留めることが望ましい。
【0030】
Y2O3,La2O3,ZrO2はガラスのヤング率を向上させ、耐久性も向上させる効果がある。いずれも原料が高価であるため、15%を超える添加はコストを押し上げ、また多量の添加は失透温度を上昇させるため好ましくない。
【0031】
酸化鉄は、ガラス中ではFe2O3とFeOの状態で存在する。ガラスの光学特性においては、Fe2O3は紫外線吸収能を高める成分であり、FeOは熱線吸収能を高める成分である。
【0032】
Fe2O3に換算した全酸化鉄(T−Fe2O3)が0.3%未満では紫外線及び赤外線の吸収効果が小さく、所望の光学特性が得られない。一方、T−Fe2O3が多すぎると酸化第1鉄の有する熱線吸収効果により、その輻射熱により溶融時に熔解槽天井部の温度が耐熱温度以上になる恐れがあり好ましくない。さらに、ガラス溶融窯で連続的に生産を行う場合を考えると、T−Fe2O3が多すぎると異組成ガラス素地との組成変更に時間を要するため、T−Fe2O3量は4%以下であることが好ましく、2%以下であることがより好ましい。
【0033】
TiO2,CeO2及びV2O5はガラスに紫外線吸収能を付与する着色成分である。NiO,CoO,Se,MnO,Cr2O3,Nd2O3及びEr2O3はこれらを単独または組み合わせて添加することで、主に可視光透過率を調整しガラスに所望の色調を付与することができる。具体的な色調を得るための好ましい組み合わせの例を以下に示す。
【0034】
例えば、A光源を用いて測定した可視光透過率(YA)が4mm厚味で70%以上と高い、緑色色調を持つガラスの場合、0.5〜2.2%のT−Fe2O3の他、0.01〜1.0%のTiO2、0.05〜3.0%のCeO2の組み合わせから成ることが好ましい。
【0035】
また、灰色味がかった緑色(グレイッシュグリーン)色調を得るためには0.3〜2%のT−Fe2O3の他、0〜0.2%のNiOかつ/または0〜0.01%のSe、0.002〜0.05%のCoO及び0〜0.2%のCr2O3の組み合わせから成ることが好ましい。紫外線カット性を付与するため上記TiO2、CeO2を組み合わせて用いることができる。
【0036】
また、刺激純度の低い灰色色調を得るためには、0.3〜2%のT−Fe2O3の他、0〜0.2%のNiO、0.002〜0.05%のCoO、0.0001〜0.005%のSe及び0〜0.2%のCr2O3の組み合わせから成ることが好ましい。紫外線カット性を付与するため上記TiO2、CeO2を組み合わせて用いることができる。
【0037】
上記の組成範囲のガラスに、清澄剤あるいは還元剤としてSnO2を合計量で0〜1%の範囲で、本発明が目的とする色調を損なわない範囲で添加しても良い。
【0038】
強化用板ガラスの第2の参考例に係る基礎ガラス組成は、重量分率で表して、
60〜70%のSiO2、
0〜5%のB2O3、
1〜10%のAl2O3、(但し、SiO2,Al2O3の和が70%未満、)
0〜15%特に好ましくは2.2〜8%のMgO、
9.6〜25%のCaO、
0〜15%のSrO、
0〜15%のBaO、
0〜10%のLi2O、
9〜20%のNa2O、
0〜15%のK2O、(但し、Li2O,Na2O,K2O量の総和が10%以上40%以下、)
0〜15%のY2O3、
0〜15%のLa2O3、
及び0〜15%のZrO2
である。
【0039】
このCaOが9.6重量%以上含まれるこの基礎ガラス組成は、板ガラスに高いヤング率と線膨張率とを与える。
【0040】
この組成範囲においてMgO量を2.2重量%以上とすることで、CaOを多く含む場合に見られ易いアンバー着色を抑えることができる。8%以下のMgOは板ガラスの失透を生じさせない。
【0041】
強化用板ガラスの第3の参考例に係る基礎ガラス組成は、重量分率で表して、
60〜70%のSiO2、
0〜5%のB2O3、
2.8%未満特に好ましくは1.5%未満のAl2O3、(但し、SiO2,Al2O3の和が70%未満、)
0〜15%特に好ましくは2.2〜8%のMgO、
9%より多く15%以下のCaO、
0〜15%のSrO、
0〜15%のBaO、
0〜10%のLi2O、
9〜20%のNa2O、
0〜15%のK2O、(但し、Li2O,Na2O,K2O量の総和が10%以上40%以下、)
0〜15%のY2O3、
0〜15%のLa2O3、
及び0〜15%のZrO2
である。
【0042】
この2.8重量%未満のAl2O3を含む板ガラスは、高い熱膨張率を有する。1.5重量%未満のAl2O3は、板ガラスにさらに高い膨張率を与える。
【0043】
2.2重量%以上のMgO量は、CaOを多く含む場合に見られ易いアンバー着色を抑える。8重量%以下のMgOは板ガラスに、失透を生じさせない。
【0044】
強化用板ガラスの第4の参考例に係る基礎ガラス組成は、重量分率で表して、
60〜70%のSiO2、
0〜5%のB2O3、
2.8%未満特に好ましくは1.5%未満のAl2O3、(但し、SiO2,Al2O3の和が70%未満、)
0〜15%特に好ましくは2.2〜8%のMgO、
5〜15%のCaO、
0〜15%のSrO、
0〜15%のBaO、
0〜10%のLi2O、
13%より多く25%未満特に好ましくは16%未満のNa2O、
0〜15%特に好ましくは0.9%未満のK2O、(但し、Li2O,Na2O,K2O量の総和が13%以上40%以下、)
0〜15%のY2O3、
0〜15%のLa2O3、
及び0〜15%のZrO2
である。
【0045】
このNa2Oを13重量%より多く含む基礎ガラス組成は、板ガラスに高い線膨張率を与える。25重量%よりも少ないNa2Oは、ガラスの耐久性を悪化させる。
【0046】
この組成範囲においてもMgO量を2.2〜8重量%に限定することで得られる効果は同じである。Al2O3量を1.5重量%未満に限定する効果も先に述べたとおりである。
【0047】
K2O量が0.9重量%未満の基礎ガラス組成は、K2Oの量が一般に珪砂等に含まれる不純物レベルに等しい。従って、K2O原料が不要となり、板ガラスの原料コストが低減される。
【0048】
16%未満のNa2Oは、板ガラスの耐久性を悪化させない。
【0049】
強化用板ガラスの第5の参考例に係る基礎ガラス組成は、重量分率で表して、
60%以上63%未満のSiO2、
1%以上のAl2O3(SiO2,Al2O3の和が70%未満)
0〜5%のB2O3、
0〜15%のMgO、
5〜15%のCaO、
0〜15%のSrO、
0〜15%のBaO、
0〜10%のLi2O、
13%より多く25%未満のNa2O、
0〜15%のK2O、(但し、Li2O,Na2O,K2O量の総和が13%以上40%以下、)
0〜15%のY2O3、
0〜15%のLa2O3、
及び0〜15%のZrO2
である。
【0050】
本発明の強化用板ガラスの基礎ガラス組成は、
量分率で表して、
63%以上66%未満のSiO2、
2.8%未満のAl2O3、
0〜5%のB2O3、
0〜15%のMgO、
5〜15%のCaO、
0〜15%のSrO、
0〜15%のBaO、
0〜10%のLi2O、
13%より多く25%未満のNa2O、
0〜15%のK2O、但し、Li2O,Na2O,K2O量の総和が13%以上40%以下、)
0〜15%のY2O3、
0〜15%のLa2O3、
及び0〜15%のZrO2
である。
【0051】
強化用板ガラスの第6の参考例に係る基礎ガラス組成は、
基礎ガラス組成が、重量分率で表して、
66%〜70%のSiO2、
2%未満のAl2O3(但し、SiO2,Al2O3の和が70%以下)
0〜5%のB2O3、
0〜15%のMgO、
5〜15%のCaO、
0〜15%のSrO、
0〜15%のBaO、
0〜10%のLi2O、
13%より多く25%未満のNa2O、
0〜15%のK2O、(但し、Li2O,Na2O,K2O量の総和が13%以上40%以下、)
0〜15%のY2O3、
0〜15%のLa2O3、
及び0〜15%のZrO2
である。
【0052】
この基礎ガラス組成の板ガラスは、化学的耐久性に優れ、しかも高い熱強化係数を有する。
【0053】
自動車の走行中、窓ガラスにかかる力とそれによってガラスがどのくらい撓むかについては、次のように評価される。仮に自動車が時速120km/hで走行し、風圧を受ける窓が下辺のみで支持されているとした場合、各点における窓ガラスの変位は次式によって近似される。
【0054】
d=4.38×10×|Cp|/Et
d:変位(mm)
E:ヤング率(GPa)
t:板厚(mm)
Cp:圧力係数(<0)
自動車側面の窓ガラスの場合、圧力係数Cpには一般に-0.3〜-1.0の値が用いられる。上式における|Cp|は、圧力係数Cpの絶対値である。
【0055】
各点において受ける引張応力値は次式の近似計算によって求められる。
【0056】
f=3qx/bt
f:引張応力(MPa)
q:等分布加重(MPa)
x:自由端からの距離(mm)
b:幅(=1)
t:板厚(mm)
上式から各板厚の場合ごとに受ける最大引張応力値は表1のように求められた。
【0057】
【表1】
Figure 0004951838
【0058】
従って現在のところ単板での使用下限とされる2.1mm厚において、強化によって少なくとも70MPa以上の圧縮応力を付与できれば、亀裂が進展し、破壊に至る確率を極めて低く抑えることができる。よって、本発明における、必要な熱強化係数は35以上と求められた。
【0059】
上記熱強化係数は35〜75とりわけ45〜65であることがより好ましい。
【0060】
ガラスの組成によって決まる熱伝導率、線膨張率、ヤング率、ポアソン比の各パラメータのうち、特に組成によって値の大きく変わるものは線膨張率とヤング率である。上記熱強化係数を得るには、線膨張率とヤング率の積によって表される熱応力係数が、0.70〜1.20MPa/℃であることが好ましい。
【0061】
この熱応力係数は、0.72〜0.80MPa/℃であることがさらに好ましい。
【0062】
上記熱応力係数を得るためには、50℃〜300℃における平均線膨張率が92×10−7〜105×10−7−1、ヤング率が75〜92GPaであることが好ましく、さらに、上記平均線膨張率が、95×10−7−1〜100×10−7−1、ヤング率が77〜85GPa以上であることがさらに好ましい。
【0063】
本発明の板ガラスは、フロート法によって生産されることが好ましいが、必ずしもこれに限定するものではない。
【0064】
【実施例】
No.1〜21
表2の組成となるように、ソーダ石灰シリカガラスバッチ成分に、酸化第二鉄、酸化チタン、酸化セリウム、酸化コバルト、金属セレン、酸化ニッケル、酸化クロム、酸化ネオジム又は酸化エルビウムを添加すると共に、炭素系還元剤(具体的にはコークス粉末等)、清澄剤を加えて混合した。この原料を容量250mlの白金製坩堝に入れ、電気炉中で1500℃に加熱、4時間溶融した。溶けたガラスをステンレス板上に流し出し、室温まで徐冷してガラス板を得た。
【0065】
次いで、得られたガラス板を2.1〜4.8mm厚に研磨した。研磨された板ガラスをこれを電気炉中で700℃、約3分間保持した後、取り出して気圧34MPaの圧縮空気を吹き付けて風冷することで強化ガラスを得た。この強化ガラスから、長さ約15mm、5mmφのガラス棒を切り出した。このガラス板を室温から約700℃まで毎分5℃で昇温し、石英ガラスを標準サンプルとしてガラスの伸びを測定することにより平均線膨張率、ガラス転移点(Tg)、降伏点(Td)を求めた。上記の強化ガラスから30×20×6mmのガラスブロックを切り出し、シングアラウンド法によってヤング率を求めた。
【0066】
表2,3は、得られた測定結果と強化ガラスの組成を示す。表2,3中のSiO2の値は、小数点第2位で四捨五入されている。
【0067】
【表2】
Figure 0004951838
【0068】
【表3】
Figure 0004951838
【0069】
No.1〜21の板ガラスは、表に示したとおり、いずれも35以上の高い熱強化係数と、高い表面圧縮応力値を持つ。各ガラスは、0.70〜1.20MPa/℃の熱応力計数値α・Eを持っており、強化性が改善されている。No.1〜9、13〜16、18〜21の板ガラスは、すべて第1の参考例の基礎ガラス組成である。
【0070】
表4は比較例を示す。
【0071】
【表4】
Figure 0004951838
【0072】
比較例1は通常市販されているフロート板ガラス組成であり、本発明範囲外の組成である。この組成の熱強化係数、及びこれを風冷強化して得られた表面圧縮応力値を表中に示した。本発明に比べ強化性に劣るのは明らかである。また比較例2はNa2Oが本発明範囲外である。一方、比較例3は特公平6−53592号公報中に示されたガラスである。いずれも本発明の実施例と比較して表面応力値が低く、強化性能に劣る。
【0073】
以上詳述したとおり、本発明によれば、実質的な強化プロセスの能力増強を要することなく、充分な表面圧縮応力値を持つ強化ガラスが提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforcing plate glass, particularly thermal enhancement factor represented surface compressive stress value of glass (MPa) in the quotient obtained by dividing the thicknessof (mm) (= [surface compressive stress] /[thickness] ) Relates to a tempered glass sheet in a specific range.
[0002]
[Prior art]
The glass breakage starts from the surface except in special cases, and occurs when the tensile stress appearing on the glass surface by an external force exceeds the tensile strength of the glass. The durability of glass against tensile stress is greatly affected by micro-scratches called Griffith flaws existing on the glass surface. Therefore, in order to increase the strength of the glass, it is effective to relax the tensile stress due to external force by providing a compressive stress layer on the glass surface and prevent the progress of cracks. The compressive stress layer on the glass surface is formed by a chemical strengthening method and a physical strengthening method.
[0003]
According to this physical strengthening method, a high-temperature glass is rapidly cooled to generate a residual stress in the thickness direction of the glass at a normal temperature, and a compressive stress layer is formed on the surface. The most widely used physical strengthening method is the air cooling strengthening method that is cooled by air. According to the air-cooling strengthening method, the glass is heated to a temperature near the softening point, and then the surface of the glass is rapidly cooled by a pressurized air flow to form a compressive stress layer on the glass surface, and a tensile stress layer inside. Is formed.
[0004]
It is known that the surface residual stress of the glass plate produced by the air cooling strengthening method depends on the temperature difference between the surface during cooling and the inside. As a simple approximation, when considering rapid cooling of a glass in a high temperature state, assuming that the heat dissipation amount Q from the glass is constant, the maximum temperature difference (Δθ) max between the glass surface and the inside is

(Δθ) max = tQ / 8k
[T: Glassthickness (m), Q: heat radiation amount(J / m 2 · h) , k: thermal conductivity (J / m · h · ℃ )]
Is approximated by Assuming that the strain relaxation time is sufficiently small and that the temperature gradient does not change in the cooling stage, the compressive stress F on the glass surface at room temperature is as shown in Equation 1.
[0005]
[Expression 1]
Figure 0004951838
[0006]
The parameters of thermal conductivity, linear expansion coefficient, Young's modulus and Poisson's ratio are values determined by the glass composition. Here, since the compressive stress value of the glass plate is approximately proportional to the glass thickness,by dividing this by the plate thickness, the magnitude of the compressive stress determined by the physical properties of the glass itself That is, the contribution of the glass composition to the compressive stress value is obtained. Here, this value is referred to as a heat strengthening coefficient. The larger heat strengthening coefficient indicates that the glass has a composition that is easier to strengthen.
[0007]
Conventionally, thethickness of the float glass which is used in automobile windows, were mainly 3.5~4.8Mm. In recent years, there has been a strong demand for reducing the thickness of window glass in order to improve fuel efficiency by reducing the weight of automobiles. If the area is the same, the thinner the plate thickness, the smaller the heat capacity of the glass plate, making it difficult to strengthen. Therefore, some tempered glass has been proposed to compensate for this.
[0008]
The manufacturing method of the tempered glass described in Japanese Patent Publication No. 6-53592 is substantially in terms of weight%,
SiO2: 63-75,
Al2O3: 1.5-7,
TiO2: 0-6,
Al2O3 + TiO2: 3-7,
CaO: 5-15,
MgO: 0 to 10,
CaO + MgO: 6-20,
Na2O: 8-18,
K2O: 0-5,
Na2O + K2O: 10-20
And a liquid phase temperature of the glass is 1150 ° C. or less.
[0009]
The easily tempered glass composition disclosed in Japanese Examined Patent Publication No. 4-60059 is expressed in weight%,
SiO2: 68.0 to 71.0,
Al2O3: 1.6 to 3.0,
CaO: 8.5 to 11.0,
MgO: 2.0-4.0,
Na2O: 12.5 to 16.0,
K2O: 0.9-3.0,
The sum of these components is 97% or more, and SiO2 + Al2O3: 70.0-73.0,
CaO + MgO: 12.0-15.0,
Na2O + K2O: 13.5 to 17.0
The viscosity temperature of 109 poise is 650 to 685 ° C., the viscosity temperature of 1012 poise is 555 to 585 ° C., and the temperature difference between the two is 96 to 103 ° C. It is an easily tempered glass composition characterized.
[0010]
In the method for producing tempered glass described in JP-B-6-53592, the amount of Al2O3 added is large, and 3% or more is required in terms of the amount of Al2O3 + TiO2. In order to obtain a clear glass, it was necessary to avoid the addition of TiO2 and to add a large amount of Al2O3, and there was a problem that the composition was very difficult to dissolve. Moreover, although shown enhancements examples of glass 3mmthick in the examples, even though to improve enhanced conditions was insufficient when seen in the surface compression stress value.
[0011]
Further, the flat glass composition disclosed in the above Japanese Patent Publication No. 4-60059 obtains easily tempered glass by adjusting the viscosity temperature, but the allowable range of the temperature difference between 109 poise and 1012 poise is There was a problem that the production was difficult because the composition range was only very narrow, only 7 ° C., and therefore the allowable composition range was very narrow.
[0012]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems of the prior art,and is a glass plate having an actual thickness of 6 mm or less, more preferably 3.1 mm or less, and requires substantial enhancement of the strengthening process. An object of the present invention is to provide a thin sheet tempered glass having a sufficient surface compressive stress value, a glass composition constituting the same, and a sheet glass comprising the composition.
[0013]
Reinforcing plate glass of the present invention, the thermal enhancement factor represented by dividing the quotient surface compressive stress value (MPa) thicknessof the (mm) when subjected to strengthening treatment in the plate glass is 35 to 75.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The glass sheet is preferably 6mm or less, more preferably less actualthickness of 3.1 mm.
[0015]
The tempered glass sheet is preferably tempered by an air cooling tempering method.
[0016]
The thermal strengthening coefficient is more preferably 45 to 65.
[0017]
The thermal stress coefficient represented by the product of average linear expansion coefficient (° C.−1 ) and Young's modulus (GPa) at 50 ° C. to 350 ° C. is preferably 0.70 to 1.20 MPa / ° C., more preferably 0.72 to 0.80 MPa / ° C.
[0018]
The tempered glass sheet preferably has an average linear expansion coefficient of 92 × 10−7 to 105 × 10−7 ° C.-1 at 50 ° C. to 350 ° C. and a Young's modulus of 75 to 92 GPa. More preferably, the tempered glass sheet has an average linear expansion coefficient of 95 × 10−7 to 100 × 10−7 ° C.−1 and a Young's modulus of 77 to 85 GPa.
[0019]
The basic glass composition accordingto the first reference example ofthe tempered glass sheet is expressed as a mole fraction,
45-70% SiO2,
0-5% B2O3,
0.5-15% Al2O3,
2.5-20% MgO,
7.5-30% CaO,
0-10% SrO,
0-10% BaO, (however, the total amount of MgO, CaO, SrO, BaO is more than 10% and less than 50%)
0-10% Li2O,
9-25% Na2O,
0-15% K2O (however, the total amount of Li2O, Na2O, K2O is 10% or more and 40% or less)
0-15% Y2O3,
0-15% La2O3,
And 0-15% ZrO2
This basic glass composition may contain the following coloring components, expressed in molar fractions, whereby the transmittance of ultraviolet light, infrared light and visible light is adjusted.
Total iron oxide converted to 0.3-4% Fe2O3 (T-Fe2O3)
0.01-1% TiO2,
0-3% CeO2
0-0.01% Se,
0-0.05% Co,
0-0.2% NiO,
0-0.2% Cr2O3
By including, each transmittance | permeability of ultraviolet light, infrared light, and visible light can be adjusted.
[0020]
The reasons for limiting each componentof the basic glass compositionin the reference example will be described in detail below. The following composition is expressed in mol%.
[0021]
SiO2 (silica) is a main component that forms a skeleton of glass. When SiO2 is less than 45%, the durability of the glass is lowered. The more SiO2, the better the durability, but the smaller the linear expansion coefficient that is deeply related to the glass strengthening property. In order to obtain a sufficient coefficient of linear expansion, SiO2 is preferably 70% or less, more preferably less than 68%.
[0022]
B2O3 is a component used for improving the durability of glass or as a dissolution aid. If B2O3 exceeds 5%, inconvenience occurs during molding due to volatilization or the like, so 5% is made the upper limit.
[0023]
Al2O3 is a component that improves the durability of the glass and contributes to the improvement of the Young's modulus that is deeply related to the strengthening property of the glass. However, if it exceeds 15%, melting of the glass becomes difficult, and the addition of Al2O3 also has an effect of lowering the linear expansion coefficient. A preferable range of Al2O3 is 0.5 to 15%.
[0024]
Alkaline earth oxides such as MgO, CaO, SrO, and BaO are added to improve the durability of the glass and adjust the devitrification temperature, viscosity, expansion coefficient, and Young's modulus during molding. If MgO is less than 2.5%, the effect of reducing the devitrification temperature does not appear, and if it exceeds 20%, the devitrification temperature rises conversely, resulting in production problems.
[0025]
In the glass having both a high Young's modulus and a linear expansion coefficient of the present invention, CaO is one of particularly important compositions. If CaO is less than 7.5%, the coefficient of linear expansion and Young's modulus become small, and sufficient characteristics cannot be obtained. On the other hand, if it exceeds 30%, the devitrification temperature rises, resulting in production problems.
[0026]
Since SrO and BaO are expensive raw materials, the use of a large amount increases the batch cost. The addition of SrO and BaO is preferable because it has a devitrification temperature reducing effect, but the amount is preferably not more than 10% from the viewpoint of cost.
[0027]
If the total amount of these alkaline earths is 10% or less, a glass having a sufficient heat strengthening coefficient cannot be obtained, and if it exceeds 50%, the devitrification temperature rises, resulting in production problems.
[0028]
Alkali oxides such as Li2O, Na2O and K2O promote glass melting. Of these, the addition of Li2O has the effect of significantly lowering the glass transition temperature in addition to the effect of promoting dissolution. This is not preferable because it requires a change in operating conditions in production by a normal float process. It is preferable that the amount of Li2O added does not exceed 10%.
[0029]
When Na2O is less than 9% or the total amount of alkali oxides is less than 10%, the dissolution promoting effect is poor, and when Na2O exceeds 20% or the total amount of alkalis exceeds 40%, the durability of the glass decreases. If the amount of K2O is large, the cost increases, so it is desirable to keep K2O at 15% or less.
[0030]
Y2O3, La2O3, and ZrO2 are effective in improving the Young's modulus of glass and improving the durability. In any case, since the raw materials are expensive, addition over 15% increases the cost, and addition of a large amount is not preferable because it increases the devitrification temperature.
[0031]
Iron oxide exists in the state of Fe2O3 and FeO in glass. In the optical characteristics of glass, Fe2O3 is a component that enhances the ability to absorb ultraviolet rays and FeO is a component that enhances the ability to absorb heat rays.
[0032]
If the total iron oxide (T-Fe2O3) converted to Fe2O3 is less than 0.3%, the effect of absorbing ultraviolet rays and infrared rays is small, and desired optical characteristics cannot be obtained. On the other hand, if the amount of T-Fe2O3 is too large, the heat ray absorption effect of ferrous oxide may cause the temperature of the melting tank ceiling to become higher than the heat resistant temperature during melting due to its radiant heat, which is not preferable. Furthermore, considering the case of continuous production in a glass melting furnace, if there is too much T-Fe2O3, it takes time to change the composition with the different composition glass substrate, so the amount of T-Fe2O3 may be 4% or less. Preferably, it is 2% or less.
[0033]
TiO2, CeO2, and V2O5 are coloring components that impart ultraviolet absorbing ability to glass. NiO, CoO, Se, MnO, Cr2O3, Nd2O3 and Er2O3 can be added singly or in combination to mainly adjust the visible light transmittance and impart a desired color tone to the glass. Examples of preferable combinations for obtaining a specific color tone are shown below.
[0034]
For example, in the case of glass having a green color tone with a visible light transmittance (YA) measured using an A light source of 4 mm thickness and high as 70% or more, in addition to 0.5 to 2.2% of T-Fe2O3, It is preferably composed of a combination of 0.01 to 1.0% TiO2 and 0.05 to 3.0% CeO2.
[0035]
In addition, in order to obtain a grayish green color (greyish green), 0.3 to 2% T-Fe2O3, 0 to 0.2% NiO and / or 0 to 0.01% Se, Preferably it consists of a combination of 0.002 to 0.05% CoO and 0 to 0.2% Cr2O3. TiO2 and CeO2 can be used in combination in order to impart ultraviolet cutability.
[0036]
Further, in order to obtain a gray color tone having low stimulation purity, in addition to 0.3 to 2% T-Fe2O3, 0 to 0.2% NiO, 0.002 to 0.05% CoO, 0.0001 Preferably it consists of a combination of ~ 0.005% Se and 0-0.2% Cr2O3. TiO2 and CeO2 can be used in combination in order to impart ultraviolet cutability.
[0037]
SnO2 as a refining agent or reducing agent may be added to the glass having theabove composition range in a total amount of 0 to 1% in a range that does not impair the color tone intended by the present invention.
[0038]
The basic glass composition accordingto the second reference example ofthe tempered glass sheet is expressed by weight fraction,
60-70% SiO2,
0-5% B2O3,
1 to 10% Al2O3 (however, the sum of SiO2 and Al2O3 is less than 70%)
0 to 15%, particularly preferably 2.2 to 8% MgO,
9.6-25% CaO,
0-15% SrO,
0-15% BaO,
0-10% Li2O,
9-20% Na2O,
0-15% K2O (however, the total amount of Li2O, Na2O, K2O is 10% or more and 40% or less)
0-15% Y2O3,
0-15% La2O3,
And 0-15% ZrO2
It is.
[0039]
This basic glass composition containing 9.6% by weight or more of CaO gives the plate glass a high Young's modulus and linear expansion coefficient.
[0040]
By setting the MgO amount to 2.2% by weight or more in this composition range, it is possible to suppress amber coloring that is easily seen when a large amount of CaO is contained. 8% or less of MgO does not cause devitrification of the plate glass.
[0041]
The basic glass composition accordingto the third reference example ofthe tempered glass sheet is expressed by weight fraction,
60-70% SiO2,
0-5% B2O3,
Less than 2.8%, particularly preferably less than 1.5% Al2O3, provided that the sum of SiO2 and Al2O3 is less than 70%
0 to 15%, particularly preferably 2.2 to 8% MgO,
CaO of more than 9% and 15% or less,
0-15% SrO,
0-15% BaO,
0-10% Li2O,
9-20% Na2O,
0-15% K2O (however, the total amount of Li2O, Na2O, K2O is 10% or more and 40% or less)
0-15% Y2O3,
0-15% La2O3,
And 0-15% ZrO2
It is.
[0042]
This plate glass containing less than 2.8% by weight of Al 2 O 3 has a high coefficient of thermal expansion. Less than 1.5% by weight of Al2O3 gives a higher expansion coefficient to the glass sheet.
[0043]
An amount of MgO of 2.2% by weight or more suppresses amber coloring that is easily seen when a large amount of CaO is contained. 8% by weight or less of MgO does not cause devitrification in the plate glass.
[0044]
The basic glass composition accordingto the fourth reference example ofthe tempered glass sheet is expressed by weight fraction,
60-70% SiO2,
0-5% B2O3,
Less than 2.8%, particularly preferably less than 1.5% Al2O3, provided that the sum of SiO2 and Al2O3 is less than 70%
0 to 15%, particularly preferably 2.2 to 8% MgO,
5-15% CaO,
0-15% SrO,
0-15% BaO,
0-10% Li2O,
More than 13% and less than 25%, particularly preferably less than 16% Na2O,
0 to 15%, particularly preferably less than 0.9% K2O (however, the total amount of Li2O, Na2O and K2O is 13% or more and 40% or less)
0-15% Y2O3,
0-15% La2O3,
And 0-15% ZrO2
It is.
[0045]
This basic glass composition containing more than 13% by weight of Na2O gives a high linear expansion coefficient to the plate glass. Less than 25 wt% Na2O deteriorates the durability of the glass.
[0046]
Even in this composition range, the effect obtained by limiting the amount of MgO to 2.2 to 8% by weight is the same. The effect of limiting the amount of Al2O3 to less than 1.5% by weight is also as described above.
[0047]
In a basic glass composition having a K2O amount of less than 0.9% by weight, the amount of K2O is generally equal to the impurity level contained in silica sand or the like. Therefore, the K2O raw material becomes unnecessary, and the raw material cost of the plate glass is reduced.
[0048]
Na2O of less than 16% does not deteriorate the durability of the plate glass.
[0049]
The basic glass composition accordingto the fifth reference example ofthe tempered glass sheet is expressed by weight fraction,
60% or more and less than 63% SiO2,
1% or more Al2O3 (the sum of SiO2 and Al2O3 is less than 70%)
0-5% B2O3,
0-15% MgO,
5-15% CaO,
0-15% SrO,
0-15% BaO,
0-10% Li2O,
Na2O greater than 13% and less than 25%,
0-15% K2O (however, the total amount of Li2O, Na2O, K2O is 13% or more and 40% or less)
0-15% Y2O3,
0-15% La2O3,
And 0-15% ZrO2
It is.
[0050]
Thefoundation glass compositionof the reinforcing plate glassof the present invention,
Expressed in terms ofWeight fraction
63% or more and less than 66% SiO2,
Less than 2.8% Al2O3,
0-5% B2O3,
0-15% MgO,
5-15% CaO,
0-15% SrO,
0-15% BaO,
0-10% Li2O,
Na2O greater than 13% and less than 25%,
0-15% K2O, provided that the total amount of Li2O, Na2O, K2O is 13% or more and 40% or less)
0-15% Y2O3,
0-15% La2O3,
And 0-15% ZrO2
It is.
[0051]
The basic glass composition accordingto the sixth reference example ofthe reinforcing glass sheet is
The basic glass composition is expressed by weight fraction,
66% to 70% SiO2,
Less than 2% Al2O3 (however, the sum of SiO2 and Al2O3 is 70% or less)
0-5% B2O3,
0-15% MgO,
5-15% CaO,
0-15% SrO,
0-15% BaO,
0-10% Li2O,
Na2O greater than 13% and less than 25%,
0-15% K2O (however, the total amount of Li2O, Na2O, K2O is 13% or more and 40% or less)
0-15% Y2O3,
0-15% La2O3,
And 0-15% ZrO2
It is.
[0052]
The plate glass having this basic glass composition is excellent in chemical durability and has a high thermal strengthening coefficient.
[0053]
The force applied to the window glass and how much the glass bends while the car is running can be evaluated as follows. If an automobile travels at a speed of 120 km / h and the window receiving wind pressure is supported only by the lower side, the displacement of the window glass at each point is approximated by the following equation.
[0054]
d = 4.38 × 109 × | Cp | / Et3
d: Displacement (mm)
E: Young's modulus (GPa)
t: Plate thickness (mm)
Cp: Pressure coefficient (<0)
In the case of a window glass on the side of an automobile, a value of -0.3 to -1.0 is generally used for the pressure coefficient Cp. | Cp | in the above equation is the absolute value of the pressure coefficient Cp.
[0055]
The tensile stress value received at each point is obtained by the approximate calculation of the following equation.
[0056]
f = 3qx2 / bt2
f: Tensile stress (MPa)
q: Uniform distribution weight (MPa)
x: Distance from free end (mm)
b: Width (= 1)
t: Plate thickness (mm)
From the above equation, the maximum tensile stress value received for each plate thickness was determined as shown in Table 1.
[0057]
[Table 1]
Figure 0004951838
[0058]
Thus in presently 2.1mmthickness are used lower limit of the single plate, if applied at least 70MPa or more compression stress by strengthening, cracks developed, can be suppressed to an extremely low probability leading to destruction. Therefore, the required heat strengthening coefficient in the present invention was determined to be 35 or more.
[0059]
The thermal strengthening coefficient is more preferably 35 to 75, particularly 45 to 65.
[0060]
Of the parameters of thermal conductivity, linear expansion coefficient, Young's modulus, and Poisson's ratio determined by the glass composition, the ones whose values vary greatly depending on the composition are the linear expansion coefficient and Young's modulus. In order to obtain the thermal strengthening coefficient, the thermal stress coefficient represented by the product of the linear expansion coefficient and Young's modulus is preferably 0.70 to 1.20 MPa / ° C.
[0061]
The thermal stress coefficient is more preferably 0.72 to 0.80 MPa / ° C.
[0062]
In order to obtain the thermal stress coefficient, the average linear expansion coefficient at 50 ° C. to 300 ° C. is preferably 92 × 10−7 to 105 × 10−7 ° C.−1 , and the Young's modulus is preferably 75 to 92 GPa. More preferably, the average linear expansion coefficient is 95 × 10−7 ° C.−1 to 100 × 10−7 ° C.−1 and the Young's modulus is 77 to 85 GPa or more.
[0063]
The plate glass of the present invention is preferably produced by a float process, but is not necessarily limited thereto.
[0064]
【Example】
No. 1-21
In addition to adding ferric oxide, titanium oxide, cerium oxide, cobalt oxide, metal selenium, nickel oxide, chromium oxide, neodymium oxide or erbium oxide to the soda-lime silica glass batch component so as to have the composition of Table 2, A carbon-based reducing agent (specifically, coke powder or the like) and a clarifying agent were added and mixed. This raw material was put in a platinum crucible having a capacity of 250 ml, heated to 1500 ° C. in an electric furnace and melted for 4 hours. The melted glass was poured onto a stainless steel plate and gradually cooled to room temperature to obtain a glass plate.
[0065]
Then, the resulting glass plate was polished to 2.1~4.8mmthickness. The polished plate glass was held in an electric furnace at 700 ° C. for about 3 minutes, then taken out and blown with compressed air at a pressure of 34 MPa to obtain tempered glass. A glass rod having a length of about 15 mm and 5 mmφ was cut out from the tempered glass. The glass plate is heated from room temperature to about 700 ° C. at a rate of 5 ° C. per minute, and the average linear expansion coefficient, glass transition point (Tg), yield point (Td) are measured by measuring the elongation of the glass using quartz glass as a standard sample. Asked. A glass block of 30 × 20 × 6 mm was cut out from the above tempered glass, and Young's modulus was determined by a sing-around method.
[0066]
Tables 2 and 3 show the obtained measurement results and the composition of the tempered glass. The values of SiO2 in Tables 2 and 3 are rounded off to the second decimal place.
[0067]
[Table 2]
Figure 0004951838
[0068]
[Table 3]
Figure 0004951838
[0069]
No. As shown in the table, each of the glass plates 1 to 21 has a high thermal strengthening coefficient of 35 or more and a high surface compressive stress value. Each glass has a thermal stress count value α · E of 0.70 to 1.20 MPa / ° C., and the toughness is improved.No. The plate glasses1 to 9 , 13 to 16, and 18 to 21 all havethe basic glass composition ofthe first reference example .
[0070]
Table 4 shows a comparative example.
[0071]
[Table 4]
Figure 0004951838
[0072]
Comparative Example 1 is a commercially available float glass composition, which is outside the scope of the present invention. The heat strengthening coefficient of this composition and the surface compressive stress value obtained by air cooling strengthening are shown in the table. It is clear that the reinforcing property is inferior to that of the present invention. In Comparative Example 2, Na2O is outside the scope of the present invention. On the other hand, Comparative Example 3 is a glass shown in Japanese Patent Publication No. 6-53592. In any case, the surface stress value is low as compared with the examples of the present invention, and the reinforcing performance is inferior.
[0073]
As described above in detail, according to the present invention, a tempered glass having a sufficient surface compressive stress value is provided without requiring substantial enhancement of the capacity of the tempering process.

Claims (8)

Translated fromJapanese
強化用板ガラスであって、該板ガラスに強化処理を施したときに表面圧縮応力値(MPa)を板厚(mm)により除した商で表される熱強化係数が35〜75となる強化用板ガラスであって、50℃〜350℃における平均線膨張率とヤング率の積で表される熱応力係数が0.70〜1.20MPa/℃であり、
基礎ガラス組成が、重量分率で表して、
63%以上66%未満のSiO2、
2.8%未満のAl2O3、
0〜5%のB2O3、
0〜15%のMgO、
5〜15%のCaO、
0〜15%のSrO、
0〜15%のBaO、
0〜10%のLi2O、
13%より多く25%未満のNa2O、
0〜15%のK2O、(但し、Li2O,Na2O,K2O量の総和が13%以上40%以下、)
0〜15%のY2O3、
0〜15%のLa2O3、
及び0〜15%のZrO2
から成ることを特徴とする強化用板ガラス。
A tempered glass sheetfor tempering having a thermal strengthening coefficient of 35 to 75 expressed by a quotient obtained by dividing a surface compressive stress value (MPa) by a sheet thickness (mm) when the glass sheet is tempered. a plate glass,Ri thermal stress coefficient 0.70~1.20MPa / ℃ der represented by the product of the mean linear expansion coefficient and Young's modulus at 50 ° C. to 350 °C.,
The basic glass composition is expressed by weight fraction,
63% or more and less than 66% SiO2,
Less than 2.8% Al2O3,
0-5% B2O3,
0-15% MgO,
5-15% CaO,
0-15% SrO,
0-15% BaO,
0-10% Li2O,
Na2O greater than 13% and less than 25%,
0-15% K2O (however, the total amount of Li2O, Na2O, K2O is 13% or more and 40% or less)
0-15% Y2O3,
0-15% La2O3,
And 0-15% ZrO2
Reinforcing plate glass that characterized theformation Rukotofrom.
前記熱強化係数が45〜65であることを特徴とする請求項1に記載の強化用板ガラス。  The tempered glass sheet according to claim 1, wherein the thermal strengthening coefficient is 45 to 65. 前記熱応力係数が0.72〜0.80MPa/℃であることを特徴とする請求項1又は2に記載の強化用板ガラス。  The tempered glass sheet according to claim 1 or 2, wherein the thermal stress coefficient is 0.72 to 0.80 MPa / ° C. 前記平均線膨張率が92×10−7−1〜105×10−7−1であることを特徴とする請求項1〜3のいずれか1項に記載の強化用板ガラス。Reinforcing plate glass according to any one of claims 1 to 3, wherein the average linear expansion coefficient is92 × 10 -7 ℃ -1 ~105 × 10 -7 ℃ -1. ヤング率が75GPa以上であることを特徴とする請求項1〜4のいずれか1項に記載の強化用板ガラス。  The tempered glass sheet according to any one of claims 1 to 4, wherein the Young's modulus is 75 GPa or more. 前記平均線膨張率が95×10−7−1〜100×10−7−1であることを特徴とする請求項1〜5のいずれか1項に記載の強化用板ガラス。6. The tempered glass sheet according to claim 1, wherein the average linear expansion coefficient is 95 × 10−7 ° C.−1 to 100 × 10−7 ° C.−1 . ヤング率が77〜85GPaであることを特徴とする請求項1〜6のいずれか1項に記載の強化用板ガラス。  The Young's modulus is 77 to 85 GPa, and the tempered glass sheet according to any one of claims 1 to 6. 風冷強化処理が施されていることを特徴とする請求項1〜のいずれか1項に記載の強化用板ガラス。Reinforcing plate glass according to any one of claims 1 to7, characterized in that air cooling tempering treatment is applied.
JP2001536482A1999-11-112000-11-09 Tempered glassExpired - Fee RelatedJP4951838B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2001536482AJP4951838B2 (en)1999-11-112000-11-09 Tempered glass

Applications Claiming Priority (4)

Application NumberPriority DateFiling DateTitle
JP320423991999-11-11
JP19993204231999-11-11
PCT/JP2000/007881WO2001034531A1 (en)1999-11-112000-11-09Flat glass to be tempered
JP2001536482AJP4951838B2 (en)1999-11-112000-11-09 Tempered glass

Publications (1)

Publication NumberPublication Date
JP4951838B2true JP4951838B2 (en)2012-06-13

Family

ID=18121302

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2001536482AExpired - Fee RelatedJP4951838B2 (en)1999-11-112000-11-09 Tempered glass

Country Status (2)

CountryLink
JP (1)JP4951838B2 (en)
WO (1)WO2001034531A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104583141A (en)*2012-08-242015-04-29旭硝子株式会社 Tempered glass
US9296638B2 (en)2014-07-312016-03-29Corning IncorporatedThermally tempered glass and methods and apparatuses for thermal tempering of glass
US10611664B2 (en)2014-07-312020-04-07Corning IncorporatedThermally strengthened architectural glass and related systems and methods
CN111065609A (en)*2017-08-242020-04-24康宁股份有限公司Glass with improved tempering capability
US11097974B2 (en)2014-07-312021-08-24Corning IncorporatedThermally strengthened consumer electronic glass and related systems and methods
US11643355B2 (en)2016-01-122023-05-09Corning IncorporatedThin thermally and chemically strengthened glass-based articles
US11697617B2 (en)2019-08-062023-07-11Corning IncorporatedGlass laminate with buried stress spikes to arrest cracks and methods of making the same
US11708296B2 (en)2017-11-302023-07-25Corning IncorporatedNon-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11795102B2 (en)2016-01-262023-10-24Corning IncorporatedNon-contact coated glass and related coating system and method
US12006221B2 (en)2017-11-172024-06-11Corning IncorporatedDirect graphene transfer and graphene-based devices
US12064938B2 (en)2019-04-232024-08-20Corning IncorporatedGlass laminates having determined stress profiles and methods of making the same
US12338159B2 (en)2015-07-302025-06-24Corning IncorporatedThermally strengthened consumer electronic glass and related systems and methods

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2899578B1 (en)*2006-04-052008-06-27Saint Gobain Emballage Sa SILICO-SODO-CALCIUM GLASS COMPOSITION
US8530998B2 (en)*2007-10-312013-09-10Corning IncorporatedSubstrate compositions and methods for forming semiconductor on insulator devices
JP5770314B2 (en)*2010-03-182015-08-26楊徳寧 Sheet glass and blending method
KR20140018227A (en)*2011-02-282014-02-12아사히 가라스 가부시키가이샤Tempered glass plate
EP2687492A4 (en)*2011-03-152015-03-18Dening YangPlate glass with colorful glaze layer and manufacuring process thereof
US10501364B2 (en)2012-11-212019-12-10Corning IncorporatedIon exchangeable glasses having high hardness and high modulus
MY175349A (en)*2013-06-032020-06-22Council Scient Ind ResNovel soda lime silicate glass composition comprising colemanite and a process for the preparation thereof
CN104955779B (en)*2013-06-062017-03-08旭硝子株式会社 Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
WO2019017404A1 (en)*2017-07-182019-01-24Agc株式会社Reinforced glass
FR3160691A1 (en)*2024-03-292025-10-03Saint-Gobain Glass France Glass composition.

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS61197444A (en)*1985-02-211986-09-01Asahi Glass Co Ltd How to manufacture tempered glass
JPS6340743A (en)*1986-08-041988-02-22Central Glass Co LtdEasy-to-temper glass composition
JPH08165136A (en)*1994-12-141996-06-25Nippon Ita Glass Techno Res KkNeutral gray glass composition
JPH09208246A (en)*1995-10-161997-08-12Central Glass Co LtdFireproof glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS62246839A (en)*1986-04-171987-10-28Central Glass Co LtdEasily tempering glass composition
JPH09183626A (en)*1995-12-281997-07-15Central Glass Co LtdReinforced thin glass plate
DE19710289C1 (en)*1997-03-131998-05-14Vetrotech Saint Gobain Int AgMonolithic fireproof glazing
DE19842327B4 (en)*1998-09-162006-07-13Vetrotech Saint-Gobain (International) Ag Fire resistant wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS61197444A (en)*1985-02-211986-09-01Asahi Glass Co Ltd How to manufacture tempered glass
JPS6340743A (en)*1986-08-041988-02-22Central Glass Co LtdEasy-to-temper glass composition
JPH08165136A (en)*1994-12-141996-06-25Nippon Ita Glass Techno Res KkNeutral gray glass composition
JPH09208246A (en)*1995-10-161997-08-12Central Glass Co LtdFireproof glass

Cited By (23)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104583141A (en)*2012-08-242015-04-29旭硝子株式会社 Tempered glass
US10005691B2 (en)2014-07-312018-06-26Corning IncorporatedDamage resistant glass article
US10233111B2 (en)2014-07-312019-03-19Corning IncorporatedThermally tempered glass and methods and apparatuses for thermal tempering of glass
US9783448B2 (en)2014-07-312017-10-10Corning IncorporatedThin dicing glass article
US9802853B2 (en)2014-07-312017-10-31Corning IncorporatedFictive temperature in damage-resistant glass having improved mechanical characteristics
US9975801B2 (en)2014-07-312018-05-22Corning IncorporatedHigh strength glass having improved mechanical characteristics
US11891324B2 (en)2014-07-312024-02-06Corning IncorporatedThermally strengthened consumer electronic glass and related systems and methods
US10077204B2 (en)2014-07-312018-09-18Corning IncorporatedThin safety glass having improved mechanical characteristics
US9776905B2 (en)2014-07-312017-10-03Corning IncorporatedHighly strengthened glass article
US10611664B2 (en)2014-07-312020-04-07Corning IncorporatedThermally strengthened architectural glass and related systems and methods
US9296638B2 (en)2014-07-312016-03-29Corning IncorporatedThermally tempered glass and methods and apparatuses for thermal tempering of glass
US11097974B2 (en)2014-07-312021-08-24Corning IncorporatedThermally strengthened consumer electronic glass and related systems and methods
US12338159B2 (en)2015-07-302025-06-24Corning IncorporatedThermally strengthened consumer electronic glass and related systems and methods
US11643355B2 (en)2016-01-122023-05-09Corning IncorporatedThin thermally and chemically strengthened glass-based articles
US11795102B2 (en)2016-01-262023-10-24Corning IncorporatedNon-contact coated glass and related coating system and method
CN111065609A (en)*2017-08-242020-04-24康宁股份有限公司Glass with improved tempering capability
US11485673B2 (en)2017-08-242022-11-01Corning IncorporatedGlasses with improved tempering capabilities
US12006221B2 (en)2017-11-172024-06-11Corning IncorporatedDirect graphene transfer and graphene-based devices
US11708296B2 (en)2017-11-302023-07-25Corning IncorporatedNon-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US12410090B2 (en)2017-11-302025-09-09Corning IncorporatedNon-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US12064938B2 (en)2019-04-232024-08-20Corning IncorporatedGlass laminates having determined stress profiles and methods of making the same
US11697617B2 (en)2019-08-062023-07-11Corning IncorporatedGlass laminate with buried stress spikes to arrest cracks and methods of making the same
US12043575B2 (en)2019-08-062024-07-23Corning IncorporatedGlass laminate with buried stress spikes to arrest cracks and methods of making the same

Also Published As

Publication numberPublication date
WO2001034531A1 (en)2001-05-17
WO2001034531B1 (en)2001-10-04

Similar Documents

PublicationPublication DateTitle
JP4951838B2 (en) Tempered glass
EP4043413A1 (en)Lithium-zirconium-based aluminosilicate glass, reinforced glass, preparation method therefor and display device
CN114315133B (en)Chemically strengthened glass and glass for chemical strengthening
KR101838197B1 (en)Thin li-al-si glass used for three dimension precise molding and suitable for strengthening
US7341968B2 (en)Glass plate and method for tempering a glass plate
WO2019230889A1 (en)Tempered glass and glass for tempering
CN110028240B (en)Aluminosilicate glass and preparation method thereof
US6713180B1 (en)Improvements in or relating to tempered glazings and glass for use therein
JP5108191B2 (en) Tempered glazing and improvement of glass for use in it
CN102351420B (en)High strength ultrathin float glass
KR20010082735A (en)Glass for cathode-ray tube, strengthened glass, method for the production thereof and use thereof
JP7276667B2 (en) cover glass
CN111954647A (en) Glass for chemical strengthening
JP5178977B2 (en) Glass composition
TW202328018A (en) crystallized glass
CN115947538A (en) Flame shock resistant borosilicate glass, strengthened glass, preparation method and application thereof
KR101212910B1 (en) Glass composition
JP7335557B2 (en) tempered glass and tempered glass
WO2024143156A1 (en)Glass, glass plate for reinforcement, and reinforced glass plate
TW202231598A (en)Strengthened glass plate and production method therefor
JP7335541B2 (en) tempered glass and tempered glass
TW202317499A (en)Glass plate for tempering, and tempered glass plate
WO2023210506A1 (en)Reinforced glass plate, method for manufacturing reinforced glass plate, and glass plate to be reinforced
CN117597320A (en)Glass plate for strengthening and glass plate for strengthening
JP2025156434A (en) Glass and chemically strengthened glass

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20070910

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20110315

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20110510

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20120214

A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20120227

R150Certificate of patent or registration of utility model

Free format text:JAPANESE INTERMEDIATE CODE: R150

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20150323

Year of fee payment:3

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp