Movatterモバイル変換


[0]ホーム

URL:


JP4887997B2 - Electronic component mounting method - Google Patents

Electronic component mounting method
Download PDF

Info

Publication number
JP4887997B2
JP4887997B2JP2006253316AJP2006253316AJP4887997B2JP 4887997 B2JP4887997 B2JP 4887997B2JP 2006253316 AJP2006253316 AJP 2006253316AJP 2006253316 AJP2006253316 AJP 2006253316AJP 4887997 B2JP4887997 B2JP 4887997B2
Authority
JP
Japan
Prior art keywords
substrate
solder
electrode
dummy
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006253316A
Other languages
Japanese (ja)
Other versions
JP2008078238A (en
Inventor
知宏 西山
明 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC CorpfiledCriticalNEC Corp
Priority to JP2006253316ApriorityCriticalpatent/JP4887997B2/en
Publication of JP2008078238ApublicationCriticalpatent/JP2008078238A/en
Application grantedgrantedCritical
Publication of JP4887997B2publicationCriticalpatent/JP4887997B2/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of bridges among terminals, bumps that are not jointed and residual particles damaging a quality when an electronic component is mounted by coagulating and unifying solder particles contained in a conductive adhesive. <P>SOLUTION: A solder chip 2 and a packaged substrate 4 are jointed by the conductive adhesive. Particles contained in the conductive adhesive are coagulated and unified on pad surfaces for chip-side electrode terminals 1 and substrate-side electrode terminals 3. The chip-side electrode terminals 1 and the substrate-side electrode terminals 3 are soldered and jointed, and a section between the solder chip 2 and the packaged substrate 4 is filled with the resin component (a resin layer 9) of the conductive adhesive and the resin component is cured. Dummy electrodes 6 and 7 are formed on the jointing surface of the solder chip 2 and/or the jointing surface of the packaged substrate 4. Excess solder particles in the solder particles are picked up on the dummy electrodes 6 and 7. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

Translated fromJapanese

この発明は、電子部品の実装方法に係り、詳しくは、第1の接合面に複数の第1の電極端子が配列された第1の電子部品又は基板と、第2の接合面に複数の第2の電極端子が配列された第2の電子部品又は基板とを、導電性接着材を用いて、電気的機械的に接合するための電子部品の実装方法に関し、とくに、フリップチップ方式で実装する場合に適用して好適である。The present invention relates to a method for mounting anelectronic component , and more specifically, a first electronic component or substrate in which a plurality of first electrode terminals are arranged on a first joint surface, and a plurality of second electronic devices on a second joint surface. The present invention relates toa mounting method of anelectronic component for electrically and mechanically joining a second electronic component or a substrate on which two electrode terminals are arranged, using a conductive adhesive, and particularly mounting by a flip chip method. It is suitable to be applied to the case.

近年の電子機器の高性能化及び小型化への要求を実現するためには、電子機器を構成する集積回路等の電子部品を半導体パッケージ部品等の基板に実装する際に、より小さな面積により多くの電極端子を集約させて接合できれば望ましい。このような要望を実現するために、この種の実装技術においては、電極端子の配設レイアウトは、実装面(接合面)の外周部のみから実装面全体に電極端子を配設するエリア接続へと発展し、これに伴い、接続形態も、ワイヤボンディングやリードによる接続からはんだバンプを介したフリップチップ方式へと発展してきている。  In order to realize the recent demands for high performance and miniaturization of electronic devices, when mounting electronic components such as integrated circuits constituting electronic devices on a substrate such as a semiconductor package component, more It is desirable that the electrode terminals can be joined together. In order to realize such a demand, in this type of mounting technology, the layout of the electrode terminals is changed from the outer periphery of the mounting surface (joint surface) to the area connection in which the electrode terminals are disposed on the entire mounting surface. As a result, the connection form has also evolved from wire bonding or lead connection to a flip-chip system via solder bumps.

図12は、フリップチップ方式を利用した電子部品の従来の実装構造100を概略示す断面図である。この実装構造100では、同図に示すように、実装面(図中下面)の領域一面に複数の電極端子101がマトリックス・アレイ状に配設された半導体チップ102と、複数の電極端子103が実装面(図中上面)のうち、外周部の非接合領域を除く領域一面にマトリックス・アレイ状に配設されたパッケージ基板104とが、互いの実装面を向かい合わせて重ね合わせて接合され、半導体チップ102側の各電極端子(チップ側電極端子)101と、パッケージ基板104側の各電極端子(基板側電極端子)103とが、マトリックス・アレイ状に配設された、はんだバンプ105を介して接続されている。
また、パッケージ基板104の裏面には、電極端子(基板側電極端子)103と導通する複数の外部電極端子106が配設されて、この外部電極端子106にも、はんだバンプ107が接続されている。半導体チップ102とパッケージ基板104との間の空隙は絶縁性樹脂108によって充填され、半導体チップ102及びパッケージ基板104の周囲部分はパッケージ樹脂体109で覆われている。
FIG. 12 is a cross-sectional view schematically showing a conventional mounting structure 100 for an electronic component using a flip chip method. In the mounting structure 100, as shown in the figure, a semiconductor chip 102 in which a plurality of electrode terminals 101 are arranged in a matrix array on one surface of a mounting surface (lower surface in the figure), and a plurality of electrode terminals 103 are provided. Of the mounting surface (upper surface in the figure), the package substrate 104 arranged in a matrix array on the entire surface excluding the non-bonded region on the outer peripheral portion is bonded with the mounting surfaces facing each other, Each electrode terminal (chip-side electrode terminal) 101 on the semiconductor chip 102 side and each electrode terminal (substrate-side electrode terminal) 103 on the package substrate 104 side are arranged via a solder bump 105 arranged in a matrix array. Connected.
A plurality of external electrode terminals 106 that are electrically connected to electrode terminals (substrate-side electrode terminals) 103 are disposed on the back surface of the package substrate 104, and solder bumps 107 are also connected to the external electrode terminals 106. . A gap between the semiconductor chip 102 and the package substrate 104 is filled with an insulating resin 108, and a peripheral portion of the semiconductor chip 102 and the package substrate 104 is covered with a package resin body 109.

上記従来の電子部品の実装構造100を得るには、まず、半導体チップ102の電極端子(チップ側電極端子)101と、パッケージ基板104の電極端子(基板側電極端子)103との両方に、又はいずれか片方の電極端子側に、はんだボール印刷法やはんだペースト印刷法によりはんだバンプ105を形成する。次に、形成された、はんだバンプ105のまわりにフラックスを供給する。次いで、半導体チップ102の電極端子101と、パッケージ基板104の電極端子103とを位置合せした状態で、パッケージ基板104の上に半導体チップ102を搭載する。この後、加熱処理を施して、電極端子101、103同士をはんだ接続する。このとき、はんだバンプ101が半導体チップ102の電極端子101と、パッケージ基板104の電極端子103との両方に形成されている場合は、上下一対のはんだバンプ105同士が溶融一体化されることで、また、片方にのみはんだバンプ105が形成されている場合には、相手の電極端子にまで濡れ広がって電極端子101、103間がはんだ接続される。この後、洗浄液によるフラックス洗浄するアンダー洗浄工程、絶縁性樹脂108を電極間の空隙に充填させて、硬化させるアンダーフィルの工程を経て、さらに、半導体チップ102をパッケージ樹脂体109で被覆して封止すると、電極端子間の接続プロセスが完了する。  In order to obtain the above-described conventional electronic component mounting structure 100, first, both the electrode terminal (chip-side electrode terminal) 101 of the semiconductor chip 102 and the electrode terminal (substrate-side electrode terminal) 103 of the package substrate 104, or Solder bumps 105 are formed on either one of the electrode terminal sides by a solder ball printing method or a solder paste printing method. Next, a flux is supplied around the formed solder bump 105. Next, the semiconductor chip 102 is mounted on the package substrate 104 in a state where the electrode terminals 101 of the semiconductor chip 102 and the electrode terminals 103 of the package substrate 104 are aligned. Thereafter, heat treatment is performed to solder the electrode terminals 101 and 103 together. At this time, when the solder bumps 101 are formed on both the electrode terminals 101 of the semiconductor chip 102 and the electrode terminals 103 of the package substrate 104, the pair of upper and lower solder bumps 105 are fused and integrated, Further, when the solder bump 105 is formed only on one side, the electrode terminals 101 and 103 are soldered and spread to the other electrode terminal. Thereafter, an under-cleaning step of flux cleaning with a cleaning solution, an underfill step of filling insulating resin 108 into the gap between the electrodes and curing, and further covering and sealing the semiconductor chip 102 with the package resin body 109 When stopped, the connection process between the electrode terminals is completed.

このように、フリップチップ方式による電子部品の実装構造100によれば、半導体チップ102やパッケージ基板104の実装面(接合面)の全領域ないしは略全領域に電極端子101、103がマトリックス配置されてエリア接続されるので、ワイヤボンディングやリードによる外周部に限られる局部ライン接続に較べて、より小さな面積により多くの電極端子を集約させて接合することができる。このため、フリップチップ方式は、電子機器の高性能化及び小型化に寄与できる(特許文献1、特許文献2、特許文献3)。  As described above, according to the flip-chip electronic component mounting structure 100, the electrode terminals 101 and 103 are arranged in a matrix in all or almost all the mounting surface (joint surface) of the semiconductor chip 102 and the package substrate 104. Since the areas are connected, more electrode terminals can be gathered and joined in a smaller area compared to local line connection limited to the outer periphery by wire bonding or leads. For this reason, the flip chip method can contribute to high performance and miniaturization of electronic devices (Patent Document 1,Patent Document 2, and Patent Document 3).

ところで、はんだ接続に頼る実装構造では、フラックスの洗浄が不十分である場合、残留した活性剤が吸湿し、そのイオン成分が電気的絶縁性を低下させ、マイグレーション等によって実装構造の信頼性を低下させるので、洗浄処理は重要である。しかしながら、電子デバイスの多ピン化要求に伴い、電極端子ピッチ及び電極端子間の隙間が、共に狭小化してきている。このため、フラックス洗浄の難易度が高くなり、洗浄不良率の増加を招く虞が生じてきた。  By the way, in the mounting structure that relies on the solder connection, if the flux is not sufficiently cleaned, the remaining activator absorbs moisture, and its ionic component decreases the electrical insulation, and the reliability of the mounting structure decreases due to migration or the like. Cleaning is important. However, with the demand for increasing the number of pins of electronic devices, both the electrode terminal pitch and the gap between the electrode terminals are becoming narrower. For this reason, the difficulty of flux cleaning has increased, and there has been a risk of increasing the cleaning failure rate.

加えて、電極端子の狭ピッチ化に伴い、はんだボール搭載法では、小径のはんだボールが望まれるが、はんだボールの小径化は、技術的に困難である上、たとえ実現できても、コストの著しい上昇を招く。また、はんだペースト印刷法においても、微細パターンを形成したマスクによる印刷では印刷歩留りが低下する虞がある。また、バンプに求められる高さの保持が難しくなる等、多ピン・狭ピッチ領域での適用が非常に困難になる。狭ピッチ接続という観点では、スタッドバンプやメッキバンプを集積回路の電極上に形成し、対向する電極に加熱と加圧、さらに超音波振動を加える等してバンプと対向電極を固相拡散現象により一体化させる接続形態が考えられるが、これらの工法で印加する高い圧力や超音波振動が、バンプ直下に形成された素子に損傷を与える虞がある。加えて、スタッドバンプはエリアアレイでの形成が難しく、多ピン化の面で不利であり、コストの面でもエリアアレイでの形成は実用的ではない。
それゆえ、フラックス洗浄残渣による信頼性低下を解消でき、微細接続を低コストで、しかも、過大な応力を加えることなく接続できる新しい実装技術が要望されている。
In addition, along with the narrowing of the pitch of the electrode terminals, the solder ball mounting method requires a small-diameter solder ball, but it is technically difficult to reduce the diameter of the solder ball. Incurs a significant rise. Also in the solder paste printing method, there is a possibility that the printing yield may be reduced by printing with a mask on which a fine pattern is formed. In addition, it becomes very difficult to apply in a multi-pin, narrow-pitch region, such as difficulty in maintaining the height required for the bump. From the viewpoint of narrow pitch connection, stud bumps and plated bumps are formed on the electrodes of the integrated circuit, and the bumps and the counter electrode are subjected to a solid phase diffusion phenomenon by applying heat and pressure to the opposite electrode and applying ultrasonic vibration. Although the connection form to integrate is considered, the high pressure and ultrasonic vibration which are applied by these construction methods may damage the element formed directly under the bump. In addition, stud bumps are difficult to form in an area array, which is disadvantageous in terms of increasing the number of pins, and in terms of cost, formation in an area array is not practical.
Therefore, there is a demand for a new mounting technology that can eliminate the reliability degradation due to the flux cleaning residue, can make fine connections at low cost, and can be connected without applying excessive stress.

これに対して、微細接続を低コストで、過大な応力を加えることなく接続でき、しかも、フラックス洗浄を不要とする新しい導電性接着材が提供されている(特許文献4)。この導電性接着材は、樹脂成分と、該樹脂成分中に含有されるフラックス材料及びはんだ粒子からなっている。
この特許文献4に記載の導電性接着材を第1の電子デバイスと第2の電子デバイスとの接合面全域に供給し、過熱処理すれば、フラックス材がはんだ粒子の電子デバイスの電極端子への接着を促進し、かつ導電性接着材の樹脂成分が硬化されるので、電子デバイス間の電気的機械的接続と、封入絶縁を一括して行うことができる。この方法では、加熱処理中にはんだ粒子が凝集、粒子同士の少なくとも一部分が金属接合を起こして成長し、電極端子間の電気的導通が得られるのである。
特開平10−154726号公報特開2005−277276号公報特開2002−094225号公報特許第2807940号公報
On the other hand, there is provided a new conductive adhesive that can connect fine connections at low cost without applying excessive stress, and that does not require flux cleaning (Patent Document 4). This conductive adhesive is composed of a resin component, a flux material contained in the resin component, and solder particles.
When the conductive adhesive described inPatent Document 4 is supplied to the entire joining surface between the first electronic device and the second electronic device and overheated, the flux material is applied to the electrode terminal of the electronic device of the solder particles. Adhesion is promoted and the resin component of the conductive adhesive is cured, so that the electrical mechanical connection between the electronic devices and the encapsulated insulation can be performed collectively. In this method, solder particles aggregate during the heat treatment, and at least a part of the particles grows by causing metal bonding, and electrical conduction between the electrode terminals is obtained.
JP-A-10-154726 JP 2005-277276 A JP 2002-094225 A Japanese Patent No. 2807940

なお、特許文献1には、実装基板(パッケージ基板)の四隅部分にダミー電極が設けられていて、これらのダミー電極には、予め、はんだバンプとは異なる金バンプが搭載されている。金バンプは、半導体チップと実装基板との間を所定間隔に保つために、スペーサとして用いられるものである。それゆえ、導電性接着材を用いてはんだ接続する本願発明を構成する“ダミ−電極”や“ダミーバンプ”とは、機能が異なるものである。
特許文献2の実装構造体でも、接着補強のために、ローラ塗布法を用いて、ダミー電極が形成されるが、これは、半導体素子と配線基板との接着力を補強するためのもので、本願発明の“ダミ−電極”や“ダミーバンプ”とは、機能を異にするものである。
特許文献3には、電子部品と基板との固着力を強化するために、大きさと比重が異なる複数のはんだ粒子が予め混練された電気絶縁性接着剤を用いることが開示されている。しかしながら、本願発明で用いるような、凝集性のはんだ粒子を含有する導電性接着剤とは異なっている。
InPatent Document 1, dummy electrodes are provided at four corners of a mounting substrate (package substrate), and gold bumps different from solder bumps are previously mounted on these dummy electrodes. The gold bump is used as a spacer in order to keep a predetermined distance between the semiconductor chip and the mounting substrate. Therefore, the “dummy electrode” and the “dummy bump” constituting the present invention for solder connection using a conductive adhesive have different functions.
Even in the mounting structure ofPatent Document 2, a dummy electrode is formed using a roller coating method for adhesion reinforcement. This is for reinforcing the adhesion force between the semiconductor element and the wiring board. The “dummy electrode” and “dummy bump” of the present invention have different functions.
Patent Document 3 discloses the use of an electrically insulating adhesive in which a plurality of solder particles having different sizes and specific gravity are kneaded in advance in order to enhance the adhesion between the electronic component and the substrate. However, it is different from the conductive adhesive containing cohesive solder particles as used in the present invention.

ところで、特許文献4に記載の導電性接着材を用いる電子部品の実装方法には、いくつかの問題がある。第1の問題は、はんだバンプの中には、はんだ粒子が過度に成長することにより、隣接するはんだバンプ同士が一体化してしまう現象(いわゆる、端子間ブリッジ)が発生し、逆に、はんだ粒子の凝集による成長が不足し、対向する電極間の導通がとれない現象(いわゆる、未接合バンプ)が発生するという不都合である。ここで、導電性接着材中のはんだ粒子の含有率(体積含有率)に着目した実験によれば、電極端子直径が電極端子間ピッチの2分の1程度の場合において、はんだ粒子の体積含有率が30%を超えると、端子間ブリッジの発生が顕著となり、一方、はんだ粒子の体積含有率が15%を下回ると、未接合バンプの発生が顕著になる。端子間ブリッジや未接合バンプの発生は、導電性接着材中のはんだ粒子含有率の適正値からのずれのみでなく、この他にも、はんだ粒子の粒度分布や導電性接着材中の分散の均一性、加熱中における接合領域での温度分布等にも影響され、接合の安定性の面で問題である。  By the way, there are some problems in the electronic component mounting method using the conductive adhesive described inPatent Document 4. The first problem is that solder particles grow excessively in the solder bumps, so that adjacent solder bumps are integrated with each other (so-called inter-terminal bridge). This is disadvantageous in that the growth due to the aggregation of the particles is insufficient, and a phenomenon (so-called unbonded bumps) in which conduction between the opposing electrodes cannot be obtained occurs. Here, according to the experiment focusing on the content (volume content) of the solder particles in the conductive adhesive, the volume content of the solder particles in the case where the electrode terminal diameter is about a half of the pitch between the electrode terminals. When the rate exceeds 30%, the occurrence of inter-terminal bridges becomes significant, while when the volume content of solder particles is less than 15%, the occurrence of unbonded bumps becomes significant. The occurrence of inter-terminal bridges and unbonded bumps is not only a deviation from the appropriate value of the solder particle content in the conductive adhesive, but also other than the particle size distribution of the solder particles and the dispersion in the conductive adhesive. It is also affected by uniformity, temperature distribution in the bonding region during heating, and so on, which is a problem in terms of bonding stability.

第2の問題は、はんだ工程の完了後でも、第1の電子デバイスの電極端子と第2の電子デバイスの電極端子との接続に寄与する、有用なはんだバンプと隣の有用なはんだバンプとの間の隙間に、電極端子の接続に寄与しない無用なはんだ粒子が凝集して残留することである。この種の残留粒子は、加熱処理中、いずれの電極端子からも比較的遠い位置にあるはんだ粒子が、はんだバンプの形成に寄与する有益なはんだ粒子凝集体には取り込まれずに、取り残されて、孤立的に凝集してしまうことによって発生する。無用な残留粒子が発生すると、残留粒子と樹脂成分との界面が、亀裂の伝播経路になって亀裂の伝播を速めることになったり、クラック発生の起点となるので、信頼性の低下を招くことになる。  The second problem is that the useful solder bump and the adjacent useful solder bump that contribute to the connection between the electrode terminal of the first electronic device and the electrode terminal of the second electronic device even after the soldering process is completed. In the gaps between them, useless solder particles that do not contribute to the connection of the electrode terminals are aggregated and remain. This type of residual particles is left untouched during the heat treatment, while solder particles that are relatively far from any electrode terminal are not incorporated into the beneficial solder particle aggregates that contribute to the formation of solder bumps. Generated by agglomerating in isolation. When unnecessary residual particles are generated, the interface between the residual particles and the resin component becomes a propagation path of cracks, which accelerates the propagation of cracks, or causes cracks to occur, leading to a decrease in reliability. become.

第3の問題は、電極端子の配置が一様ではなく大きな粗密がある場合、端子間ブリッジや未接合バンプや残留粒子の発生等が起こりやすいことである。このような不具合は、電極端子の配置密度の粗密で導電性樹脂のはんだ粒子含有率(体積含有率)等の適正条件が変化することに起因して生じる。つまり、はんだ粒子含有率に着目すると、配置密度が密な領域に合わせてはんだ粒子含有率を設定した場合、配置密度が疎な領域では一電極あたりに供給される、はんだ粒子の量が過剰となるので、端子間ブリッジや粒子の残留が発生し易くなる。また、逆に、配置密度が疎な領域に合わせると、配置密度が密な領域では、はんだ粒子の供給が不足するので、バンプの未接合が生じ易い傾向にある。  The third problem is that when the arrangement of electrode terminals is not uniform and there is a large density, bridges between terminals, unbonded bumps, residual particles, etc. are likely to occur. Such inconvenience arises due to changes in the appropriate conditions such as the solder particle content (volume content) of the conductive resin due to the density of the arrangement of the electrode terminals. In other words, when focusing on the solder particle content, when the solder particle content is set according to a region where the arrangement density is dense, the amount of solder particles supplied per electrode is excessive in the region where the arrangement density is sparse. As a result, inter-terminal bridges and residual particles are likely to occur. On the other hand, when matched with a region where the arrangement density is sparse, the supply of solder particles is insufficient in the region where the arrangement density is high, so that bumps tend to be unjoined.

この発明は、上述の事情に鑑みてなされたもので、はんだ粒子を含む導電性接着材を介して、電子部品同士又は電子部品と基板とが、電気的機械的に接合される構造において、電子部品の信頼性を損なう要因となる端子間ブリッジや未接合バンプや残留粒子の発生を防止することができる電子部品の実装方法を提供することを目的としている。The present invention has been made in view of the above-described circumstances. In a structure in which electronic components or electronic components and a substrate are joined together electrically and mechanically through a conductive adhesive containing solder particles, An object of the present invention is to provide anelectronic component mounting method capable of preventing the generation of bridges between terminals, unbonded bumps and residual particles, which are factors that impair the reliability of the components.

上記課題を解決するために、請求項記載の発明は、第1の接合面に複数の第1の電極端子が配列された第1の電子部品又は基板と、第2の接合面に複数の第2の電極端子が配列された第2の電子部品又は基板と接合する際に、前記第1の接合面と前記第2の接合面との間に導電性接着材を介挿させて、前記第1の接合面と前記第2の接合面とを接合すると共に、互いに対応関係のある前記第1の電極端子と第2の電極端子とをはんだ接続する電子部品の実装方法に係り、前記第1の接合面又は/及び前記第2の接合面に、有効な電極端子としては機能しない少なくとも1個のダミー電極をさらに設け、前記第1の接合面と前記第2の接合面とを相対向させ、これら第1及び第2の接合面に間に導電性接着材を挿入充填した後、所定の加熱下で、前記導電性接着材に含有されるはんだ粒子を、前記第1の電極端子及び前記第2の電極端子のパッド面で、凝集、一体化させて、互いに対応関係のある前記第1の電極端子と第2の電極端子とをはんだ接続すると共に、前記はんだ粒子のうち、余分なはんだ粒子をダミー電極に吸着させることを特徴としている。In order to solve the above-mentioned problem, the invention described inclaim1 includes a first electronic component or substrate in which a plurality of first electrode terminals are arranged on the first bonding surface, and a plurality of the second bonding surfaces. When joining the second electronic component or the substrate on which the second electrode terminals are arranged, a conductive adhesive is interposed between the first joint surface and the second joint surface, The present invention relates to a mounting method of an electronic component that joins a first joining surface and the second joining surface and solder-connects the first electrode terminal and the second electrode terminal that have a corresponding relationship to each other. At least one dummy electrode that does not function as an effective electrode terminal is further provided on one bonding surface or / and the second bonding surface, and the first bonding surface and the second bonding surface are opposed to each other. Then, a conductive adhesive is inserted and filled between the first and second joint surfaces, and then subjected to a predetermined heating. The first electrode terminals having a corresponding relationship by aggregating and integrating the solder particles contained in the conductive adhesive on the pad surfaces of the first electrode terminal and the second electrode terminal And the second electrode terminal are connected by soldering, and extra solder particles among the solder particles are adsorbed to the dummy electrode.

また、請求項記載の発明は、請求項記載の電子部品の実装方法に係り、前記はんだ接続の後、又は、前記はんだ接続と同時進行で、前記第1の接合面と第2の接合面との隙間に充填されている前記導電性接着材の樹脂成分を硬化させることを特徴としている。Further, an invention according toclaim2, relates to a method for mounting an electronic component according toclaim1, wherein, after the solder connection, or, said in solder connections and simultaneously, the first joint surface and the second joining The resin component of the conductive adhesive filled in the gap with the surface is cured.

また、請求項記載の発明は、請求項1又は2記載の電子部品の実装方法に係り、前記導電性接着材が、フィルム状の樹脂成分の中にはんだ粒子が分散して含有される導電性接着フィルムからなることを特徴としている。The invention according toclaim3 relates to the electronic component mounting method according toclaim1 or 2 , wherein the conductive adhesive contains conductive particles in which solder particles are dispersed in a film-like resin component. It is characterized by comprising an adhesive film.

この発明の電子部品の実装方法によれば、第1の電子部品又は基板と、第2の電子部品又は基板との少なくとも一方に、電気的回路の構成には寄与しないダミー電極が少なくとも1個配設されていて、このダミー電極に、加熱処理過程で部分的にはんだ粒子が過剰になった領域では、その過剰なはんだ粒子が近くのダミー電極に吸着されて、ダミー電極上にはんだの凝集塊が形成されるので、端子間ブリッジや、どの電極端子も帰属しない残留粒子、浮遊粒子の発生を抑制できる。また、端子間ブリッジや残留粒子、浮遊粒子の発生が抑制されることで、導電性接着剤中のはんだ粒子含有量等、電極端子間の接続が一段と確実に行われる条件設定を緩和できるので、間接的に未接合バンプの発生も抑制できる。つまり、実質接合面全領域での一段と確実な接合を実現できる上、適正な接続条件マージンの拡大化を図ることができる。
According to the electronic component mountingmethod of the present invention, at least one dummy electrode that does not contribute to the configuration of the electrical circuit is disposed on at least one of the first electronic component or the substrate and the second electronic component or the substrate. In the region where the solder particles are partially excessive during the heat treatment process, the excessive solder particles are adsorbed by the nearby dummy electrode and the solder agglomerates on the dummy electrode. Therefore, the generation of bridges between terminals, residual particles to which no electrode terminals belong, and suspended particles can be suppressed. Moreover, since the generation of bridges between terminals, residual particles, and floating particles can be suppressed, conditions such as solder particle content in the conductive adhesive can be relaxed more reliably, so that the connection between the electrode terminals can be more reliably performed. Indirect generation of unbonded bumps can also be suppressed. That is, it is possible to realize more reliable bonding in the substantially entire region of the bonding surface, and it is possible to increase the appropriate connection condition margin.

また、例えば、ダミー電極を、電極端子が配設されている領域の最も外側に位置する電極端子のさらに外側に隣接して、配設することで、特に、最外側の電極端子が接続領域の端部から内側に離れて配置されている場合に、最外側の電極端子上に形成されるバンプが過剰に大きくなるを防止できる。  Further, for example, by disposing the dummy electrode adjacent to the outer side of the electrode terminal located on the outermost side of the region where the electrode terminal is disposed, in particular, the outermost electrode terminal is connected to the connection region. In the case where the bumps are arranged inward from the end portions, it is possible to prevent the bumps formed on the outermost electrode terminals from becoming excessively large.

また、電極端子の配設が実質接合面全域において均一ではなく、粗密があるレイアウトの場合、電極端子の配設が疎な領域に、ダミー電極を配設することで、電極端子が全領域に擬似的に形成されている状況を作り出し、電極端子に過剰なはんだ粒子が供給されるのを防止できる。  In addition, when the layout of the electrode terminals is not uniform over the entire bonding surface and the layout is dense and dense, by arranging the dummy electrodes in the areas where the electrode terminals are sparse, the electrode terminals are arranged in the entire area. It is possible to create a pseudo-formed situation and prevent excessive solder particles from being supplied to the electrode terminals.

さらにまた、ダミー電極は、最も残留粒子が発生し易い各電極端子から等距離の位置に配置するのが望ましく、加えて、ダミー電極のサイズを電極端子のそれよりも小さくすることで、はんだ粒子を取り込む吸引力を隣接する電極端子のそれと差を設け、つまり、電極端子の(はんだ粒子を取り込む)吸引力を、ダミー電極のそれよりも大きく設定することで、電極端子とダミー電極との間のブリッジを回避できる。この作用は、ダミー電極のサイズのみならず、その形状、電極端子との位置関係(向き)によっても効果を高めることができる。
それゆえ、この発明の構成によれば、上記したように、電子部品の信頼性を損なう要因となる端子間ブリッジや未接合バンプや残留粒子の発生を防止できるので、電子デバイスの正常な動作を一段と確実に補償すると共に、信頼性の高い電子部品の実装構造体を得ることができる。
加えて、適正な製造条件幅の拡大によって、製造歩留まりを向上でき、結果として、低コスト化も実現できる。
Furthermore, it is desirable that the dummy electrode be arranged at a position equidistant from each electrode terminal where residual particles are most likely to be generated. In addition, the size of the dummy electrode is made smaller than that of the electrode terminal, so that the solder particles The suction force for taking in the electrode is different from that of the adjacent electrode terminal, that is, by setting the suction force of the electrode terminal (taking in the solder particles) to be larger than that of the dummy electrode, Can be avoided. This effect can be enhanced not only by the size of the dummy electrode but also by its shape and the positional relationship (direction) with the electrode terminal.
Therefore, according to the configuration of the present invention, as described above, it is possible to prevent the occurrence of bridges between terminals, unbonded bumps, and residual particles, which are factors that impair the reliability of electronic components. It is possible to obtain a highly reliable electronic component mounting structure while further reliably compensating.
In addition, the manufacturing yield can be improved by expanding the appropriate manufacturing condition width, and as a result, the cost can be reduced.

電子部品の実装構造10は、表面の全領域に複数のチップ側電極端子(第1の電極端子)1が配設された半導体チップ(第1の電子部品又は基板)2と、そのチップ側電極端子1に対応した複数の基板側電極端子(第2の電極端子)3が表面の全領域に配設されたパッケージ基板4とが、チップ側電極端子1と基板側電極端子3とが対向配置されて、かつ、はんだバンプ5を介して接続されている構成において、半導体チップ2及びパッケージ基板4の対向面にそれぞれチップ側電極端子1と基板側電極端子3とに隣接するように複数のチップ側ダミー電極6及び基板側ダミー電極7が配設されて、これらのチップ側ダミー電極6及び基板側ダミー電極7にチップ側電極端子1と基板側電極端子3とを接続しているはんだバンプ5以外の余分のはんだ粒子が吸着凝集されて、ダミーバンプ8、及び未接合ダミーバンプ8A、8Bが形成されている。  The electroniccomponent mounting structure 10 includes a semiconductor chip (first electronic component or substrate) 2 in which a plurality of chip-side electrode terminals (first electrode terminals) 1 are arranged in the entire surface area, and chip-side electrodes thereof. Apackage substrate 4 in which a plurality of substrate-side electrode terminals (second electrode terminals) 3 corresponding to theterminals 1 are arranged in the entire surface area is disposed so that the chip-side electrode terminal 1 and the substrate-side electrode terminal 3 face each other. And a plurality of chips so as to be adjacent to the chip-side electrode terminal 1 and the substrate-side electrode terminal 3 on the opposing surfaces of thesemiconductor chip 2 and thepackage substrate 4, respectively, in the configuration connected via the solder bumps 5. Theside dummy electrode 6 and the substrateside dummy electrode 7 are disposed, and thesolder bump 5 connecting the chipside electrode terminal 1 and the substrateside electrode terminal 3 to the chipside dummy electrode 6 and the substrateside dummy electrode 7. Extra except Solder particles is adsorbed coagulation, dummy bumps 8, and unbonded dummy bumps 8A, 8B are formed.

電子部品の実装方法は、チップ側電極端子1及び基板側電極端子3にそれぞれ隣接するように複数のチップ側ダミー電極6又は基板側ダミー電極7を配設した半導体チップ2及びパッケージ基板4を用意した後、パッケージ基板4の半導体チップ2との対向面に少なくともはんだ粒子及び樹脂成分を含有した導電性接着材12を供給し、次に、チップ側電極端子1と基板側電極端子3が対向するように位置合わせして、パッケージ基板4上に半導体チップ2を搭載する。次に、加熱して導電性接着材12のはんだ粒子13を溶融、凝集、一体化させてチップ側電極端子1と基板側電極端子3とをはんだバンプ5を介して接続すると同時に、過剰なはんだを各ダミー電極6、7に吸着させてダミーバンプ8、及び未接合ダミーバンプ8A、8Bを形成して、半導体チップ2をパッケージ基板4上に実装する。  As a method for mounting electronic components, asemiconductor chip 2 and apackage substrate 4 in which a plurality of chip-side dummy electrodes 6 or substrate-side dummy electrodes 7 are disposed so as to be adjacent to the chip-side electrode terminal 1 and the substrate-side electrode terminal 3 are prepared. After that, the conductive adhesive 12 containing at least solder particles and a resin component is supplied to the surface of thepackage substrate 4 facing thesemiconductor chip 2, and then the chip-side electrode terminal 1 and the substrate-side electrode terminal 3 face each other. In this way, thesemiconductor chip 2 is mounted on thepackage substrate 4. Next, thesolder particles 13 of the conductive adhesive 12 are heated, melted, aggregated, and integrated to connect the chip-side electrode terminals 1 and the substrate-side electrode terminals 3 via the solder bumps 5 and at the same time, excessive solder. Are adsorbed to thedummy electrodes 6 and 7 to form dummy bumps 8 and unbonded dummy bumps 8A and 8B, and thesemiconductor chip 2 is mounted on thepackage substrate 4.

図1はこの発明の実施例1である電子部品の実装構造の構成を示す平面図、図2は図1のA−A矢視断面図、図3は同電子部品の実装構造において最適な実装条件を説明するための断面図、図4〜図6は同電子部品の実装構造で用いるダミー電極の配設パターンの変形例を示す断面図、図7は同電子部品の実装構造で用いるダミー電極の形状の変形例を示す平面図、図8(a)、(b)は電子部品の実装方法を工程順に示す断面図である。
この例の電子部品の実装構造10は、図1及び図2に示すように、表面の全領域に複数のチップ側電極端子1が配設された半導体チップ(第1の電子部品又は基板)2と、チップ側電極端子1に対応した複数の基板側電極端子3が表面の全領域に配設されたパッケージ基板(第2の電子部品)4とが、両電極端子1、3が対向するように配置されて、対応する電極端子1、3同士がはんだバンプ5を介して接続されている構成において、半導体チップ2及びパッケージ基板4の対向面にそれぞれチップ側電極端子1及び基板側電極端子3に隣接するように複数のチップ側ダミー電極6及び基板側ダミー電極7が配設されて、これらのチップ側ダミー電極6及び基板側ダミー電極7には、有用なはんだバンプ5以外の過剰なはんだが吸着されて、ダミーバンプ8、及び未接合ダミーバンプ8A、8Bが形成されている。ここで、各ダミー電極6、7と、各電極端子1、3とは電気的に絶縁して配設されている。
1 is a plan view showing the configuration of a mounting structure for an electronic component according toEmbodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is an optimal mounting in the mounting structure for the electronic component. FIG. 4 to FIG. 6 are cross-sectional views for explaining the conditions, FIG. 4 to FIG. 6 are cross-sectional views showing modifications of the arrangement pattern of the dummy electrodes used in the mounting structure of the electronic component, and FIG. FIG. 8A and FIG. 8B are cross-sectional views showing the electronic component mounting method in the order of steps.
As shown in FIGS. 1 and 2, the electroniccomponent mounting structure 10 of this example is a semiconductor chip (first electronic component or substrate) 2 in which a plurality of chip-side electrode terminals 1 are disposed in the entire surface area. And a package substrate (second electronic component) 4 in which a plurality of substrate-side electrode terminals 3 corresponding to the chip-side electrode terminals 1 are arranged in the entire surface area so that bothelectrode terminals 1 and 3 face each other. In the configuration in which thecorresponding electrode terminals 1 and 3 are connected to each other via the solder bumps 5, the chip-side electrode terminal 1 and the substrate-side electrode terminal 3 are respectively provided on the opposing surfaces of thesemiconductor chip 2 and thepackage substrate 4. A plurality of chip-side dummy electrodes 6 and a substrate-side dummy electrode 7 are disposed so as to be adjacent to each other, and the chip-side dummy electrode 6 and the substrate-side dummy electrode 7 have excessive solder other than useful solder bumps 5. Is adsorbed Dummy bumps 8, and unbonded dummy bumps 8A, 8B are formed. Here, eachdummy electrode 6 and 7 and eachelectrode terminal 1 and 3 are arrange | positioned electrically insulated.

また、半導体チップ2とパッケージ基板4との間の空隙には樹脂層(導電性接着材12の絶縁性の樹脂成分)9が充填されている。このように、樹脂層9を充填することにより、半導体チップ2及びパッケージ基板4間の絶縁性を確保することができると共に、半導体チップ2の表面に配設されているチップ側電極端子1同士及びパッケージ基板4の表面に配設されている基板側電極端子3同士の絶縁性を確保することができる。さらに、半導体チップ2の内部に形成されている回路素子や、半導体チップ2及びパッケージ基板4の接合面に配設されている電極端子1、3等の構成要素を、実装構造10の外部雰囲気から保護することができる。  A gap between thesemiconductor chip 2 and thepackage substrate 4 is filled with a resin layer (insulating resin component of the conductive adhesive 12) 9. Thus, by filling theresin layer 9, insulation between thesemiconductor chip 2 and thepackage substrate 4 can be secured, and the chip-side electrode terminals 1 arranged on the surface of thesemiconductor chip 2 and Insulation between the substrate-side electrode terminals 3 arranged on the surface of thepackage substrate 4 can be ensured. Furthermore, the circuit elements formed inside thesemiconductor chip 2 and the constituent elements such as theelectrode terminals 1 and 3 disposed on the bonding surface of thesemiconductor chip 2 and thepackage substrate 4 are removed from the external atmosphere of the mountingstructure 10. Can be protected.

なお、図1は、図2の半導体チップ2を搭載する前のパッケージ基板4の表面(半導体チップ搭載面)の基板側電極端子3及び基板側ダミー電極7の配設パターンを示し、符号11は半導体チップ2が搭載される領域(すなわち、半導体チップ2とパッケージ基板4とが相互に重なり合って当接される領域、この明細書では、重合当接領域ともいう)を示している。また、パッケージ基板4の裏面に配設される第3の電極端子及びこの第3の電極端子に接続されるべき他のはんだバンプ、さらに半導体チップ2及びパッケージ基板4の周囲部分を覆うべきパッケージ樹脂体は、図示を省略している。  1 shows an arrangement pattern of the substrate-side electrode terminals 3 and the substrate-side dummy electrodes 7 on the surface (semiconductor chip mounting surface) of thepackage substrate 4 before mounting thesemiconductor chip 2 of FIG. A region where thesemiconductor chip 2 is mounted (that is, a region where thesemiconductor chip 2 and thepackage substrate 4 are in contact with each other in an overlapping manner, also referred to as a superposition contact region in this specification) is shown. Further, a third electrode terminal disposed on the back surface of thepackage substrate 4 and other solder bumps to be connected to the third electrode terminal, and a package resin to cover thesemiconductor chip 2 and the peripheral portion of thepackage substrate 4 The body is not shown.

パッケージ基板4の表面の基板側電極端子3は、例えば、直径が0.1mmの円形状の導電体が0.2mmの等間隔で格子状に配設されている。また、基板側ダミー電極7は、例えば、直径が0.08mm(基板側電極端子3より面積が小さくなるように)の円形状の導電体が、最近接して配設されている4つの基板側電極端子3で囲まれる領域のすべてに等間隔で格子状に配設されている。半導体チップ2の表面のチップ側電極端子1及びチップ側ダミー電極6も、それぞれパッケージ基板4の表面の基板側電極端子3及び基板側ダミー電極7と同一寸法及び同一間隔で格子状に配設されている。  The substrate-side electrode terminals 3 on the surface of thepackage substrate 4 are, for example, circular conductors having a diameter of 0.1 mm are arranged in a grid pattern at equal intervals of 0.2 mm. The substrate-side dummy electrode 7 has four substrate sides on which circular conductors having a diameter of 0.08 mm (so that the area is smaller than the substrate-side electrode terminal 3) are disposed closest to each other. All the regions surrounded by theelectrode terminals 3 are arranged in a lattice pattern at equal intervals. The chip-side electrode terminals 1 and the chip-side dummy electrodes 6 on the surface of thesemiconductor chip 2 are also arranged in a grid pattern with the same dimensions and the same intervals as the substrate-side electrode terminals 3 and the substrate-side dummy electrodes 7 on the surface of thepackage substrate 4, respectively. ing.

後述の電子部品の実装方法でも説明するように、対応する電極端子1、3同士を接続するはんだバンプ5、各ダミー電極6、7に吸着されているダミーバンプ8は、半導体チップ2の搭載前にパッケージ基板4の表面に供給される導電性接着材12に予め含有されている、例えば、直径が5〜30μm、体積含有率が20−40%、この例では、30%の錫・インジウム共晶合金(融点:117℃)のはんだ粒子13が加熱(例えば、130−150℃)により溶融、凝集、一体化することにより形成される。また、半導体チップ2とパッケージ基板4との間の空隙に充填されている樹脂層9は、同様に導電性接着材12に予め含有されている樹脂成分が加熱(例えば、130−200℃)により硬化することにより形成される。  As will be described in the electronic component mounting method described later, the solder bumps 5 that connect thecorresponding electrode terminals 1 and 3, and the dummy bumps 8 that are attracted to thedummy electrodes 6 and 7, are mounted before thesemiconductor chip 2 is mounted. A tin / indium eutectic that is contained in advance in the conductive adhesive 12 supplied to the surface of thepackage substrate 4, for example, a diameter of 5 to 30 μm and a volume content of 20 to 40%, in this example, 30%. Thesolder particles 13 of an alloy (melting point: 117 ° C.) are formed by melting, agglomerating and integrating by heating (for example, 130 to 150 ° C.). In addition, theresin layer 9 filled in the gap between thesemiconductor chip 2 and thepackage substrate 4 is similarly heated by heating (for example, 130 to 200 ° C.) with the resin component previously contained in theconductive adhesive 12. It is formed by curing.

上述したような電子部品の実装構造10によれば、供給される導電性接着材12に含有されるはんだ粒子13の量が過剰な場合でも、この過剰なはんだ粒子13はダミー電極6、7に吸着されて両電極端子6、7と金属接合するので、この過剰なはんだ粒子13が半導体チップ2及びパッケージ基板4間の樹脂層9中に残留することはない。ただし、過剰なはんだ粒子13の量によっては、必ずしも、相対向する2つのダミー電極6、7の両方に吸着されないでいずれか一方のみに吸着される場合もある。例えば、図2において、ダミーバンプ8は、過剰なはんだ粒子13の量が多いので、相対向する2つのダミー電極6、7の両方に吸着されて、さらに、凝集成長した、はんだ粒子同士が互いに接合することにより形成される。一方、未接合ダミーバンプ8A、8Bは、過剰なはんだ粒子13が少ないので、相対向する2つの電極6、7の両方に吸着されて、さらに、凝集成長しても、2つの凝集はんだ粒子同士が、接合には至らないものである。このような場合でも、過剰なはんだ粒子は完全に一方の電極端子と金属接合するので、樹脂層9中に残留することはない。したがって、過剰なはんだによる端子間ブリッジの発生を防止できるため、対応する電極端子1、3同士を確実に電気的に接続することができるので、実装構造の信頼性の向上を図ることができる。  According to the electroniccomponent mounting structure 10 as described above, even when the amount of thesolder particles 13 contained in the suppliedconductive adhesive 12 is excessive, theexcessive solder particles 13 are transferred to thedummy electrodes 6 and 7. Since it is adsorbed and metal-bonded to bothelectrode terminals 6 and 7, theexcessive solder particles 13 do not remain in theresin layer 9 between thesemiconductor chip 2 and thepackage substrate 4. However, depending on the amount of theexcessive solder particles 13, it may not necessarily be adsorbed by both of the twodummy electrodes 6 and 7 facing each other but adsorbed by only one of them. For example, in FIG. 2, since the amount ofexcessive solder particles 13 is large in thedummy bump 8, the solder particles that are attracted to both the twodummy electrodes 6 and 7 facing each other and further agglomerated are bonded to each other. It is formed by doing. On the other hand, since the unbonded dummy bumps 8A and 8B have a small amount ofexcessive solder particles 13, they are adsorbed by both of the two opposingelectrodes 6 and 7, and even if they coagulate and grow, the two agglomerated solder particles are not separated from each other. It does not lead to joining. Even in such a case, excessive solder particles are completely metal-bonded to one of the electrode terminals, so that they do not remain in theresin layer 9. Therefore, the occurrence of bridges between terminals due to excessive solder can be prevented, and thecorresponding electrode terminals 1 and 3 can be reliably electrically connected to each other, so that the reliability of the mounting structure can be improved.

また、各ダミー電極6、7は、最もはんだ粒子13が残留し易い電極端子1、3から等距離の位置に配設することが望ましく、これに加えて前述したようにダミー電極6、7の面積を電極端子1、3のそれよりも小さくなるように設定することにより、ダミー電極6、7で過剰なはんだ粒子13を吸着する場合の吸着力を、隣接する電極端子1、3と差をつけることができるようになるので、各電極端子1、3及び各ダミー電極6、7間のブリッジの発生を防止することができるようになる。  Thedummy electrodes 6 and 7 are preferably arranged at an equal distance from theelectrode terminals 1 and 3 where thesolder particles 13 are most likely to remain. In addition, as described above, thedummy electrodes 6 and 7 By setting the area to be smaller than that of theelectrode terminals 1 and 3, the adsorption force when adsorbingexcess solder particles 13 with thedummy electrodes 6 and 7 is different from that of theadjacent electrode terminals 1 and 3. Therefore, the bridge between theelectrode terminals 1 and 3 and thedummy electrodes 6 and 7 can be prevented from being generated.

また、ダミー電極6、7の設計にあたっては、ダミー電極6、7の大型化に伴って向上するはんだ粒子13の吸着能力と、電極端子1、3とダミー電極6、7とが過度に接近することにより発生する端子間ブリッジを考慮する必要がある。この点で、図3に示すように、電極端子1、3の直径をD、ダミー電極6,7の直径をd、電極端子1、3のピッチをLとすると、d<(L−D)×0.5の関係を満足するように選ぶことが望ましい。これによって、電極端子1、3とダミー電極6、7に吸着されたはんだ粒子13がブリッジすることなく良好な接合状態を実現することができる。また、半導体チップ2とパッケージ基板4とのギャップHについては、はんだ粒子13の直径(上述の例では5〜30μm)の3倍以上、望ましくは5倍以上に選ぶのが望ましい。これによって、加熱時のはんだ粒子13の動きが損なわれることなく、はんだ粒子13同士の凝集、一体化の動きが円滑に行われる。  In designing thedummy electrodes 6 and 7, the adsorption capacity of thesolder particles 13 which is improved as thedummy electrodes 6 and 7 are increased, and theelectrode terminals 1 and 3 and thedummy electrodes 6 and 7 are excessively close to each other. It is necessary to consider the bridge between terminals generated by this. In this regard, as shown in FIG. 3, assuming that the diameter of theelectrode terminals 1 and 3 is D, the diameter of thedummy electrodes 6 and 7 is d, and the pitch of theelectrode terminals 1 and 3 is L, d <(LD) It is desirable to select so as to satisfy the relationship of × 0.5. As a result, a good bonding state can be realized without bridging thesolder particles 13 adsorbed on theelectrode terminals 1 and 3 and thedummy electrodes 6 and 7. Further, the gap H between thesemiconductor chip 2 and thepackage substrate 4 is preferably selected to be 3 times or more, preferably 5 times or more the diameter of the solder particles 13 (5 to 30 μm in the above example). As a result, the movement of thesolder particles 13 can be smoothly performed without aggregating and unifying the movement of thesolder particles 13 during heating.

図4〜図6は、この例の電子部品の実装構造10で用いるダミー電極の配設パターンの変形例を示す断面図である。第1の変形例によるダミー電極の配設パターンは、図4に示すように、半導体チップ2及びパッケージ基板4のうち、一方のパッケージ基板4の表面のみに基板側電極端子3に隣接して基板側ダミー電極7を配設した例を示すものである。この基板側ダミー電極7には過剰なはんだが吸着されて未接合ダミーバンプ8Bが形成される。第2の変形例によるダミー電極の配設パターンは、図5に示すように、半導体チップ2及びパッケージ基板4の表面にそれぞれ対向して配設されるチップ側ダミー電極6と基板側ダミー電極7とのうち、チップ側ダミー電極6の面積を基板側ダミー電極7のそれよりも小さく配設した例を示すものである。同じチップ側ダミー電極6であっても、配設位置の違い及びはんだ粒子の量によってダミーバンプ8が形成されたり、未接合ダミーバンプ8A、8Bが形成されるようになる。第3の変形例によるダミー電極の配設パターンは、図6に示すように、半導体チップ2及びパッケージ基板4の表面にそれぞれ対向して配設される同じ面積のダミー電極6、7を、上下位置をずらして配設した例を示すものである。この第3の変形例では、第2の変形例と略同様に、面積が同じのダミー電極6、7であっても、配置位置の違い及びはんだ粒子の量によって形状の異なるダミーバンプ8、及び未接合ダミーバンプ8A、8Bが形成されるようになる。  4 to 6 are cross-sectional views showing modifications of the dummy electrode arrangement pattern used in the electroniccomponent mounting structure 10 of this example. As shown in FIG. 4, the dummy electrode arrangement pattern according to the first modified example is a substrate adjacent to the substrate-side electrode terminal 3 only on the surface of one of thepackage substrates 4 of thesemiconductor chip 2 and thepackage substrate 4. An example in which theside dummy electrode 7 is disposed is shown. Excess solder is adsorbed to the substrate-side dummy electrode 7 to form unbonded dummy bumps 8B. As shown in FIG. 5, the arrangement pattern of the dummy electrodes according to the second modification is a chip-side dummy electrode 6 and a substrate-side dummy electrode 7 which are arranged to face the surfaces of thesemiconductor chip 2 and thepackage substrate 4 respectively. Among these, an example in which the area of the chip-side dummy electrode 6 is smaller than that of the substrate-side dummy electrode 7 is shown. Even with the same chip-side dummy electrode 6, dummy bumps 8 are formed or unbonded dummy bumps 8A and 8B are formed depending on the difference in arrangement position and the amount of solder particles. As shown in FIG. 6, the arrangement pattern of the dummy electrodes according to the third modification is the same as that of thedummy electrodes 6 and 7 of the same area arranged facing the surfaces of thesemiconductor chip 2 and thepackage substrate 4 respectively. An example in which the positions are shifted is shown. In the third modified example, substantially thesame dummy electrodes 6 and 7 having the same area as the second modified example, the dummy bumps 8 having different shapes depending on the arrangement position and the amount of solder particles, Bonding dummy bumps 8A and 8B are formed.

上述したような各変形例によるダミー電極の配設パターンによれば、電極端子1、3に隣接して配設するチップ側ダミー電極6又は基板側ダミー電極7の配設位置及び配設面積等を変化させて、チップ側ダミー電極6又は基板側ダミー電極7に吸着される過剰なはんだ粒子13の量を制御することができるので、用いるはんだ粒子の量に応じたダミー電極の配設パターンを選ぶことができる。  According to the dummy electrode arrangement pattern according to the above-described modifications, the arrangement position and area of the chip-side dummy electrode 6 or the substrate-side dummy electrode 7 arranged adjacent to theelectrode terminals 1, 3, etc. The amount ofexcess solder particles 13 adsorbed on the chipside dummy electrode 6 or the substrateside dummy electrode 7 can be controlled, so that the dummy electrode arrangement pattern according to the amount of solder particles used can be changed. You can choose.

図7は、この例の電子部品の実装構造10で用いるダミー電極の形状の変形例を示す平面図である。第1の変形例によるダミー電極の形状は、図7(a)に示すように、格子状に等間隔で配設された4つの円形の基板側電極端子3(あるいは、チップ側電極端子1)の各電極端子3間に挟まれるように4つの円形の基板側ダミー電極7(あるいは、チップ側ダミー電極6)が配設された例を示し、第2の変形例によるダミー電極の形状は、図7(b)に示すように、格子状に等間隔で配設された4つの円形の基板側電極端子3で囲まれた領域の中央に1つの円形の基板側ダミー電極7が配設された例を示している。また、第3の変形例によるダミー電極の形状は、図7(c)に示すように、格子状に等間隔で配設された4つの円形の基板側電極端子3で囲まれた領域の中央に1つの方形の基板側ダミー電極7が配設された例を示し、第4の変形例によるダミー電極の形状は、図7(d)に示すように、格子状に等間隔で配設された4つの円形の基板側電極端子3で囲まれた領域の中央に1つのテトラポット形の基板側ダミー電極7が配設された例を示している。また、第5の変形例によるダミー電極の形状は、図7(e)に示すように、三角状に等間隔で配設された3つの円形の基板側電極端子3で囲まれた領域の中央に1つの円形の基板側ダミー電極7が配設された例を示し、第6の変形例によるダミー電極の形状は、図7(f)に示すように、三角状に等間隔で配設された3つの円形の基板側電極端子3で囲まれた領域の中央に1つの三角形の基板側ダミー電極7が配設された例を示している。  FIG. 7 is a plan view showing a modification of the shape of the dummy electrode used in the electroniccomponent mounting structure 10 of this example. As shown in FIG. 7A, the dummy electrode according to the first modification has four circular substrate-side electrode terminals 3 (or chip-side electrode terminals 1) arranged at regular intervals in a lattice shape. 4 shows an example in which four circular substrate-side dummy electrodes 7 (or chip-side dummy electrodes 6) are disposed so as to be sandwiched between theelectrode terminals 3, and the shape of the dummy electrodes according to the second modification is As shown in FIG. 7B, one circular substrate-side dummy electrode 7 is disposed at the center of a region surrounded by four circular substrate-side electrode terminals 3 disposed at equal intervals in a lattice shape. An example is shown. Further, the shape of the dummy electrode according to the third modification is as shown in FIG. 7C. The shape of the dummy electrode is the center of a region surrounded by four circular substrate-side electrode terminals 3 arranged at equal intervals in a lattice shape. Fig. 7 shows an example in which one square substrate-side dummy electrode 7 is arranged. The shape of the dummy electrode according to the fourth modified example is arranged in a lattice pattern at equal intervals as shown in Fig. 7 (d). Further, an example is shown in which one tetrapot-shaped substrate-side dummy electrode 7 is disposed in the center of a region surrounded by four circular substrate-side electrode terminals 3. The shape of the dummy electrode according to the fifth modification is the center of a region surrounded by three circular substrate-side electrode terminals 3 arranged at equal intervals in a triangular shape as shown in FIG. FIG. 7 shows an example in which one circular substrate-side dummy electrode 7 is arranged, and the dummy electrode shape according to the sixth modification is arranged in a triangular shape at equal intervals as shown in FIG. Further, an example is shown in which one triangular substrate-side dummy electrode 7 is disposed in the center of a region surrounded by three circular substrate-side electrode terminals 3.

ここで、電極端子1、3及びダミー電極6、7に吸着されたはんだ粒子は、一体化して基本的にその表面エネルギーが最小になるような形になろうとする性質がある。すなわち、円形の各ダミー電極6、7に吸着されたはんだ粒子は球の一部の形状になろうとする。そこでその性質を利用して、各ダミー電極6、7の形状が隣接する各電極端子1、3の中央に向かう方向において、上述の各変形例によるダミー電極の形状のように、曲率半径がより小さな形状になるように選ぶことで、各ダミー電極6、7上に吸着されたはんだ粒子も各電極端子1、3への方向に対して比較的鋭角な形状になる。その結果、各電極端子1、3及び各ダミー電極6、7間をブリッジするはんだ形状の表面エネルギーを高めることができるので、ブリッジの発生を抑えることができるようになる。  Here, the solder particles adsorbed on theelectrode terminals 1 and 3 and thedummy electrodes 6 and 7 have a property of being integrated so that the surface energy is basically minimized. That is, the solder particles adsorbed on thecircular dummy electrodes 6 and 7 tend to be part of the sphere. Therefore, by utilizing the property, in the direction in which the shape of eachdummy electrode 6, 7 is directed toward the center of eachadjacent electrode terminal 1, 3, the radius of curvature is more like the shape of the dummy electrode according to each of the above-described modifications. By selecting a small shape, the solder particles adsorbed on thedummy electrodes 6 and 7 also have a relatively acute angle with respect to the direction toward theelectrode terminals 1 and 3. As a result, the surface energy of the solder shape that bridges between theelectrode terminals 1 and 3 and thedummy electrodes 6 and 7 can be increased, so that the occurrence of bridging can be suppressed.

このように、この例の電子部品の実装構造10によれば、表面の全領域に複数のチップ側電極端子1が配設された半導体チップ2と、チップ側電極端子1に対応した複数の基板側電極端子3が表面の全領域に配設されたパッケージ基板4とが、両電極端子1、3が対向するように配置されて、対応する電極端子1、3同士がはんだバンプ5を介して接続されている構成において、半導体チップ2及びパッケージ基板4の対向面にそれぞれチップ側電極端子1及び基板側電極端子3に隣接するように複数のチップ側ダミー電極6及び基板側ダミー電極7が配設されて、これらのダミー電極6、7には有効なはんだバンプ5以外の過剰なはんだが吸着されて、ダミーバンプ8、及び未接合ダミーバンプ8A、8Bが形成されているので、供給されるはんだの量が過剰な場合でも、この過剰なはんだはダミー電極6、7に吸着されるため、この過剰なはんだが樹脂層9中に残留することはない。
したがって、半導体チップ2とパッケージ基板4との対向する電極間を確実に電気的に接続して、信頼性の向上を図ることができる。
Thus, according to the electroniccomponent mounting structure 10 of this example, thesemiconductor chip 2 in which the plurality of chip-side electrode terminals 1 are disposed in the entire surface area, and the plurality of substrates corresponding to the chip-side electrode terminals 1 Thepackage substrate 4 in which theside electrode terminals 3 are arranged in the entire surface area is arranged so that theelectrode terminals 1 and 3 face each other, and thecorresponding electrode terminals 1 and 3 are connected to each other via the solder bumps 5. In the connected configuration, a plurality of chip-side dummy electrodes 6 and substrate-side dummy electrodes 7 are arranged on opposite surfaces of thesemiconductor chip 2 and thepackage substrate 4 so as to be adjacent to the chip-side electrode terminal 1 and the substrate-side electrode terminal 3, respectively. Thedummy electrodes 6 and 7 are supplied with excessive solder other than theeffective solder bumps 5 so that the dummy bumps 8 and the unbonded dummy bumps 8A and 8B are formed. Even when the amount of solder is excessive, since this excess solder to be adsorbed to thedummy electrodes 6 and 7, is not that the excess solder remaining in theresin layer 9.
Therefore, it is possible to reliably connect the opposing electrodes of thesemiconductor chip 2 and thepackage substrate 4 to improve reliability.

次に、図8(a)、(b)を参照して、この例の電子部品の実装構造10を得るための電子部品の実装方法について、工程順に説明する。
まず、図8(a)に示すように、表面に基板側電極端子3及び基板側ダミー電極7が配設されたパッケージ基板4を用意する。次に、パッケージ基板4の表面にメタルマスク(図示せず)を使用して、印刷法により厚さが50〜100μmの導電性接着材12を供給する。この導電性接着材12は、エポキシ系樹脂をベースとして、その中にフラックス活性作用を有する剤及びはんだ粒子13を含有させたものを用いる。フラックス活性作用を有する剤としては、(メタ)アクリル酸、マレイン酸等の不飽和酸、蓚酸、マロン酸等の有機二酸、クエン酸等の有機酸をはじめとして、トリメリット酸、テトラメリット酸及びキレート剤等を少なくとも一つ有しているものを用いる。はんだ粒子13としては、例えば、錫・インジウム共晶合金(融点:117℃)からなる粒径が5〜30μm、体積含有率が30%のものを用いる。錫・インジウム共晶合金の他に、銀、銅、ビスマス、アンチモン等からなる2元系、又は3元系のはんだ合金を用いても良い。ただし、はんだ粒子が凝集、一体化の挙動をするには、はんだが溶融する温度において導電性接着材12の樹脂成分の粘度が低く抑えられている必要がある。したがって、はんだ材料の選定にあたっては、接合性の面からは低融点であることが望ましい。
Next, an electronic component mounting method for obtaining the electroniccomponent mounting structure 10 of this example will be described in the order of steps with reference to FIGS.
First, as shown in FIG. 8A, apackage substrate 4 having a substrate-side electrode terminal 3 and a substrate-side dummy electrode 7 disposed on the surface is prepared. Next, aconductive mask 12 having a thickness of 50 to 100 μm is supplied by a printing method using a metal mask (not shown) on the surface of thepackage substrate 4. As theconductive adhesive 12, an epoxy resin is used as a base, and an agent having a flux activity andsolder particles 13 are contained therein. Examples of agents having a flux activity include unsaturated acids such as (meth) acrylic acid and maleic acid, organic diacids such as oxalic acid and malonic acid, and organic acids such as citric acid, trimellitic acid, and tetramellitic acid And one having at least one chelating agent or the like is used. As thesolder particles 13, for example, those having a particle diameter of 5 to 30 μm and a volume content of 30% made of a tin / indium eutectic alloy (melting point: 117 ° C.) are used. In addition to the tin / indium eutectic alloy, a binary or ternary solder alloy made of silver, copper, bismuth, antimony, or the like may be used. However, in order for the solder particles to be agglomerated and integrated, it is necessary that the viscosity of the resin component of the conductive adhesive 12 be kept low at a temperature at which the solder melts. Therefore, in selecting a solder material, it is desirable that the melting point is low in terms of bondability.

ここで、次の工程である半導体チップ2の搭載時のエア巻き込みを防止するため、また導電性接着材12の半導体チップ2表面への濡れ広がりの起点となるように、導電性接着材12あるいはその樹脂成分のみを半導体チップ2に、又はスキージング後のパッケージ基板4の搭載面の少なくとも一方の搭載面上にポッティング法等により供給しても良い。また、導電性接着材12は薄く延ばして乾燥させてフィルム状にしたものをパッケージ基板4の表面に貼り付けるようにしても良い。さらにフィルム状にしたものはタック性を持たせるか、あるいは供給後のフィルム上に微量の導電性接着材、あるいはその樹脂成分のみをポッティング法等により供給しても良い。  Here, in order to prevent air entrainment at the time of mounting thesemiconductor chip 2 which is the next step, and to be a starting point of spreading of the conductive adhesive 12 to the surface of thesemiconductor chip 2, the conductive adhesive 12 or Only the resin component may be supplied to thesemiconductor chip 2 or on at least one mounting surface of thepackage substrate 4 after squeezing by a potting method or the like. Further, theconductive adhesive 12 may be thinly stretched and dried to form a film, which may be attached to the surface of thepackage substrate 4. Further, the film-like material may have tackiness, or a small amount of a conductive adhesive or only its resin component may be supplied on the film after supply by a potting method or the like.

次に、図8(b)に示すように、搭載機を用いてチップ側電極端子1及び基板側電極端子3が対向するように位置合わせした後、パッケージ基板4上に半導体チップ2を搭載する。この搭載はパッケージ基板4と半導体チップ2とのギャップが所定の値となるように制御して、側面から導電性接着材12の半導体チップ2側への全面濡れ広がりを確認し、必要に応じて両者2、4間のギャップを微調整する。またフィルム状のものを用いた場合には、荷重制御により半導体チップ2をパッケージ基板4に搭載しても良い。  Next, as shown in FIG. 8B, after positioning so that the chip-side electrode terminal 1 and the substrate-side electrode terminal 3 face each other using a mounting machine, thesemiconductor chip 2 is mounted on thepackage substrate 4. . This mounting is controlled so that the gap between thepackage substrate 4 and thesemiconductor chip 2 becomes a predetermined value, and the entire surface of the conductive adhesive 12 from the side surface to thesemiconductor chip 2 side is confirmed to be spread. Finely adjust the gap between the two. When a film-like one is used, thesemiconductor chip 2 may be mounted on thepackage substrate 4 by load control.

次に、一体化された半導体チップ2及びパッケージ基板4を、搭載機の加熱ヘッドによって加熱する。加熱プロファイルは、接合部を117〜180℃の範囲で昇温して加熱し、その状態で10秒間以上保持するように設定して、その後半導体チップ2及びパッケージ基板4を搭載機から取り外す。続いて、半導体チップ2及びパッケージ基板4をベーク炉内に搬送して、100℃で30分間以上加熱して、導電性接着材12の樹脂成分の硬化を行って、図2に示したような電子部品の実装構造10を完成させる。  Next, theintegrated semiconductor chip 2 andpackage substrate 4 are heated by the heating head of the mounting machine. The heating profile is set so that the temperature of the bonded portion is raised and heated in a range of 117 to 180 ° C. and held in that state for 10 seconds or longer, and then thesemiconductor chip 2 and thepackage substrate 4 are removed from the mounting machine. Subsequently, thesemiconductor chip 2 and thepackage substrate 4 are transported into a baking furnace, heated at 100 ° C. for 30 minutes or more, and the resin component of theconductive adhesive 12 is cured, as shown in FIG. The electroniccomponent mounting structure 10 is completed.

上述したような電子部品の実装方法によれば、基板側電極端子3及び基板側ダミー電極7が配設されたパッケージ基板4の、チップ側電極端子1及びチップ側ダミー電極6が配設された半導体チップ2との対向面に少なくともはんだ粒子13及び樹脂成分を含有した導電性接着材12を供給し、電極端子1、3が対向するように位置合わせして、パッケージ基板4上に半導体チップ2を搭載した後、加熱して導電性接着材12のはんだ粒子13を溶融、凝集、一体化させて対応する電極端子1、3同士をはんだバンプ5を介して接続すると同時に、過剰なはんだをダミー電極6、7に吸着させてダミーバンプ8、及び未接合ダミーバンプ8A、8Bを形成するので、簡単な工程の組合せで、予め半導体チップ2やパッケージ基板4上にバンプを形成する必要がなく、かつフラックス洗浄を不要にして、過剰なはんだを吸着するダミー電極を備えた電子部品の実装構造を得ることができる。  According to the electronic component mounting method as described above, the chip-side electrode terminal 1 and the chip-side dummy electrode 6 of thepackage substrate 4 on which the substrate-side electrode terminal 3 and the substrate-side dummy electrode 7 are disposed are disposed. Aconductive adhesive 12 containing atleast solder particles 13 and a resin component is supplied to the surface facing thesemiconductor chip 2, aligned so that theelectrode terminals 1 and 3 face each other, and thesemiconductor chip 2 is placed on thepackage substrate 4. After the solder is mounted, thesolder particles 13 of the conductive adhesive 12 are melted, aggregated, and integrated to connect thecorresponding electrode terminals 1 and 3 via the solder bumps 5 and at the same time, excess solder is dummy. Since the dummy bumps 8 and the unbonded dummy bumps 8A and 8B are formed by being attracted to theelectrodes 6 and 7, the bumps are previously formed on thesemiconductor chip 2 and thepackage substrate 4 by a combination of simple processes. Formed without the need to, and to eliminate the need for flux cleaning, the excess solder can be obtained a mounting structure of an electronic component including a dummy electrode to adsorb.

図9は、この発明の実施例2である電子部品の実装構造の構成を示す平面図である。この例の電子部品の実装構造の構成が、上述の実施例1のそれと大きく異なるところは、電極端子の外側にもダミー電極を配設するようにした点である。なお、この例の電子部品の実装構造では、半導体チップを省略して示している。
この例の電子部品の実装構造15は、図9に示すように、パッケージ基板4の表面(半導体チップ搭載面)には、最も外側に配設されている複数の基板側電極端子3のさらに外側に隣接するように複数の基板側ダミー電極7が配設されている。また、パッケージ基板4上に搭載されるべき半導体チップ(図示せず)の表面のチップ側電極端子1及びチップ側ダミー電極6も、それぞれパッケージ基板4の表面の基板側電極端子3及び基板側ダミー電極7と同様なレイアウトで配設されている。これ以外は、前述した実施例1の構成と略同様であるので、詳細な説明は省略する。
FIG. 9 is a plan view showing the configuration of the electronic component mounting structure according to the second embodiment of the present invention. The configuration of the electronic component mounting structure of this example is greatly different from that of the first embodiment described above in that a dummy electrode is disposed outside the electrode terminal. In the electronic component mounting structure of this example, the semiconductor chip is omitted.
As shown in FIG. 9, the electronic component mounting structure 15 in this example is provided on the front surface (semiconductor chip mounting surface) of thepackage substrate 4 further outside the plurality of substrate-side electrode terminals 3 arranged on the outermost side. A plurality of substrateside dummy electrodes 7 are arranged so as to be adjacent to each other. The chip-side electrode terminal 1 and the chip-side dummy electrode 6 on the surface of the semiconductor chip (not shown) to be mounted on thepackage substrate 4 are also the substrate-side electrode terminal 3 and the substrate-side dummy on the surface of thepackage substrate 4, respectively. A layout similar to that of theelectrode 7 is provided. Other than this, the configuration is substantially the same as that of the first embodiment described above, and a detailed description thereof will be omitted.

上述したような電子部品の実装構造15によれば、半導体チップ2及びパッケージ基板4にそれぞれ配設される各電極端子1、3のうち、最も外側に配設されている各電極端子1、3のさらに外側に隣接するように、ダミー電極6、7が配設されるので、特に最も外側に配設されている各電極端子1、3が接続領域の端部から内側に離れて配置されている場合において、過剰なはんだが各ダミー電極6、7に吸着されることにより、それらの各電極端子1、3に形成されるはんだバンプが過剰に大きくなるのを防止することができる。また、外側に配設するダミー電極6、7の数あるいは列数を適宜増減することにより、隣接している各電極端子1、3の周辺部に存在している過剰なはんだを確実に各ダミー電極6、7に吸着させることができる。  According to the electronic component mounting structure 15 as described above, theelectrode terminals 1, 3 disposed on the outermost side among theelectrode terminals 1, 3 respectively disposed on thesemiconductor chip 2 and thepackage substrate 4. Since thedummy electrodes 6 and 7 are arranged so as to be adjacent to the outer side of the electrode terminals, theelectrode terminals 1 and 3 arranged on the outermost side are arranged away from the end of the connection region inward. In this case, excessive solder is adsorbed by thedummy electrodes 6 and 7, so that it is possible to prevent the solder bumps formed on theelectrode terminals 1 and 3 from becoming excessively large. In addition, by appropriately increasing or decreasing the number ofdummy electrodes 6 and 7 or the number of columns arranged on the outside, it is possible to ensure that the excess solder existing in the peripheral part of theadjacent electrode terminals 1 and 3 is removed from each dummy. It can be adsorbed on theelectrodes 6 and 7.

このように、この例の電子部品の実装構造15によっても、各電極端子1、3の外側にも各ダミー電極6,7を配設するようにしたので、実施例1と略同様な効果得ることができる。  As described above, since thedummy electrodes 6 and 7 are also disposed outside theelectrode terminals 1 and 3 in the electronic component mounting structure 15 of this example, the same effects as those of the first embodiment can be obtained. be able to.

図10は、この発明の実施例3である電子部品の実装構造の構成を示す平面図である。この例の電子部品の実装構造の構成が、上述の実施例1のそれと大きく異なるところは、第1の電子部品又は基板としてBGA(Ball Grid Array)形パッケージを用いて、第2の電子部品又は基板としてのマザーボード上に実装するようにした点である。なお、この例の電子部品の実装構造では、BGA形パッケージを省略して示している。
この例の電子部品の実装構造20は、図10に示すように、マザーボード16の表面(BGA形パッケージ搭載面)の外周部には基板側電極端子3が配設されて、この基板側電極端子3は、例えば、直径が0.25mmの円形状の導電体が0.5mmの等間隔で格子状に配設されている。また、マザーボード16の表面の中央部には、基板側ダミー電極7が、基板側電極端子3と同一寸法及び同一間隔で格子状に配設されている。これによって、マザーボード16の表面の外周部に配設された基板側電極端子3の配置密度と、その表面の中央部に配設された基板側ダミー電極7の配置密度とは同じになっている。また、マザーボード16上に搭載されるBGA形パッケージ(図示せず)の表面のチップ側電極端子1及びチップ側ダミー電極6も、それぞれマザーボード16の表面の基板側電極端子3及び基板側ダミー電極7と同様なレイアウトで配設されている。
FIG. 10 is a plan view showing the configuration of the electronic component mounting structure according toEmbodiment 3 of the present invention. The configuration of the mounting structure of the electronic component of this example is greatly different from that of the first embodiment described above. A BGA (Ball Grid Array) type package is used as the first electronic component or substrate, and the second electronic component or It is the point which was made to mount on the motherboard as a board | substrate. In the electronic component mounting structure of this example, the BGA type package is omitted.
As shown in FIG. 10, the electronic component mounting structure 20 of this example is provided with substrate-side electrode terminals 3 on the outer peripheral portion of the surface of the mother board 16 (BGA-type package mounting surface). 3, for example, circular conductors having a diameter of 0.25 mm are arranged in a lattice pattern at equal intervals of 0.5 mm. In addition, the substrateside dummy electrodes 7 are arranged in a lattice shape at the same size and at the same intervals as the substrateside electrode terminals 3 at the center of the surface of themother board 16. As a result, the arrangement density of the substrate-side electrode terminals 3 disposed on the outer peripheral portion of the surface of themother board 16 is the same as the arrangement density of the substrate-side dummy electrodes 7 disposed on the central portion of the surface. . Further, the chip-side electrode terminal 1 and the chip-side dummy electrode 6 on the surface of the BGA type package (not shown) mounted on themother board 16 are also the substrate-side electrode terminal 3 and the substrate-side dummy electrode 7 on the surface of themother board 16, respectively. It is arranged with the same layout.

この例では、実施例1におけるチップ側電極端子1と基板側電極端子3とを接続するためのはんだバンプ5、ダミー電極6、7に吸着されるダミーバンプ8に相当する各はんだバンプは、BGA形パッケージの搭載前にマザーボード16の表面に供給される導電性接着材に予め含有されている、例えば、直径が20〜40μmの錫・ビスマス共晶合金(融点:139℃)のはんだ粒子を加熱により溶融、凝集、一体化することにより形成する。  In this example, each solder bump corresponding to thesolder bump 5 for connecting the chip-side electrode terminal 1 and the substrate-side electrode terminal 3 in Example 1 and the dummy bumps 8 attracted to thedummy electrodes 6 and 7 is a BGA type. By heating the solder particles of, for example, a tin / bismuth eutectic alloy (melting point: 139 ° C.) having a diameter of 20 to 40 μm, which is previously contained in the conductive adhesive supplied to the surface of themother board 16 before the package is mounted. It is formed by melting, agglomerating and integrating.

この例の電子部品の実装方法では、マザーボード16上にBGA形パッケージを搭載した後、両者を上下赤外線加熱のリフロー炉に搬送して、錫・ビスマス共晶合金の融点とプロセスタイムの短縮を加味して2ステップで加熱する。具体的には、第1のステップとして、錫・ビスマス共晶合金の融点(139℃)以上の150℃で10秒間以上加熱して、はんだ粒子を溶融、凝集、一体化させる。次に、第2のステップとして、180℃で30秒間以上加熱して、樹脂成分を硬化させて、電子部品の実装構造20を完成させる。  In this example of electronic component mounting method, after mounting a BGA package on themother board 16, both are transferred to a reflow furnace heated by upper and lower infrared rays, taking into account the melting point of the tin-bismuth eutectic alloy and shortening of the process time. And heating in two steps. Specifically, as a first step, the solder particles are melted, aggregated, and integrated by heating at 150 ° C., which is higher than the melting point (139 ° C.) of the tin / bismuth eutectic alloy, for 10 seconds or more. Next, as a second step, heating is performed at 180 ° C. for 30 seconds or longer to cure the resin component, thereby completing the electronic component mounting structure 20.

上述したような電子部品の実装構造20によれば、マザーボード16及びBGA形パッケージの表面の中央部にはダミー電極6、7が配設されているので、過剰なはんだはこれらのダミー電極6,7に吸着されるようになる。したがって、マザーボード16及びBGA形パッケージの対向面の外周部に配設されている電極端子1、3間を接続するためのはんだバンプは、均一な量が凝集されて形成されるようになる。  According to the electronic component mounting structure 20 as described above, thedummy electrodes 6 and 7 are disposed at the center of the surface of themother board 16 and the BGA type package. 7 will be adsorbed. Therefore, the solder bumps for connecting theelectrode terminals 1 and 3 disposed on the outer peripheral portions of the opposing surfaces of themother board 16 and the BGA type package are formed by aggregating a uniform amount.

このように、この例の電子部品の実装構造20によっても、第1の電子部品又は基板と第2の電子部品又は基板との組合せが異なるだけで、実施例1と略同様な効果を得ることができる。  As described above, the electronic component mounting structure 20 of this example also obtains substantially the same effect as that of the first embodiment, except that the combination of the first electronic component or substrate and the second electronic component or substrate is different. Can do.

図11は、この発明の実施例4である電子部品の実装構造の構成を示す平面図である。この例の電子部品の実装構造の構成が、上述の実施例3のそれと大きく異なるところは、BGA形パッケージ(第1の電子部品又は基板)とマザーボード(第2の電子部品又は基板)との組合せにおいて、ダミー電極の配設パターンを変更した点である。
この例の電子部品の実装構造25は、図11に示すように、マザーボード16の表面のみに、その最近接して配設されている4つの基板側電極端子3で囲まれる領域のすべてに、直径が0.2mmの円形状の導電体からなる基板側ダミー電極17が等間隔で格子状に配設されている。すなわち、ダミー電極17を配設した分だけ、マザーボード16の方がBGA形パッケージのダミー電極よりも多くなっている。これ以外は、前述した実施例3の構成と略同様であるので、詳細な説明は省略する。
FIG. 11 is a plan view showing the configuration of the electronic component mounting structure according toEmbodiment 4 of the present invention. The configuration of the electronic component mounting structure in this example is greatly different from that of the above-described third embodiment in that a combination of a BGA type package (first electronic component or substrate) and a motherboard (second electronic component or substrate) is used. In FIG. 5, the arrangement pattern of the dummy electrodes is changed.
As shown in FIG. 11, the electronic component mounting structure 25 of this example has a diameter in all of the area surrounded by the four board-side electrode terminals 3 disposed only on the surface of themother board 16 and closest thereto. Substrate-side dummy electrodes 17 made of a circular conductor having a thickness of 0.2 mm are arranged in a lattice at equal intervals. That is, themother board 16 is more than the dummy electrode of the BGA package by the amount of the dummy electrode 17 provided. Other than this, the configuration is substantially the same as that of the third embodiment described above, and a detailed description thereof will be omitted.

上述したような電子部品の実装構造25によれば、マザーボード16のみの表面には、最近接して配設されている4つの基板側電極端子3で囲まれる領域のすべてに、基板側ダミー電極17が等間隔で格子状に配設されているので、基板側ダミー電極17を配設した分だけ、過剰なはんだに対するダミー電極17の吸着能力を高めることができる。したがって、マザーボード16の全領域における端子間ブリッジを防止することができ、その全領域において各電極端子1、3間を確実に電気的に接続することができるようになる。また、加熱プロセスについては実施例3と同様に行うことができる。ただし、この例では、ダミー電極17をマザーボード16のみに配設していることにより、リフロー炉による加熱時は上下のヒータ−ブロックの温度設定に差をつけてマザーボード16側をより高温にすることで、ダミー電極17へのはんだの凝集を適宜促進することが望ましい。  According to the electronic component mounting structure 25 as described above, the board-side dummy electrode 17 is provided on the entire surface surrounded by the four board-side electrode terminals 3 arranged closest to each other on the surface of themother board 16 alone. Are arranged in a lattice pattern at equal intervals, the adsorption capacity of the dummy electrode 17 to excess solder can be increased by the amount of the substrate-side dummy electrode 17 provided. Therefore, the bridge between terminals in the entire area of themother board 16 can be prevented, and theelectrode terminals 1 and 3 can be reliably electrically connected in the entire area. The heating process can be performed in the same manner as in Example 3. However, in this example, the dummy electrode 17 is disposed only on themother board 16, so that the temperature of the upper and lower heater blocks is set differently when heating by the reflow furnace, so that themother board 16 side is heated to a higher temperature. Therefore, it is desirable to appropriately promote the aggregation of solder on the dummy electrode 17.

このように、この例の電子部品の実装構造25によっても、マザーボード16のみにより多くのダミー電極17を配設することにより、実施例3と略同様な効果を得ることができる。  As described above, the electronic component mounting structure 25 of this example can provide substantially the same effect as that of the third embodiment by disposing more dummy electrodes 17 only on themother board 16.

以上、この発明の実施例を図面により詳述してきたが、具体的な構成はこの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。例えば、ダミー電極は、必要に応じて、個数を増減でき、少なくとも1個あれば良い場合もありうる。また、電子部品の電極端子の配置密度が一様でなくて、外周部のみに配設されて中央部には配設されていないような場合は、この中央部にダミー電極を電極端子と同じ配置密度で配設することにより、中央部におけるはんだ粒子の残留を防止することができる。また、電極端子が疎密のある配置密度で配設されている場合には、疎な配置密度で配設されている電極端子に隣接してダミー電極を配設することにより、より確実にはんだ粒子の残留を防止することができる。要するに、接合面のうち、電極端子が密に配列された密な領域よりも、電極端子が疎に配列された疎な領域の方が、ダミー電極の配置密度が高くなるように設定するのが好ましい。つまり、電極端子にダミー電極を含む全体としての電極密度を均等化する態様で、ダミー電極を配列するのが好ましい。  The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and the present invention can be changed even if there is a design change or the like without departing from the gist of the present invention. include. For example, the number of dummy electrodes can be increased or decreased as necessary, and at least one dummy electrode may be sufficient. In addition, when the arrangement density of the electrode terminals of the electronic component is not uniform and is disposed only in the outer peripheral portion but not in the central portion, the dummy electrode is the same as the electrode terminal in the central portion. By arranging with the arrangement density, it is possible to prevent the solder particles from remaining in the central portion. In addition, when the electrode terminals are arranged with a sparse arrangement density, solder particles are more reliably arranged by arranging a dummy electrode adjacent to the electrode terminals arranged with a sparse arrangement density. Can be prevented from remaining. In short, it is set so that the arrangement density of the dummy electrodes is higher in the sparse region in which the electrode terminals are sparsely arranged than in the dense region in which the electrode terminals are densely arranged in the bonding surface. preferable. That is, it is preferable to arrange the dummy electrodes in a manner that equalizes the overall electrode density including the dummy electrodes in the electrode terminals.

また、実施例では、第1の電子部品又は基板と第2の電子部品又は基板との組み合せは、半導体チップとパッケージ基板あるいはBGA形パッケージとマザーボードとの組み合せ例で説明したが、これに限らずに半導体チップと半導体チップとの組み合せ例、いわゆるCoC(Chip on Chip)実装構造等の他の組み合せ例にも適用することができる。また、第1の電子部品又は基板としては半導体チップを組み込んだ半導体パッケージにも適用することでき、さらに、この半導体パッケージ同士を組み合せてもよく、あるいは上記のBGA形パッケージ同士を組み合せても良い。また、半導体チップ、BGA形パッケージ、半導体パッケージ等を第1の電子部品又は基板として用いてこれらを実装する第2の電子部品又は基板としては、実施例で示したパッケージ基板、マザーボード等に限らずに、通常配線基板やプリント配線基板等として呼称されている基板全体に適用することができる。また、実施例では、ダミー電極が電極端子よりも面積が小さい例で説明したが、これに限らず逆な関係となるように各電極端子を配設することもできる。例えば、電極端子が疎密のある配置密度で配設されている場合には、周囲スペースに余裕がある疎な配置密度で配設されている電極端子に隣接して大きな面積のダミー電極を配設することにより、過剰なはんだの吸着能力をより大きくすることができる。また、実施例で示した各電極端子の寸法、間隔等の具体的数値、導電体材料、導電性接着材、はんだ粒子等の具体的材料、各電極端子の配設パターン、ダミー電極の形状等は一例を示したものであって、目的、用途等に応じて適宜変更することができる。  In the embodiment, the combination of the first electronic component or substrate and the second electronic component or substrate has been described as an example of a combination of a semiconductor chip and a package substrate or a BGA type package and a motherboard. However, the present invention is not limited to this. In addition, the present invention can also be applied to other combinations such as a combination example of a semiconductor chip and a semiconductor chip, such as a so-called CoC (Chip on Chip) mounting structure. Further, the first electronic component or the substrate can be applied to a semiconductor package in which a semiconductor chip is incorporated, and the semiconductor packages may be combined with each other, or the BGA type packages may be combined with each other. In addition, the second electronic component or the substrate on which the semiconductor chip, the BGA type package, the semiconductor package or the like is mounted as the first electronic component or the substrate is not limited to the package substrate or the motherboard shown in the embodiment. In addition, the present invention can be applied to the entire substrate generally called as a wiring board or a printed wiring board. In the embodiment, the dummy electrode has been described as having an area smaller than that of the electrode terminal. For example, if the electrode terminals are arranged with a sparse and dense arrangement density, a dummy electrode with a large area is arranged adjacent to the electrode terminals arranged with a sparse arrangement density with a margin in the surrounding space. By doing so, the adsorption capability of excess solder can be further increased. Also, specific values such as dimensions and intervals of each electrode terminal shown in the examples, specific materials such as conductor material, conductive adhesive, solder particles, arrangement pattern of each electrode terminal, shape of dummy electrode, etc. Is an example, and can be appropriately changed according to the purpose, application, and the like.

この発明の実施例1である電子部品の実装構造の構成を示す平面図である。It is a top view which shows the structure of the mounting structure of the electronic component which is Example 1 of this invention.図1のA−A矢視断面図である。It is AA arrow sectional drawing of FIG.同電子部品の実装構造において最適な実装条件を説明するための断面図である。It is sectional drawing for demonstrating the optimal mounting conditions in the mounting structure of the same electronic component.同電子部品の実装構造で用いるダミー電極の配設パターンの変形例を示す断面図である。It is sectional drawing which shows the modification of the arrangement pattern of the dummy electrode used with the mounting structure of the same electronic component.同電子部品の実装構造で用いるダミー電極の配設パターンの変形例を示す断面図である。It is sectional drawing which shows the modification of the arrangement pattern of the dummy electrode used with the mounting structure of the same electronic component.同電子部品の実装構造で用いるダミー電極の配設パターンの変形例を示す断面図である。It is sectional drawing which shows the modification of the arrangement pattern of the dummy electrode used with the mounting structure of the same electronic component.同電子部品の実装構造で用いるダミー電極の形状の変形例を示す平面図である。It is a top view which shows the modification of the shape of the dummy electrode used with the mounting structure of the same electronic component.同電子部品の実装構造を得るための電子部品の実装方法を工程順に示す断面図である。It is sectional drawing which shows the mounting method of the electronic component for obtaining the mounting structure of the electronic component in order of a process.この発明の実施例2である電子部品の実装構造の構成を示す平面図である。It is a top view which shows the structure of the mounting structure of the electronic component which is Example 2 of this invention.この発明の実施例3である電子部品の実装構造の構成を示す平面図である。It is a top view which shows the structure of the mounting structure of the electronic component which is Example 3 of this invention.この発明の実施例4である電子部品の実装構造の構成を示す平面図である。It is a top view which shows the structure of the mounting structure of the electronic component which is Example 4 of this invention.従来の電子部品の実装構造の構成を示す断面図である。It is sectional drawing which shows the structure of the mounting structure of the conventional electronic component.

符号の説明Explanation of symbols

1 チップ側電極端子(第1の電極端子)
2 半導体チップ(第1の電子部品又は基板)
3 基板側電極端子(第2の電極端子)
4 パッケージ基板(第2の電子部品又は基板)
5 はんだバンプ
6 チップ側ダミー電極(ダミー電極)
7、17 基板側ダミー電極(ダミー電極)
8 ダミーバンプ
8A、8B 未接合ダミーバンプ
9 樹脂層(樹脂成分)
10、15、20、25 電子部品の実装構造
11 半導体チップの搭載領域
12 導電性接着材
13 はんだ粒子
16 マザーボード
1 Chip-side electrode terminal (first electrode terminal)
2 Semiconductor chip (first electronic component or substrate)
3 Substrate side electrode terminal (second electrode terminal)
4 Package substrate (second electronic component or substrate)
5Solder bump 6 Chip side dummy electrode (dummy electrode)
7, 17 Substrate side dummy electrode (dummy electrode)
8 Dummy bumps 8A, 8B Unbonded dummy bumps 9 Resin layer (resin component)
10, 15, 20, 25 Mounting structure ofelectronic component 11 Mounting area ofsemiconductor chip 12 Conductive adhesive 13Solder particle 16 Motherboard

Claims (3)

Translated fromJapanese
第1の接合面に複数の第1の電極端子が配列された第1の電子部品又は基板と、第2の接合面に複数の第2の電極端子が配列された第2の電子部品又は基板と接合する際に、前記第1の接合面と前記第2の接合面との間に導電性接着材を介挿させて、前記第1の接合面と前記第2の接合面とを接合すると共に、互いに対応関係のある前記第1の電極端子と第2の電極端子とをはんだ接続する電子部品の実装方法であって、
前記第1の接合面又は/及び前記第2の接合面に、有効な電極端子としては機能しない少なくとも1個のダミー電極をさらに設け、
前記第1の接合面と前記第2の接合面とを相対向させ、これら第1及び第2の接合面に間に導電性接着材を挿入充填した後、
所定の加熱下で、前記導電性接着材に含有されるはんだ粒子を、前記第1の電極端子及び前記第2の電極端子のパッド面で、凝集、一体化させて、互いに対応関係のある前記第1の電極端子と第2の電極端子とをはんだ接続すると共に、前記はんだ粒子のうち、余分なはんだ粒子をダミー電極に吸着させることを特徴とする電子部品の実装方法。
A first electronic component or substrate in which a plurality of first electrode terminals are arranged on the first bonding surface, and a second electronic component or substrate in which a plurality of second electrode terminals are arranged on the second bonding surface And joining the first joint surface and the second joint surface by inserting a conductive adhesive between the first joint surface and the second joint surface. And a mounting method of an electronic component for solder-connecting the first electrode terminal and the second electrode terminal that have a corresponding relationship to each other,
At least one dummy electrode that does not function as an effective electrode terminal is further provided on the first bonding surface or / and the second bonding surface,
After the first bonding surface and the second bonding surface are opposed to each other, and a conductive adhesive is inserted and filled between the first and second bonding surfaces,
Under predetermined heating, the solder particles contained in the conductive adhesive are aggregated and integrated on the pad surfaces of the first electrode terminal and the second electrode terminal, and have a corresponding relationship with each other. A method for mounting an electronic component, wherein the first electrode terminal and the second electrode terminal are solder-connected, and extra solder particles among the solder particles are adsorbed to a dummy electrode.
前記はんだ接続の後、又は、前記はんだ接続と同時進行で、前記第1の接合面と第2の接合面との隙間に充填されている前記導電性接着材の樹脂成分を硬化させることを特徴とする請求項記載の電子部品の実装方法。The resin component of the conductive adhesive filled in the gap between the first joint surface and the second joint surface is cured after the solder connection or simultaneously with the solder connection. The electronic component mounting method according to claim1 . 前記導電性接着材が、フィルム状の樹脂成分の中にはんだ粒子が分散して含有される導電性接着フィルムからなることを特徴とする請求項1又は2記載の電子部品の実装方法。3. The electronic component mounting method according to claim 1, wherein the conductive adhesive is made of a conductive adhesive film in which solder particles are dispersed and contained in a film-like resin component.
JP2006253316A2006-09-192006-09-19 Electronic component mounting methodExpired - Fee RelatedJP4887997B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2006253316AJP4887997B2 (en)2006-09-192006-09-19 Electronic component mounting method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2006253316AJP4887997B2 (en)2006-09-192006-09-19 Electronic component mounting method

Publications (2)

Publication NumberPublication Date
JP2008078238A JP2008078238A (en)2008-04-03
JP4887997B2true JP4887997B2 (en)2012-02-29

Family

ID=39350029

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2006253316AExpired - Fee RelatedJP4887997B2 (en)2006-09-192006-09-19 Electronic component mounting method

Country Status (1)

CountryLink
JP (1)JP4887997B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2008198745A (en)*2007-02-092008-08-28Sumitomo Bakelite Co LtdSolder bump forming method, solder bump, semiconductor device and manufacturing method of semiconductor device
JP5560713B2 (en)*2007-10-052014-07-30日本電気株式会社 Electronic component mounting method, etc.
JP5264585B2 (en)2009-03-242013-08-14パナソニック株式会社 Electronic component joining method and electronic component
KR101711499B1 (en)2010-10-202017-03-13삼성전자주식회사Semiconductor package and method of forming the same
JP2013251562A (en)*2013-07-222013-12-12Sumitomo Bakelite Co LtdConductive connection material with dicing sheet function, connection method between terminals, and electrical and electronic components
JP6588214B2 (en)*2015-03-192019-10-09新光電気工業株式会社 Electronic component device and method of manufacturing electronic component device
DE102017128568A1 (en)*2017-12-012019-06-06Infineon Technologies Ag SEMICONDUCTOR CHIP WITH A VARIETY OF EXTERNAL CONTACTS, CHIP ARRANGEMENT AND METHOD FOR CHECKING AN ORIENTATION OF A POSITION OF A SEMICONDUCTOR CHIP
JP7397589B2 (en)*2019-06-282023-12-13エルジー ディスプレイ カンパニー リミテッド Electronic device and its manufacturing method, and display device and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP3169254B2 (en)*1992-03-182001-05-21株式会社日立製作所 Multilayer wiring board
JPH10308413A (en)*1997-05-071998-11-17Casio Comput Co Ltd Electronic components and electronic component mounting modules
JP2000165007A (en)*1998-11-272000-06-16Nec CorpPrinted circuit board, electronic component and its mounting method
JP2001257289A (en)*2000-03-102001-09-21Mitsubishi Electric Corp Semiconductor package, semiconductor device, and method of manufacturing semiconductor device
JP2003017530A (en)*2001-06-282003-01-17Hitachi Ltd Semiconductor device and mounting method thereof
JP2006245189A (en)*2005-03-022006-09-14Matsushita Electric Ind Co Ltd Flip chip mounting method and mounting structure for semiconductor element

Also Published As

Publication numberPublication date
JP2008078238A (en)2008-04-03

Similar Documents

PublicationPublication DateTitle
JP4887997B2 (en) Electronic component mounting method
US7482199B2 (en)Self alignment features for an electronic assembly
TWI549204B (en) Manufacturing method of semiconductor device
TWI419300B (en)Electronic component built-in substrate and method of manufacturing electronic component built-in substrate
TW200525666A (en)Bump-on-lead flip chip interconnection
CN1340851A (en)Electronic device and its manufacture method
JP5569676B2 (en) Electronic component mounting method
JP2009099669A (en)Mounting structure of electronic component, and mounting method thereof
KR102006637B1 (en)Method Of Forming Bump And Semiconductor device including The Same
JP4051570B2 (en) Manufacturing method of semiconductor device
JP2000277649A (en)Semiconductor and manufacture of the same
JP2004128056A (en) Semiconductor device and manufacturing method thereof
JP5560713B2 (en) Electronic component mounting method, etc.
JP3972209B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
TWI508258B (en)Semiconductor package and manufacturing method thereof
CN101399246A (en)Package substrate structure and production method thereof
JP2008288490A (en)Process for producing built-in chip substrate
JP3847602B2 (en) Stacked semiconductor device, method for manufacturing the same, motherboard mounted with semiconductor device, and method for manufacturing motherboard mounted with semiconductor device
JP2007266564A (en)Flip chip bonded package
JP5245270B2 (en) Semiconductor device and manufacturing method thereof
JP4324773B2 (en) Manufacturing method of semiconductor device
JP5333220B2 (en) Semiconductor device mounting structure and semiconductor device mounting method
JP2016162813A (en) Printed circuit board and soldering method
JP2000133680A (en)Surface mounting joint member
JP4561969B2 (en) Semiconductor device

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20090812

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20110819

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20110823

A521Written amendment

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20111024

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20111115

A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20111128

R150Certificate of patent or registration of utility model

Free format text:JAPANESE INTERMEDIATE CODE: R150

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20141222

Year of fee payment:3

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp