【0001】
【発明の属する技術分野】
この発明は、受電コアの構造及び、該受電コアを用いた受電部を有する移動体への給電システムに関するものであり、特に、倉庫等における物品の収納保管及び検索取出しを搬送車によって自動的に行う自動保管検索装置において、走行用の駆動電力を非接触で搬送車に供給する、搬送車への給電システムに関するものである。
【0002】
【従来の技術】
倉庫等における物品の収納保管及び検索取出しを搬送車によって自動的に行う自動保管検索装置がある。このような自動保管検索装置において、走行用の駆動電力を搬送車に給電する方式として、非接触給電が行われている。
【0003】
図10は、従来の自動保管検索装置の構成を模式的に示す斜視図である。所望のストッカー1a,1bに物品2を収納するために、あるいは、所望のストッカー1a,1bから物品2を取り出すために、受電部105を備える搬送車4は、レール3a,3b上を走行しながら物品2を搬送する。
【0004】
図11は、搬送車4の受電部105付近の構造をレール3aとともに示す断面図である。搬送車4の車輪10が、レール3aの上面に接触している。受電部105は、二次側のコイル11が巻装された、断面形状が略E字形の受電コア109を有している。受電コア109は、底壁板109aと、側壁板109b,109dと、内壁板109cとを有している。内壁板109cの高さは側壁板109b,109dの高さにほぼ等しく、コイル11は内壁板109cに巻装されている。また、内壁板109cの上端部には、側壁板109b,109dに向かってそれぞれ突出した突出部109e,109fが形成されている。側壁板109bの上端部と突出部109eとの間にはギャップG101が形成されており、側壁板109dの上端部と突出部109fとの間にはギャップG102が形成されている。図11に示すように、ギャップG101とギャップG102とは、互いに離間しつつ同一直線上に形成されている。また、受電コア109は取付部材8上に取り付けられており、取付部材8は、搬送車4の本体部に固定されている。
【0005】
一次側の給電線7a,7bは、取付部材6a,6bによって、レール3aの底面にそれぞれ取り付けられている。実際には、複数の取付部材6a,6bがレール3aに沿って等間隔に配設されている。取付部材6a,6bは、それぞれギャップG101,G102から受電コア109内に挿入されており、これにより、給電線7a,7bが受電コア109の内部空間A101,A102にそれぞれ配設されている。なお、内部空間A101は、底壁板109a、側壁板109b、及び内壁板109cによって規定される空間であり、内部空間A102は、底壁板109a、側壁板109d、及び内壁板109cによって規定される空間である。
【0006】
【発明が解決しようとする課題】
図12は、受電コア109を励磁させたときの磁束分布に関するシミュレーション結果を示す図である。図12に示すように、従来の受電コア109では、ギャップG101,G102から外部への磁束の漏洩が大きい。そのため、従来の受電コア109によると、大きな磁束の漏洩によって受電部105の給電効率が低下するという問題があった。また、この漏洩磁束が受電コア109の周囲に与える影響も大きくなるため、鉄等の導電性磁性体を受電コア109に近い箇所に設置することが制約されるという問題もあった。
【0007】
本発明はかかる問題を解決するために成されたものであり、外部への磁束の漏洩が抑制された受電コア、及び該受電コアを用いた受電部を有する移動体への給電システムを得ることを目的とするものである。
【0008】
【課題を解決するための手段】
この発明のうち請求項1に記載の受電コアは、互いに対向する第1及び第2の開口側面と、第1の開口側面と第2の開口側面とを繋ぐ開口溝とを有する、中空柱状の外壁枠体と、開口溝が延在する方向に延在して形成され、かつ、開口溝に対向する部分の外壁枠体の内面から、頂面が開口溝に到達しないように開口溝に向かって形成された内壁板とを備え、開口溝は、外壁枠体の互いに対向する第1端面及び第2端面によって規定され、外壁枠体の第1端面と内壁板の頂面とによって規定される第1のギャップと、外壁枠体の第2端面と内壁板の頂面とによって規定される第2のギャップとが形成されていることを特徴とするものである。
【0009】
また、この発明のうち請求項2に記載の受電コアは、請求項1に記載の受電コアであって、開口溝が延在する方向に延在して内壁板の頂面上に形成され、頂面よりも幅広の、磁化等方性の磁性部材をさらに備えることを特徴とするものである。
【0010】
また、この発明のうち請求項3に記載の移動体への給電システムは、移動体が走行する軌道に沿って給電線を配設し、移動体が備える受電部に対して、給電線から非接触で電力を供給する、移動体への給電システムであって、給電線は、保持部材によって軌道に沿って保持された、第1及び第2の給電線を含み、受電部は、請求項1又は2に記載の受電コアを有し、保持部材が開口溝並びに第1及び第2のギャップから受電コア内に挿入されることにより、第1及び第2の給電線が受電コアの内部空間に配設されていることを特徴とするものである。
【0011】
【発明の実施の形態】
実施の形態1.
図1は、本発明の実施の形態1に係る自動保管検索装置の構成を模式的に示す斜視図である。所望のストッカー1a,1bに物品2を収納するために、あるいは、所望のストッカー1a,1bから物品2を取り出すために、受電部5を備える搬送車4は、レール3a,3b上を走行しながら物品2を搬送する。
【0012】
図2は、本実施の形態1に係る自動保管検索装置に関して、搬送車4の受電部5付近の構造をレール3aとともに示す断面図である。搬送車4の車輪10が、レール3aの上面に接触している。受電部5は、二次側のコイル11が巻装された受電コア9を有している。受電コア9は取付部材8上に取り付けられており、取付部材8は、搬送車4の本体部に固定されている。
【0013】
図3は、受電コア9の構造を取付部材8とともに示す斜視図である。図3を参照して、受電コア9は、互いに対向する第1及び第2の開口側面(YZ平面内に存在する側面)と、第1の開口側面と第2の開口側面とを繋ぐ幅狭の開口溝50とを有する、中空柱状の外壁枠体を備えている。外壁枠体は、底壁板9aと、側壁板9b,9dと、上壁板9e,9fとを有している。側壁板9bは底壁板9aに繋がり、上壁板9eは側壁板9bに繋がっている。また、側壁板9dは底壁板9aに繋がり、上壁板9fは側壁板9dに繋がっている。開口溝50は、互いに対向する上壁板9eの端面51と上壁板9fの端面52との間に規定されている。また、受電コア9は内壁板9cを備えており、内壁板9cは、開口溝50が延在する方向(X方向)に延在して、かつ、開口溝50に対向する部分の底壁板9aの内面から、頂面53が開口溝50に到達しないように開口溝50に向かって形成されている。内壁板9cの高さは側壁板9b,9dの高さよりも低い。
【0014】
かかる構成により、図2に示すように受電コア9には、上壁板9eの端面51と内壁板9cの頂面53とによって規定されるギャップG1と、上壁板9fの端面52と内壁板9cの頂面53とによって規定されるギャップG2とが形成されている。ギャップG1及びギャップG2は、内壁板9cの頂面53を共通の一端として、略V字状に対向して形成されている。なお、図3には、中空四角柱状の外壁枠体を示したが、例えば中空円柱状の外壁枠体等であってもよい。
【0015】
図2を参照して、コイル11は内壁板9cに巻装されている。一次側の給電線7a,7bは保持部材6によって保持されており、保持部材6はレール3aの底面に取り付けられている。実際には、複数の保持部材6がレール3aに沿って等間隔に配設されている。保持部材6は、開口溝50から受電コア9内に挿入された後、ギャップG1,G2の方向に枝分かれしており、これにより、給電線7a,7bが受電コア9の内部空間A1,A2にそれぞれ配設されている。なお、内部空間A1は、底壁板9a、側壁板9b、上壁板9e、及び内壁板9cによって規定される空間であり、内部空間A2は、底壁板9a、側壁板9d、上壁板9f、及び内壁板9cによって規定される空間である。
【0016】
図4は、本実施の形態1に係る受電コア9の構造を示す断面図である。受電コア9は、厚みが数10μm程度のアモルファスの薄膜91〜95が、図4に示すように複数(図4では図面の簡略化のため5層のみ示している)積層されて構成されている。上壁板9e,9fの端面51,52部分において、上壁板9e,9fの各底面には、薄膜91〜95がそれぞれ露出している。
【0017】
図5は、本実施の形態1に係る受電コア9を励磁させたときの磁束分布に関するシミュレーション結果を示す図である。図5と図12とを比較すると分かるように、本実施の形態1に係る受電コア9は、従来の受電コア109と比較して、ギャップG1,G2から外部への磁束の漏洩が抑制されている。その理由の一つは以下の通りである。図2を参照して、給電線7aには紙面の手前から奥に向かって電流が流れ、給電線7bには紙面の奥から手前に向かって電流が流れているとする。すると、端面51部分及び端面52部分がN極となり、頂面53部分がS極となる。ギャップG1に着目すると、ギャップG1の両端には一対のN極(端面51)及びS極(頂面53)が存在するのに加えて、磁束が漏れようとする方向に、もう一つのN極(端面52)が存在する。従って、従来の受電コア109ではN極とS極とが引き合うだけだったのに対して、本実施の形態1に係る受電コア9では、N極(端面51)とS極(頂面53)とが引き合うことに加えて、もう一つのN極(端面52)によって磁束の漏れを反発する作用が生じる。その結果、反発された磁束はS極へと戻るため、外部への磁束の漏洩が抑制されるのである。
【0018】
このように本実施の形態1に係る受電コア9によれば、従来の受電コア109と比較して、ギャップG1,G2から外部への磁束の漏洩を抑制することができる。その結果、受電部5の給電効率が向上するため、同じ入力電力(一次側)に対して大きな出力電力(二次側)を得ることができる。また、漏洩磁束が受電コア9の周囲に与える影響を抑制できるため、受電コア9に近い箇所に鉄等の導電性磁性体を設置することが可能となり、設計の自由度を高めることができる。
【0019】
図6は、受電コア9の形状の変形例を示す図である。図6に示すような形状の受電コアであっても、ギャップから外部への磁束の漏洩が抑制され、上記と同様の効果が得られる。
【0020】
実施の形態2.
図7は、本発明の実施の形態2に係る自動保管検索装置に関して、搬送車4の受電部5付近の構造をレール3aとともに示す断面図であり、図8は、本実施の形態2に係る受電コア9の構造を示す断面図である。内壁板9cの頂面53上には、開口溝50が延在する方向(X方向)に延在して、磁性体12が形成されている。Y方向に関する磁性体12の幅は、Y方向に関する内壁板9cの幅よりも広く、Z方向から眺めた場合、上壁板9e,9fと磁性体12とは一部が重複する。また、磁性体12は、フェライトの粉末を焼き固めて一体成形された、磁化等方性の磁性体である。本明細書において「磁化等方性」とは、成形された形状において磁気異方性が低く、どの方向へも比較的均等に磁化されやすい性質を意味する。本実施の形態2に係る受電部5のその他の構造は、上記実施の形態1に係る受電部5の構造と同様である。
【0021】
図9は、本実施の形態2に係る受電コア9を励磁させたときの磁束分布に関するシミュレーション結果を示す図である。図5のシミュレーション結果に示されているように、上記実施の形態1に係る受電コア9では、内壁板9cの頂面53付近で磁束が集中する傾向にあり、この部分が早く飽和するため、受電コア9の能力を最大限に活用できない可能性があった。これに対して、図9のシミュレーション結果に示されているように、本実施の形態2に係る受電コア9では、内壁板9cの頂面53付近に集中していた磁束が、磁性体12の幅方向(Y方向)に均一に分散されている。
【0022】
このように本実施の形態2に係る受電コア9によれば、内壁板9cの頂面53上に幅広かつ磁化等方性の磁性体12を設けたため、局所的に集中した磁束の飽和によって受電コア9の能力が抑制されることを回避することができる。
【0023】
【発明の効果】
この発明のうち請求項1に係るものによれば、第1及び第2のギャップから受電コアの外部への磁束の漏洩を抑制することができる。
【0024】
また、この発明のうち請求項2に係るものによれば、局所的に集中した磁束の飽和によって受電コアの能力が抑制されることを回避することができる。
【0025】
また、この発明のうち請求項3に係るものによれば、受電部の給電効率が向上するため、同じ入力電力(一次側)に対して大きな出力電力(二次側)を得ることができる。また、漏洩磁束が受電コアの周囲に与える影響を抑制できるため、受電コアに近い箇所に鉄等の導電性磁性体を設置することが可能となり、設計の自由度を高めることができる。
【図面の簡単な説明】
【図1】  本発明の実施の形態1に係る自動保管検索装置の構成を模式的に示す斜視図である。
【図2】  本発明の実施の形態1に係る自動保管検索装置に関して、搬送車の受電部付近の構造をレールとともに示す断面図である。
【図3】  受電コアの構造を取付部材とともに示す斜視図である。
【図4】  本発明の実施の形態1に係る受電コアの構造を示す断面図である。
【図5】  本実施の形態1に係る受電コアを励磁させたときの磁束分布に関するシミュレーション結果を示す図である。
【図6】  受電コアの形状の変形例を示す図である。
【図7】  本発明の実施の形態2に係る自動保管検索装置に関して、搬送車の受電部付近の構造をレールとともに示す断面図である。
【図8】  本発明の実施の形態2に係る受電コアの構造を示す断面図である。
【図9】  本発明の実施の形態2に係る受電コアを励磁させたときの磁束分布に関するシミュレーション結果を示す図である。
【図10】  従来の自動保管検索装置の構成を模式的に示す斜視図である。
【図11】  従来の搬送車の受電部付近の構造をレールとともに示す断面図である。
【図12】  従来の受電コアを励磁させたときの磁束分布に関するシミュレーション結果を示す図である。
【符号の説明】
3a,3b  レール
4  搬送車
5  受電部
6  保持部材
7a,7b  給電線
9  受電コア
12  磁性体
50  開口溝[0001]
 BACKGROUND OF THE INVENTION
 The present invention relates to a structure of a power receiving core and a power feeding system to a mobile body having a power receiving unit using the power receiving core, and in particular, storage and retrieval of articles in a warehouse or the like are automatically performed by a transport vehicle. The present invention relates to a power supply system for a transport vehicle that supplies driving power for traveling to the transport vehicle in a non-contact manner in an automatic storage search device to be performed.
 [0002]
 [Prior art]
 There is an automatic storage retrieval device that automatically stores and retrieves articles in a warehouse or the like by a transport vehicle. In such an automatic storage / retrieval apparatus, non-contact power feeding is performed as a method of feeding driving power for traveling to a transport vehicle.
 [0003]
 FIG. 10 is a perspective view schematically showing a configuration of a conventional automatic storage / retrieval apparatus. In order to store the articles 2 in the desiredstockers 1a and 1b, or to take out the articles 2 from the desiredstockers 1a and 1b, the transport vehicle 4 including thepower receiving unit 105 travels on therails 3a and 3b. The article 2 is conveyed.
 [0004]
 FIG. 11 is a cross-sectional view showing the structure near thepower receiving unit 105 of the transport vehicle 4 together with therail 3a. Thewheel 10 of the transport vehicle 4 is in contact with the upper surface of therail 3a. Thepower receiving unit 105 includes a power receivingcore 109 having a substantially E-shaped cross section around which thesecondary coil 11 is wound. The power receivingcore 109 includes abottom wall plate 109a,side wall plates 109b and 109d, and aninner wall plate 109c. The height of theinner wall plate 109c is substantially equal to the height of theside wall plates 109b and 109d, and thecoil 11 is wound around theinner wall plate 109c. In addition, projectingportions 109e and 109f projecting toward theside wall plates 109b and 109d are formed at the upper end portion of theinner wall plate 109c. A gap G101 is formed between the upper end portion of theside wall plate 109b and the protrudingportion 109e, and a gap G102 is formed between the upper end portion of theside wall plate 109d and theprotruding portion 109f. As shown in FIG. 11, the gap G101 and the gap G102 are formed on the same straight line while being separated from each other. The power receivingcore 109 is mounted on themounting member 8, and themounting member 8 is fixed to the main body of the transport vehicle 4.
 [0005]
 The primarypower supply lines 7a and 7b are attached to the bottom surface of therail 3a byattachment members 6a and 6b, respectively. Actually, a plurality of mountingmembers 6a and 6b are arranged at equal intervals along therail 3a. Theattachment members 6a and 6b are inserted into thepower receiving core 109 from the gaps G101 and G102, respectively, whereby thefeeder lines 7a and 7b are disposed in the internal spaces A101 and A102 of thepower receiving core 109, respectively. The internal space A101 is a space defined by thebottom wall plate 109a, theside wall plate 109b, and theinner wall plate 109c, and the internal space A102 is defined by thebottom wall plate 109a, theside wall plate 109d, and theinner wall plate 109c. It is space.
 [0006]
 [Problems to be solved by the invention]
 FIG. 12 is a diagram illustrating a simulation result regarding the magnetic flux distribution when thepower receiving core 109 is excited. As shown in FIG. 12, in the conventionalpower receiving core 109, leakage of magnetic flux from the gaps G101 and G102 to the outside is large. Therefore, according to the conventionalpower receiving core 109, there is a problem that the power feeding efficiency of thepower receiving unit 105 is reduced due to leakage of a large magnetic flux. In addition, since the influence of the leakage magnetic flux on the periphery of thepower receiving core 109 is increased, there is a problem that it is restricted to install a conductive magnetic material such as iron near thepower receiving core 109.
 [0007]
 The present invention has been made to solve such a problem, and obtains a power receiving core in which leakage of magnetic flux to the outside is suppressed, and a power feeding system to a moving body having a power receiving unit using the power receiving core. It is intended.
 [0008]
 [Means for Solving the Problems]
 According to a first aspect of the present invention, the power receiving core according to the first aspect has a hollow columnar shape having first and second opening side surfaces facing each other, and an opening groove connecting the first opening side surface and the second opening side surface. The outer wall frame is formed so as to extend in the direction in which the opening groove extends, and from the inner surface of the outer wall frame at a portion facing the opening groove, so that the top surface does not reach the opening groove. And the opening groove is defined by the first end surface and the second end surface facing each other of the outer wall frame, and is defined by the first end surface of the outer wall frame and the top surface of the inner wall plate. A first gap and a second gap defined by the second end face of the outer wall frame and the top face of the inner wall plate are formed.
 [0009]
 The power receiving core according to claim 2 of the present invention is the power receiving core according to claim 1, wherein the power receiving core is formed on the top surface of the inner wall plate extending in a direction in which the opening groove extends, A magnetic isotropic magnetic member wider than the top surface is further provided.
 [0010]
 According to a third aspect of the present invention, there is provided a power feeding system for a moving body according to a third aspect of the present invention, wherein a power feeding line is disposed along a trajectory along which the moving body travels, and the power receiving section provided in the moving body is not connected to the power receiving section. A power supply system for a moving body that supplies electric power by contact, wherein the power supply line includes first and second power supply lines held along a track by a holding member, and the power receiving unit includes: Alternatively, the power receiving core according to claim 2 is provided, and the holding member is inserted into the power receiving core through the opening groove and the first and second gaps, whereby the first and second feeders are placed in the internal space of the power receiving core. It is characterized by being arranged.
 [0011]
 DETAILED DESCRIPTION OF THE INVENTION
 Embodiment 1 FIG.
 FIG. 1 is a perspective view schematically showing a configuration of an automatic storage search device according to Embodiment 1 of the present invention. In order to store the articles 2 in the desiredstockers 1a and 1b, or to take out the articles 2 from the desiredstockers 1a and 1b, the transport vehicle 4 including the power receiving unit 5 travels on therails 3a and 3b. The article 2 is conveyed.
 [0012]
 FIG. 2 is a cross-sectional view showing the structure in the vicinity of the power receiving unit 5 of the transport vehicle 4 together with therail 3a with respect to the automatic storage search device according to the first embodiment. Thewheel 10 of the transport vehicle 4 is in contact with the upper surface of therail 3a. The power receiving unit 5 includes a power receivingcore 9 around which asecondary coil 11 is wound. The power receivingcore 9 is mounted on themounting member 8, and themounting member 8 is fixed to the main body of the transport vehicle 4.
 [0013]
 FIG. 3 is a perspective view showing the structure of thepower receiving core 9 together with theattachment member 8. Referring to FIG. 3, thepower receiving core 9 has a narrow width connecting the first and second opening side surfaces (side surfaces existing in the YZ plane) facing each other, and the first opening side surface and the second opening side surface. And a hollow columnar outer wall frame having anopen groove 50. The outer wall frame has abottom wall plate 9a,side wall plates 9b and 9d, andupper wall plates 9e and 9f. Theside wall plate 9b is connected to thebottom wall plate 9a, and theupper wall plate 9e is connected to theside wall plate 9b. Theside wall plate 9d is connected to thebottom wall plate 9a, and theupper wall plate 9f is connected to theside wall plate 9d. The openinggroove 50 is defined between theend surface 51 of theupper wall plate 9e and theend surface 52 of theupper wall plate 9f facing each other. Thepower receiving core 9 includes aninner wall plate 9c. Theinner wall plate 9c extends in the direction (X direction) in which theopening groove 50 extends and is a bottom wall plate at a portion facing the openinggroove 50. Thetop surface 53 is formed from the inner surface of 9 a toward the openinggroove 50 so as not to reach theopening groove 50. The height of theinner wall plate 9c is lower than the height of theside wall plates 9b and 9d.
 [0014]
 2, thepower receiving core 9 has a gap G1 defined by theend surface 51 of theupper wall plate 9e and thetop surface 53 of theinner wall plate 9c, and theend surface 52 and inner wall plate of theupper wall plate 9f. A gap G2 defined by thetop surface 53 of 9c is formed. The gap G1 and the gap G2 are formed to face each other in a substantially V shape with thetop surface 53 of theinner wall plate 9c as one common end. In addition, although the hollow square column-shaped outer wall frame was shown in FIG. 3, a hollow cylindrical outer wall frame etc. may be sufficient, for example.
 [0015]
 Referring to FIG. 2,coil 11 is wound aroundinner wall plate 9c. The primarypower supply lines 7a and 7b are held by a holding member 6, and the holding member 6 is attached to the bottom surface of therail 3a. In practice, a plurality of holding members 6 are arranged at equal intervals along therail 3a. The holding member 6 is inserted into thepower receiving core 9 from the openinggroove 50 and then branches in the direction of the gaps G1 and G2. As a result, thefeeder lines 7a and 7b are connected to the internal spaces A1 and A2 of thepower receiving core 9. Each is arranged. The internal space A1 is a space defined by thebottom wall plate 9a, theside wall plate 9b, theupper wall plate 9e, and theinner wall plate 9c, and the internal space A2 is thebottom wall plate 9a, theside wall plate 9d, and the upper wall plate. 9f and a space defined by theinner wall plate 9c.
 [0016]
 FIG. 4 is a cross-sectional view showing the structure of thepower receiving core 9 according to the first embodiment. Thepower receiving core 9 is formed by laminating a plurality of amorphousthin films 91 to 95 having a thickness of about several tens of μm (only five layers are shown in FIG. 4 for simplification of the drawing) as shown in FIG. . Thethin films 91 to 95 are exposed at the bottom surfaces of theupper wall plates 9e and 9f at the end surfaces 51 and 52 of theupper wall plates 9e and 9f, respectively.
 [0017]
 FIG. 5 is a diagram illustrating a simulation result regarding the magnetic flux distribution when thepower receiving core 9 according to the first embodiment is excited. As can be seen from a comparison between FIG. 5 and FIG. 12, thepower receiving core 9 according to the first embodiment has a reduced leakage of magnetic flux from the gaps G 1 and G 2 to the outside as compared with the conventionalpower receiving core 109. Yes. One of the reasons is as follows. Referring to FIG. 2, it is assumed that a current flows from the front side to the back side of the paper in thepower supply line 7a, and a current flows from the back side of the paper to the front side in thepower supply line 7b. Then, theend surface 51 portion and theend surface 52 portion become the N pole, and thetop surface 53 portion becomes the S pole. Focusing on the gap G1, in addition to the presence of a pair of N poles (end face 51) and S pole (top face 53) at both ends of the gap G1, another N pole is provided in the direction in which the magnetic flux leaks. (End face 52) exists. Therefore, in the conventionalpower receiving core 109, only the N pole and the S pole attract each other, whereas in thepower receiving core 9 according to the first embodiment, the N pole (end face 51) and the S pole (top face 53). In addition to attracting each other, another N pole (end face 52) acts to repel magnetic flux leakage. As a result, since the repelled magnetic flux returns to the S pole, leakage of the magnetic flux to the outside is suppressed.
 [0018]
 As described above, according to thepower receiving core 9 according to the first embodiment, it is possible to suppress leakage of magnetic flux from the gaps G1 and G2 to the outside as compared with the conventionalpower receiving core 109. As a result, since the power feeding efficiency of the power receiving unit 5 is improved, a large output power (secondary side) can be obtained with respect to the same input power (primary side). Moreover, since the influence which leakage magnetic flux has on the circumference | surroundings of the receivingcore 9 can be suppressed, it becomes possible to install electroconductive magnetic bodies, such as iron, in the location near the receivingcore 9, and can raise the freedom degree of design.
 [0019]
 FIG. 6 is a diagram illustrating a modification of the shape of thepower receiving core 9. Even in the power receiving core having the shape as shown in FIG. 6, leakage of magnetic flux from the gap to the outside is suppressed, and the same effect as described above can be obtained.
 [0020]
 Embodiment 2. FIG.
 FIG. 7 is a cross-sectional view showing the structure near the power receiving unit 5 of the transport vehicle 4 together with therail 3a in the automatic storage and retrieval apparatus according to the second embodiment of the present invention, and FIG. 8 relates to the second embodiment. 3 is a cross-sectional view showing a structure of apower receiving core 9. FIG. On thetop surface 53 of theinner wall plate 9c, themagnetic body 12 is formed extending in the direction (X direction) in which theopening groove 50 extends. The width of themagnetic body 12 in the Y direction is wider than the width of theinner wall plate 9c in the Y direction, and theupper wall plates 9e and 9f and themagnetic body 12 partially overlap when viewed from the Z direction. Themagnetic body 12 is a magnetic isotropic magnetic body integrally formed by baking and solidifying ferrite powder. In this specification, “magnetization isotropic” means a property in which a molded shape has low magnetic anisotropy and is easily magnetized relatively uniformly in any direction. The other structure of the power receiving unit 5 according to the second embodiment is the same as the structure of the power receiving unit 5 according to the first embodiment.
 [0021]
 FIG. 9 is a diagram illustrating a simulation result regarding the magnetic flux distribution when thepower receiving core 9 according to the second embodiment is excited. As shown in the simulation result of FIG. 5, in thepower receiving core 9 according to the first embodiment, the magnetic flux tends to concentrate near thetop surface 53 of theinner wall plate 9c, and this portion is saturated quickly. There was a possibility that thepower receiving core 9 could not be fully utilized. On the other hand, as shown in the simulation result of FIG. 9, in thepower receiving core 9 according to the second embodiment, the magnetic flux concentrated near thetop surface 53 of theinner wall plate 9 c It is uniformly distributed in the width direction (Y direction).
 [0022]
 As described above, according to thepower receiving core 9 according to the second embodiment, since the wide and magnetized isotropicmagnetic body 12 is provided on thetop surface 53 of theinner wall plate 9c, the power is received by locally concentrated magnetic flux saturation. It can be avoided that the capability of thecore 9 is suppressed.
 [0023]
 【The invention's effect】
 According to the first aspect of the present invention, leakage of magnetic flux from the first and second gaps to the outside of the power receiving core can be suppressed.
 [0024]
 According to the second aspect of the present invention, it is possible to avoid the capability of the power receiving core from being suppressed by saturation of magnetic flux concentrated locally.
 [0025]
 According to the third aspect of the present invention, since the power feeding efficiency of the power receiving unit is improved, a large output power (secondary side) can be obtained with respect to the same input power (primary side). Moreover, since the influence which leakage magnetic flux has on the circumference | surroundings of a receiving core can be suppressed, it becomes possible to install electroconductive magnetic bodies, such as iron, in the location close | similar to a receiving core, and can raise the freedom degree of design.
 [Brief description of the drawings]
 FIG. 1 is a perspective view schematically showing a configuration of an automatic storage and retrieval apparatus according to Embodiment 1 of the present invention.
 FIG. 2 is a cross-sectional view showing a structure in the vicinity of a power receiving unit of a transport vehicle together with rails, with respect to the automatic storage search device according to Embodiment 1 of the present invention.
 FIG. 3 is a perspective view showing a structure of a power receiving core together with an attachment member.
 FIG. 4 is a cross-sectional view showing a structure of a power receiving core according to the first embodiment of the present invention.
 FIG. 5 is a diagram showing a simulation result regarding a magnetic flux distribution when the power receiving core according to the first embodiment is excited.
 FIG. 6 is a diagram showing a modification of the shape of the power receiving core.
 FIG. 7 is a cross-sectional view showing a structure in the vicinity of a power receiving unit of a transport vehicle together with rails, with respect to the automatic storage search device according to Embodiment 2 of the present invention.
 FIG. 8 is a sectional view showing a structure of a power receiving core according to a second embodiment of the present invention.
 FIG. 9 is a diagram showing a simulation result regarding a magnetic flux distribution when the power receiving core according to the second embodiment of the present invention is excited.
 FIG. 10 is a perspective view schematically showing a configuration of a conventional automatic storage / retrieval apparatus.
 FIG. 11 is a cross-sectional view showing a structure near a power receiving unit of a conventional transport vehicle together with a rail.
 FIG. 12 is a diagram showing a simulation result regarding a magnetic flux distribution when a conventional power receiving core is excited.
 [Explanation of symbols]
 3a, 3b Rail 4 Carrier vehicle 5 Power receiving unit 6Holding member 7a,7b Feed line 9Power receiving core 12Magnetic body 50 Opening groove