Movatterモバイル変換


[0]ホーム

URL:


JP4680935B2 - Transport container for cooling and holding frozen materials - Google Patents

Transport container for cooling and holding frozen materials
Download PDF

Info

Publication number
JP4680935B2
JP4680935B2JP2006548225AJP2006548225AJP4680935B2JP 4680935 B2JP4680935 B2JP 4680935B2JP 2006548225 AJP2006548225 AJP 2006548225AJP 2006548225 AJP2006548225 AJP 2006548225AJP 4680935 B2JP4680935 B2JP 4680935B2
Authority
JP
Japan
Prior art keywords
transport container
coolant
chamber
container according
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006548225A
Other languages
Japanese (ja)
Other versions
JP2007523013A (en
Inventor
ジクスト、ベルンハルト
ジクスト、シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IndividualfiledCriticalIndividual
Publication of JP2007523013ApublicationCriticalpatent/JP2007523013A/en
Application grantedgrantedCritical
Publication of JP4680935B2publicationCriticalpatent/JP4680935B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Description

Translated fromJapanese

本発明は、冷凍材料、特に冷凍された生物組織の標本又は培養細胞の冷却保持用輸送容器に関するものであり、断熱チャンバを取り囲む断熱材と、断熱チャンバ内に取り外し可能に配置されかつチャンバ内に冷凍材料を受け入れる内部容器と、相転移によって冷熱を発生する冷却剤とを含む輸送容器に関する。  The present invention relates to a cryocontainer, particularly a transport container for cooling and holding frozen biological tissue specimens or cultured cells, a heat insulating material surrounding the heat insulating chamber, a removably disposed heat insulating chamber, and the chamber. The present invention relates to a transport container including an inner container that receives a frozen material and a coolant that generates cold heat by phase transition.

古くから知られる材料の冷却保持方法は、材料を断熱容器の中に入れて、これによって材料が熱に曝露されるのを防ぐ方式である。しかし、特に輸送容器の場合には断熱材の壁面厚さに制限があり、従って断熱効果が限定される。このため、特に、比較的長い貯蔵又は輸送時間の場合、毀損的な温度上昇あるいは場合によっては冷凍材料の融解を回避するには、侵入する熱を対応する冷熱の生成によって確実に相殺する以外に選択肢はない。  A method of cooling and holding a material that has been known for a long time is a method in which a material is placed in an insulated container, thereby preventing the material from being exposed to heat. However, especially in the case of a transport container, the wall thickness of the heat insulating material is limited, and therefore the heat insulating effect is limited. For this reason, especially in the case of relatively long storage or transport times, in order to avoid detrimental temperature rises or in some cases melting of the frozen material, in addition to ensuring that the ingress heat is offset by the corresponding cold generation. There is no choice.

低温の冷却剤によって、流入する熱を相殺するのに必要な冷熱を供給する方式が知られている。この冷却剤は、寸法を相応に大きくした輸送容器の断熱チャンバ内に材料と共に入れられる。この方式においては、循環しなければならない媒体を含む冷却装置の経費は必要でない。冷却剤の固体→液体転移(融解熱)、液体→気体転移(蒸発熱)、あるいは固体→気体転移(昇華熱)の相転移を利用することによって、相転移の期間中の一定温度を達成することができるが、この期間は使用する冷却剤の量によって定まる。  There is known a system for supplying cold heat necessary for canceling inflowing heat using a low-temperature coolant. This coolant is placed with the material in an insulated chamber of the shipping container of correspondingly larger dimensions. In this manner, there is no need for the cost of a refrigeration system that includes media that must be circulated. Achieve constant temperature during the phase transition by utilizing the solid-to-liquid transition (heat of fusion), liquid-> gas transition (heat of evaporation), or solid-> gas transition (heat of sublimation) of the coolant This period can depend on the amount of coolant used.

輸送容器に用いられるこのような冷却剤の周知の例は、氷(水)、ドライアイス(二酸化炭素)及び液体窒素である。氷が、冷凍材料の冷却保持用に用いるには0℃という高すぎる融点を有しているのに対して、固体二酸化炭素の昇華温度及び液体窒素の沸騰温度は通例の冷凍材料の温度より遥かに低いので、冷凍材料の過度の冷却を避けるために、冷却剤と材料との間に断熱壁を設ける等の付加的な手段を講じて適正な温度管理を行わなければならない。しかし、この場合、特に、それぞれ気体相への相転移が生起するという事実があるので、比較的大容積の気体が生成し、それを外部に排出しなければならない。限られた空間ではこの点が問題となり、例えば、この輸送容器の航空機による輸送を一層難しくする。  Well known examples of such coolants used in transport containers are ice (water), dry ice (carbon dioxide) and liquid nitrogen. Ice has a melting point that is too high, 0 ° C. to be used for refrigeration of the frozen material, whereas the sublimation temperature of solid carbon dioxide and the boiling temperature of liquid nitrogen are much higher than the temperatures of conventional frozen materials. Therefore, in order to avoid excessive cooling of the frozen material, additional temperature measures must be taken such as providing a heat insulating wall between the coolant and the material. However, in this case, in particular, there is a fact that a phase transition to the gas phase occurs, so that a relatively large volume of gas must be generated and discharged to the outside. This is a problem in confined spaces, for example, making it more difficult to transport this transport container by aircraft.

本発明は、比較的小型で軽量であり、従って取り扱い易い輸送容器であって、気体がそれから放散されることなく、かつ、材料の過度の冷却を防止する手段を必要とすることなく、所定の輸送期間の間、冷凍材料を確実に所期の冷却温度に簡単な方法で保持する輸送容器を提供するという目的に基づいている。  The present invention is a transport container that is relatively small and lightweight, and therefore easy to handle, without any gas being released from it and without requiring means to prevent excessive cooling of the material. It is based on the object of providing a transport container that ensures that the frozen material is kept at the desired cooling temperature in a simple manner during the transport period.

本発明によれば、この目的は、材料用の少なくとも1つの冷却チャンバと、冷却チャンバから分離された少なくとも1つの冷却剤チャンバで冷却剤を含み恒久的に密封シールされる冷却剤チャンバとを設けること、温度範囲−15℃〜−100℃において固体/液体間相転移する冷却剤を設けること、及び、断熱材が、≦0.01W/mKの熱伝導率λを有する超断熱材であることによって実現される。  According to the present invention, this object provides at least one cooling chamber for the material and a coolant chamber that contains the coolant and is permanently hermetically sealed in at least one coolant chamber separated from the cooling chamber. Providing a coolant that undergoes a solid / liquid phase transition in the temperature range of −15 ° C. to −100 ° C. It is realized by.

相転移温度が好ましい−30℃〜−85℃の間にある水銀又は有機物質又は混合物質が冷却剤として考慮の対象になる。凝固した水銀の融点は約−39℃(大気圧において)である。この温度は、例えば、医学的状態(癌)診断のための蛋白質及びRNA分析用として送付される組織の標本又は培養細胞等の生物学的材料の冷却保持用として非常に適しており、過度の冷却による毀損を防止する。さらなる利点は、この冷却剤を用いた場合、気体も蒸気も発生せず、相転移の間に容積が事実上変化しない点にある。  Mercury or organic substances or mixed substances whose phase transition temperature is preferably between -30 ° C. and -85 ° C. are considered as coolants. The melting point of the solidified mercury is about −39 ° C. (at atmospheric pressure). This temperature is very suitable, for example, for cryopreservation of biological materials such as tissue specimens or cultured cells sent for protein and RNA analysis for medical conditions (cancer) diagnosis. Prevent damage due to cooling. A further advantage is that with this coolant, no gas or vapor is generated and the volume does not change substantially during the phase transition.

本発明による輸送容器の場合、冷却剤は、冷却剤チャンバのハウジング内又は内部容器内に触れられることなく残存したままである。輸送後に液体に戻された(使用済みの)水銀は、取り外し可能な冷却剤容器又は内部容器を例えば液体窒素に浸漬して冷凍することによる液体→固体の相転移によって、新しい冷却保持輸送操作用として再生することができる。  In the case of the transport container according to the invention, the coolant remains untouched in the housing of the coolant chamber or in the inner container. Mercury returned (used) to liquid after transport can be used for new cooled holding transport operations by a liquid-to-solid phase transition, for example by immersing a removable coolant container or inner container in liquid nitrogen and freezing. Can be played as.

本発明による輸送容器の好適な改良形態及び発展形態が従属請求項に提示される。また、これらは、輸送容器の特に簡単な製造及び取り扱いと、対応すべき輸送距離従って冷却時間に対する冷却能力の適応とに関するものである。  Preferred refinements and developments of the transport container according to the invention are presented in the dependent claims. They also relate to the particularly simple manufacture and handling of the transport container and the adaptation of the cooling capacity to the transport distance to be accommodated and thus to the cooling time.

以下、概略図に基づいて、本発明による輸送容器の実施例を詳細に説明する。  Hereinafter, based on the schematic, the Example of the transport container by this invention is described in detail.

図1及び2による輸送容器1は、円筒状に形成されており、同様に円筒状の内部容器2と、2つの同じく円筒状の付加的容器3、4とを同軸配置で含んでいる。この2つの付加的容器は、断熱チャンバ5内で内部容器2の上端と下端に配置される。断熱チャンバ5は、厚壁のカップ形状の断熱材6によって構成され、上端7の内側が段付き構造になっており、断熱チャンバ5を閉止するカバーの形の、対応する段付き構造の厚壁断熱閉止部材8を受け入れている。断熱材6は硬質の防護筒9によって被包されている。この防護筒9の両端にはそれぞれ外ねじが設けられ、ねじ付きカバー11及び12の対応する係合ねじ端部10と固くねじ止めされている。  Thetransport container 1 according to FIGS. 1 and 2 is formed in a cylindrical shape and likewise comprises a cylindricalinner container 2 and two similarly cylindricaladditional containers 3, 4 in a coaxial arrangement. The two additional containers are arranged at the upper and lower ends of theinner container 2 in theheat insulating chamber 5. Theheat insulating chamber 5 is constituted by a thick-walled cup-shapedheat insulating material 6, and the inner side of the upper end 7 has a stepped structure, and a corresponding thick wall having a stepped structure in the form of a cover for closing theheat insulating chamber 5. A heat insulatingclosing member 8 is received. Theheat insulating material 6 is encapsulated by a hardprotective cylinder 9. External screws are provided at both ends of theprotective cylinder 9 and are firmly screwed to the correspondingengagement screw ends 10 of the threadedcovers 11 and 12.

断熱材6及び断熱閉止部材8は、きわめて低い熱伝導率λ、例えば0.002W/mKの熱伝導率を有する高品質の断熱材料から構成する。周知のこの断熱材料は、その卓越した断熱効果のために超断熱材とも呼称される。  Theheat insulating material 6 and the heat insulatingclosing member 8 are made of a high quality heat insulating material having a very low thermal conductivity λ, for example, a thermal conductivity of 0.002 W / mK. This well-known thermal insulation material is also referred to as a super insulation due to its excellent thermal insulation effect.

内部容器2は図3に示される。それは、中空ハウジング又はカップ部分13と、それとねじ結合することができるねじ付きカバー14とを含む。カップ部分13には、同じくカップ形状の冷却剤チャンバ15と、中央の冷却チャンバ16とが形成され、この冷却チャンバ16がねじ付きカバー14によって閉止される。冷却チャンバ16が、冷却保持して輸送するべき材料17を受け入れる。図示の例では、この材料は、上端を閉止部品19で閉止された標本容器18の中の標本である。冷却剤チャンバ15には冷却剤15'(例えば水銀)を充填し、固体状態になるまで深冷する。冷却剤15'を注入し得るようにするため、カップ部分13の中央底部に、六角ソケットのねじストッパ21をねじ込むためのねじを有する充填開口20が設けられる。ねじストッパ21は、それをねじ込んだ時に、カップ部分13の底面の外側に窪み22が生じるような寸法のものとし、窪み22が生じるようにねじ込む。この底面の窪み22には、充填開口20を溶接して閉止する際に形成される溶接ビード23が溶着される。その結果、冷却剤チャンバ15は恒久的に密封シールされ、冷却剤15'の漏出を懸念する必要は全くない。  Theinner container 2 is shown in FIG. It includes a hollow housing orcup portion 13 and a threadedcover 14 that can be screwed together. A cup-shaped coolant chamber 15 and acentral cooling chamber 16 are formed in thecup portion 13, and thecooling chamber 16 is closed by a threadedcover 14. Acooling chamber 16 receives thematerial 17 to be kept cold and transported. In the example shown, this material is a specimen in aspecimen container 18 whose upper end is closed by aclosing part 19. The coolant chamber 15 is filled with a coolant 15 '(for example, mercury) and is cooled deeply until it becomes a solid state. In order to be able to inject the coolant 15 ′, a filling opening 20 with a screw for screwing thescrew stopper 21 of the hex socket is provided in the central bottom of thecup part 13. Thescrew stopper 21 has a size such that when thescrew stopper 21 is screwed, arecess 22 is formed outside the bottom surface of thecup portion 13 and is screwed so that therecess 22 is generated. Aweld bead 23 formed when the filling opening 20 is welded and closed is welded to therecess 22 on the bottom surface. As a result, the coolant chamber 15 is permanently sealed and there is no need to worry about leakage of the coolant 15 '.

カップ部分13及びねじ付きカバー14は、圧縮負荷及び衝撃負荷を変形することなく吸収し得るように、及び、航空機の墜落等の極端な場合にも損傷や冷却剤(水銀)の漏出が確実に生じないようにするため、高強度の材料から製造される。内部容器2に適した材料は、例えば高級鋼、チタン又はチタン合金(TiAl5Sn2)であるが、これらは、高い強度を有するだけでなく、輸送重量を低減するための相対的な軽量性をも備えている。水銀よりも毒性が低い冷却剤の場合は、アルミニウム又は耐低温性プラスチック等の他の材料も考慮の対象になる。  Thecup portion 13 and the threadedcover 14 can absorb the compression load and the impact load without deformation, and damage or leakage of the coolant (mercury) is ensured even in an extreme case such as an aircraft crash. Manufactured from high-strength material to prevent it from occurring. Suitable materials for theinner container 2 are, for example, high-grade steel, titanium or titanium alloys (TiAl5Sn2), which not only have high strength, but also have a relative lightness to reduce transport weight. ing. For coolants that are less toxic than mercury, other materials such as aluminum or low temperature resistant plastics are also considered.

図4によれば、付加的な容器3及び4も同様に中空円筒状に形成される。これは、冷却剤チャンバ24を有するが、冷却チャンバは備えていない。冷却剤チャンバ24には同様に冷却剤24'を充填する。図3の場合と同様に、付加的な容器3、4の中央底部には、それぞれ、充填開口25、ねじストッパ26を装備し、かつ溶接ビード27を溶着する。付加的容器3、4は、同様に上記の材料から製造することができる。  According to FIG. 4, theadditional containers 3 and 4 are likewise formed in a hollow cylindrical shape. This has a coolant chamber 24 but no cooling chamber. The coolant chamber 24 is similarly filled with a coolant 24 '. As in the case of FIG. 3, a filling opening 25 and a screw stopper 26 are provided at the center bottom of theadditional containers 3 and 4, respectively, and a weld bead 27 is welded. Theadditional containers 3, 4 can likewise be manufactured from the above materials.

図5は、付加的容器3、4の寸法の円筒状断熱ストッパ28を示す。この断熱ストッパ28は、輸送距離又は輸送時間が相応に短い場合に、内部容器2内の冷却剤15'によって材料17が輸送中十分に冷却保持されるならば、付加的容器3、4に代えて冷却チャンバ16の中に挿入することができる。  FIG. 5 shows acylindrical insulating stopper 28 with the dimensions of theadditional containers 3, 4. Thisinsulating stopper 28 replaces theadditional containers 3 and 4 if thematerial 17 is sufficiently cooled and held during transport by the coolant 15 'in theinner container 2 when the transport distance or transport time is reasonably short. Can be inserted into thecooling chamber 16.

図6は、内部容器2の代わりに用いることができる内部容器30を示す。内部容器30は円筒状に形成され、その中心に円筒状の冷却チャンバ31を有する。この冷却チャンバ31は、内部容器30の上面から延びており、壁面の距離を置いて環状の冷却剤チャンバ32によって取り囲まれている。この冷却剤チャンバ32は、内部容器30の上端面及び下端面から壁面の距離を置いた範囲で止まっている。この場合も、冷却剤チャンバ32には冷却剤32'を充填する。冷却剤を注入するため、内部容器30の上端面に、冷却剤チャンバ32の方に向かって円錐状に僅かにテーパした充填開口33を形成する。この詳細が図8に示されている。冷却剤32'注入後、充填開口33を、同じく高級鋼又はチタン製のストッパ34によって閉止する。ストッパ34の上部で、充填開口33を溶接ビード35によって溶接閉止する。  FIG. 6 shows aninner container 30 that can be used in place of theinner container 2. Theinner container 30 is formed in a cylindrical shape, and has acylindrical cooling chamber 31 in the center thereof. Thecooling chamber 31 extends from the upper surface of theinner container 30 and is surrounded by anannular coolant chamber 32 at a distance from the wall surface. Thecoolant chamber 32 is stopped within a range where the distance from the upper end surface and the lower end surface of theinner container 30 is set to the wall surface. Again,coolant chamber 32 is filled with coolant 32 '. In order to inject the coolant, a fillingopening 33 slightly tapered in a conical shape toward thecoolant chamber 32 is formed in the upper end surface of theinner container 30. This detail is shown in FIG. After injecting thecoolant 32 ′, the fillingopening 33 is closed by astopper 34 made of high-grade steel or titanium. The fillingopening 33 is welded closed by aweld bead 35 above thestopper 34.

円錐状のストッパ34は、固定する前に強く過冷却して収縮させることによって、プレス嵌めとして適切に固定することができる。場合によっては、例えば銅等のアマルガム形成金属の円環状のシール材36を同時に装着することもできる。この方式はアマルガム(Hg−Cu合金)の形成を伴い、溶接ビード37による溶接閉止を省略することも可能になる。  Theconical stopper 34 can be appropriately fixed as a press fit by being strongly subcooled and contracted before being fixed. In some cases, for example, anannular sealing material 36 made of an amalgam-forming metal such as copper can be attached at the same time. This method is accompanied by the formation of amalgam (Hg—Cu alloy), and it is possible to omit the welding closure by theweld bead 37.

図9は、同様に高級鋼又はチタン製とすることができる付加的容器37を示す。  FIG. 9 shows anadditional container 37 which can also be made of high grade steel or titanium.

この付加的容器37も、冷却剤38'が充填される冷却剤チャンバ38を有しており、充填及び閉止操作用として図4又は図8に相当する形態が設けられる(図9には示されていない)。  Thisadditional container 37 also has a coolant chamber 38 filled with a coolant 38 'and is provided with a configuration corresponding to FIG. 4 or FIG. 8 for filling and closing operations (shown in FIG. 9). Not)

付加的容器37は、その上面の中心に短いねじ付き突起39を備えており、このねじ付き突起39を、内部容器30の下面の中心の内ねじ付き窪み孔40にねじ込む。このため、付加的容器37を内部容器30と固く連結することができ、それによって容器30及び37間が密着して、良好な熱伝達を確保することができる。  Theadditional container 37 is provided with a short threadedprotrusion 39 in the center of its upper surface, and this threadedprotrusion 39 is screwed into the inner threaded recess hole 40 in the center of the lower surface of theinner container 30. For this reason, theadditional container 37 can be firmly connected to theinner container 30, whereby thecontainers 30 and 37 are in close contact with each other, and good heat transfer can be ensured.

さらに別の付加的容器37を、同様の方法で内部容器30の上部に連結することができる。冷却チャンバ31の上端面の内ねじ41がこの目的に用いられる。この内ねじ41は、冷却チャンバ31を閉止するねじストッパ42を六角のソケットレンチによってねじ込んだ後、さらに付加的容器37のねじ付き突起39をも内ねじ40の上端部の中にねじ込むことができるような軸方向の長さを有するものとする。  Yet anotheradditional container 37 can be connected to the top of theinner container 30 in a similar manner. Theinternal thread 41 on the upper end surface of the coolingchamber 31 is used for this purpose. Theinternal thread 41 can be further threaded into the upper end of the internal thread 40 by screwing ascrew stopper 42 that closes the coolingchamber 31 with a hexagon socket wrench, and further threadedprotrusions 39 of theadditional container 37. It is assumed to have such an axial length.

図10は、高級鋼又はチタンの円筒状ブロック45を含む別の内部容器44を示す。この円筒状ブロック45には、上端面から延びる複数の穿孔が機械加工されている。図11に従って詳しく見ると、円筒に軸に沿って中心の穿孔が設けられ、その中心穿孔は同軸の穿孔の内側のリングに取り囲まれており、その内側のリングはさらに同軸の穿孔の外側のリングに囲繞されている。中心穿孔及び内側のリングの穿孔は冷却チャンバ46を形成し、従って、図3の標本容器18を全部で7個収納することができる。外側のリングの12個の穿孔は、それぞれ充填冷却剤47'を含む冷却剤チャンバ47を形成する。その上端においては、ねじ込みするか、あるいは、熱収縮によって挿入しプレス嵌めで保持することができるストッパ48によって、冷却剤チャンバ47を閉止する。  FIG. 10 shows anotherinner container 44 containing acylindrical block 45 of high grade steel or titanium. Thecylindrical block 45 is machined with a plurality of perforations extending from the upper end surface. Looking in detail according to FIG. 11, the cylinder is provided with a central bore along the axis, the central bore being surrounded by an inner ring of the coaxial bore, the inner ring being further the outer ring of the coaxial bore. It is surrounded by. The central perforation and the inner ring perforations form acooling chamber 46 and thus can accommodate a total of sevenspecimen containers 18 of FIG. The twelve perforations in the outer ring form a coolant chamber 47 that each contains a filled coolant 47 '. At its upper end, the coolant chamber 47 is closed by astopper 48 that can be screwed or inserted by heat shrinkage and held in a press fit.

冷却剤47'の漏出に対する追加的な安全対策が、リング状のカバー49を設けることによって実現される。このリング状のカバー49は、冷却剤チャンバ46の外側のリングを覆うものであり、図10に示すように、円筒状ブロック45に固く溶接される。  An additional safety measure against leakage of the coolant 47 ′ is realized by providing a ring-shapedcover 49. This ring-shapedcover 49 covers the ring outside thecoolant chamber 46 and is firmly welded to thecylindrical block 45 as shown in FIG.

リング状のカバー49は内ねじ50を備えており、その中に、ディスク形状のねじ付きストッパ51がその外ねじ52によってねじ込まれ、最終的に上面においてリング状カバー49と同一面を形成する。冷却チャンバ46の終端部を形成するねじ付きストッパ51は、その上面側に、直径上に対置される2対の窪み孔53を有している。この窪み孔53は、ねじ込み又は取り外し時に、ピンレンチを差し込むためのものであり、互いに90°ずれている。リング状カバー49は、直径上に対置される2つの溝54を備えており、この2つの溝54が、ねじ付きストッパ51に高いねじ込み力を掛け得るようにするためのレンチ装着用の2つの平行な面を形成する。  The ring-shapedcover 49 is provided with aninner screw 50, in which a disk-shaped threadedstopper 51 is screwed by theouter screw 52, and finally forms the same surface as the ring-shapedcover 49 on the upper surface. The threadedstopper 51 that forms the end portion of the coolingchamber 46 has two pairs of recessedholes 53 that are opposed to each other on the diameter. The recessed holes 53 are for inserting a pin wrench when screwed or removed, and are offset from each other by 90 °. The ring-shapedcover 49 is provided with two grooves 54 opposed to each other on the diameter, and the two grooves 54 are used for attaching a wrench so that a high screwing force can be applied to the threadedstopper 51. Form parallel surfaces.

図12によれば、円筒状ブロック56の形の付加的容器55も設けられる。これは、円筒状ブロック45と同様に、穿孔の外側のリングと内側のリングとを有しているが、中心穿孔を備えていない。この場合、2つの穿孔リング共、充填冷却剤57'を受け入れる冷却剤チャンバ57を形成する。冷却剤チャンバ57は、それぞれその上端においてストッパ58によって閉止される。このストッパ58は、図10のストッパ48と同様に、ねじ込みするか、あるいは、低温収縮によってプレス嵌めで固定することができる。  According to FIG. 12, anadditional container 55 in the form of acylindrical block 56 is also provided. Like thecylindrical block 45, it has an outer ring and an inner ring of perforations, but no central perforations. In this case, the two perforated rings together form a coolant chamber 57 that receives the filled coolant 57 '. The coolant chamber 57 is closed by astopper 58 at its upper end. Thisstopper 58 can be screwed or fixed by press fitting by low temperature shrinkage, like thestopper 48 of FIG.

円筒状ブロック56の上面の中心には、図10の内部容器44に連結するためのねじ付き突起59が設けられる。このため、円筒状ブロック45は、その底面の中心にねじ付き窪み孔60を備えている。ねじ付きストッパ51の上面の中心には、同等のねじ付き窪み孔61が設けられるので、図12の付加的容器55を、内部容器44の両端に連結することができる。  At the center of the upper surface of thecylindrical block 56, a threadedprotrusion 59 for connecting to theinner container 44 of FIG. For this reason, thecylindrical block 45 is provided with a threadedrecess hole 60 at the center of its bottom surface. An equivalent threadedrecess 61 is provided in the center of the upper surface of the threadedstopper 51, so that theadditional container 55 of FIG. 12 can be connected to both ends of theinner container 44.

図13は、円錐状充填開口33閉止用の別の異なる円錐状ストッパ62を、まだ挿入前の状態において、図8に相当する拡大図で示している。ストッパ62は、円錐状ストッパ62を回転して充填開口33の中に摺り合わせするのに用いられる軸形状の付加部品63を有している。ストッパ62のこの嵌め合わせ完了後、ストッパ62に対して、図14に示すように、アマルガム形成金属の電解被膜64を被覆する。  FIG. 13 shows another differentconical stopper 62 for closing theconical filling opening 33 in an enlarged view corresponding to FIG. Thestopper 62 has a shaft-shapedadditional part 63 that is used to rotate and slide theconical stopper 62 into the fillingopening 33. After completion of the fitting of thestopper 62, thestopper 62 is coated with an amalgam-forming metalelectrolytic film 64 as shown in FIG.

被膜64を被覆したストッパ62を、続いて、好適には熱収縮を用いて充填開口33の中に固定すると、それが充填開口33の中にプレス嵌めによって保持される。この固定方式として、2つの変形形態を、好みによって考慮の対象にすることができる。すなわち、図15によれば、ストッパ62は、選定された寸法に対応して、皿穴への埋め込みの形で充填開口33の中に配置され、その上に溶接ビード65によって補足的な溶接閉止が行われる。仕上げ段階において、ストッパ62及び盛り上がった溶接ビード65は、平滑な機械仕上げ面66に仕上げられ、最終的には、図16に示すように、冷却剤チャンバ32を有するハウジング又は内部容器30の表面68と同一面になる。  When thestopper 62 coated with thecoating 64 is subsequently fixed in the fillingopening 33, preferably using heat shrinkage, it is held in the fillingopening 33 by a press fit. As this fixing method, two variants can be taken into account according to preference. That is, according to FIG. 15, thestopper 62 is arranged in the fillingopening 33 in the form of a countersink corresponding to the selected dimension, on which a supplementary weld closure is provided by aweld bead 65. Is done. In the finishing stage, thestopper 62 and the raisedweld bead 65 are finished to a smoothmachine finish surface 66 and ultimately asurface 68 of the housing orinner container 30 having thecoolant chamber 32 as shown in FIG. It becomes the same plane.

図17の代替方式によれば、ストッパ62が充填開口33を完全に一杯に塞いでいる。この場合、ストッパ62の突き出た部分、及び特に軸形状の全付加部品63は、図18のように、冷却剤チャンバ32を収納するハウジング又は内部容器30の表面68と最終的に同一面となる機械仕上げ面67に達するまで取り除かれる。  According to the alternative system of FIG. 17, thestopper 62 completely fills the fillingopening 33. In this case, the protruding portion of thestopper 62 and particularly all theadditional parts 63 having an axial shape are finally flush with thesurface 68 of the housing or theinner container 30 that houses thecoolant chamber 32 as shown in FIG. It is removed until themachine finish surface 67 is reached.

図19による内部容器70は、図3に示す内部容器2と大部分一致している。円筒状のU字形内部容器70は、冷却剤71'が充填される冷却剤チャンバ71を有している。内壁72及び外壁73が、冷却剤71'を充填されかつ上記の方法で密封シールされた冷却剤チャンバ71の境界を定めるが、これは図19には示されていない。内壁72は、標本受け入れ用の冷却チャンバ74を取り囲んでいる。同様に超断熱材として構成される内部断熱材75が、冷却剤チャンバ71を囲繞している。この内部断熱材75を、ほぼ円筒状の壁面76が取り囲んでいる。冷却チャンバ74の上端部は、同様にカバー77によって閉止される。このカバー77は、断面表示されていないが、内壁72の上端にねじ込みされるストッパと、断熱効果を有するカバープレートとを備えている。内部容器70は、輸送時間及び保存時間が短いために冷却能力の増大が必要とされない場合には、上記に述べた形態において既に使用することが可能である。  Theinner container 70 according to FIG. 19 largely coincides with theinner container 2 shown in FIG. The cylindrical U-shapedinner container 70 has a coolant chamber 71 filled with a coolant 71 ′.Inner wall 72 andouter wall 73 delimit coolant chamber 71 filled with coolant 71 'and hermetically sealed in the manner described above, which is not shown in FIG. Theinner wall 72 surrounds a coolingchamber 74 for receiving specimens. Similarly, an internalheat insulating material 75 configured as a super heat insulating material surrounds the coolant chamber 71. The internalheat insulating material 75 is surrounded by a substantiallycylindrical wall surface 76. Similarly, the upper end of the coolingchamber 74 is closed by a cover 77. The cover 77 is not shown in cross section, but includes a stopper screwed into the upper end of theinner wall 72 and a cover plate having a heat insulating effect. Theinner container 70 can be used in the above-described form when the increase in cooling capacity is not required due to the short transportation time and storage time.

内部容器70の特別な特徴は、それが、壁面76を取り囲みかつ冷却剤78'を含むジャケットチャンバ78を備えている点にある。この冷却剤78'は、冷却剤71'に比べてより高い温度で融解し、0℃〜−15℃の融点を有するものであり、ジャケット壁面79がそれを囲繞している。容器の外壁81を含む断熱ジャケット80がジャケットチャンバ78を取り囲む。同じく超断熱材として構成される断熱ジャケット80は、2つの部分から形成され、カップ形状の底部ジャケット部分82と、逆カップ形状のカバージャケット部分83とを含んでおり、カバー77、従って冷却チャンバ74を取り扱うために、カバージャケット部分83を取り外すことができる。図19に示す使用位置(輸送位置)においては、底部ジャケット部分82とカバージャケット部分83とが、その端面において互いに当接している。この場合、分割面の領域において、底部ジャケット部分82には狭い内側の段付きリング84が設けられ、上部のジャケット部分2には狭い外側の段付きリング85が設けられ、それが、内側の段付きリング84の上に係合している。これによって、分割面の領域において、熱の侵入が増大することが避けられる。  A special feature of theinner vessel 70 is that it comprises a jacket chamber 78 that surrounds thewall 76 and includes a coolant 78 ′. This coolant 78 ′ melts at a higher temperature than the coolant 71 ′ and has a melting point of 0 ° C. to −15 ° C., and ajacket wall surface 79 surrounds it. An insulatingjacket 80 including theouter wall 81 of the container surrounds the jacket chamber 78. Athermal insulation jacket 80, also configured as a super-insulation, is formed of two parts and includes a cup-shapedbottom jacket part 82 and an inverted cup-shapedcover jacket part 83, a cover 77 and thus a coolingchamber 74.Cover jacket portion 83 can be removed. In the use position (transport position) shown in FIG. 19, thebottom jacket portion 82 and thecover jacket portion 83 are in contact with each other at their end surfaces. In this case, in the area of the dividing surface, thebottom jacket part 82 is provided with a narrow inner steppedring 84 and theupper jacket part 2 is provided with a narrow outer steppedring 85, which is the inner step. It engages on aring 84. This avoids an increase in heat penetration in the area of the dividing plane.

図19により想定される、2つの異なる冷却剤71'及び78'を用いると、一般的に多少とも毒性があり従って危険である冷却剤71'の所要量を低減することができ、その代わりに、0℃〜15℃という若干高い温度範囲で融解/凝固する毒性の低い、あるいは毒性のない冷却剤(例えば水又はブライン)を使用し得るという利点が得られる。  The use of two different coolants 71 'and 78' envisioned by FIG. 19 can reduce the amount of coolant 71 'that is generally more or less toxic and therefore dangerous, instead The advantage is that a less toxic or non-toxic coolant (eg water or brine) that melts / solidifies in a slightly higher temperature range of 0 ° C. to 15 ° C. can be used.

輸送容器1は、例えば、1つ以上の冷凍された組織の標本を、それぞれ冷凍用の定置式冷却装置が設置されている1つの地点から別の地点に輸送するのに用いられる。従って、輸送操作は、冷却チェーンにおける中間リンクである。輸送は、例えばクーリエサービスによって行うことができるが、このサービスは、世界の遠隔地に対しても1日、2日又は3日という比較的短時間での輸送を保証している。さらに詳しく説明すると、ここで、以下のような手順に従う。  Thetransport container 1 is used, for example, to transport one or more frozen tissue specimens from one point to another point where a frozen stationary cooling device is installed. Thus, the transport operation is an intermediate link in the cooling chain. The transportation can be performed by, for example, a courier service, which guarantees transportation in a relatively short time of 1, 2, or 3 days even to remote locations around the world. More specifically, the following procedure is followed.

発送者は、最初に、内部容器2、30、44、70及び付加的容器3、4、37、55を、充填冷却剤15'、24'、32'、38'、47'、57'、71'、78'が完全に凝固するまで液体窒素で冷凍する。続いて、標本容器18内に入れられた標本17を冷却チャンバ16、31、46、74の中に挿入し、これをねじ付きカバー14、77あるいはねじ付きストッパ42、51で閉止する。次に、内部容器2、30、44、70、及び状況によって付加的容器3、4;37、55を断熱材6の中に収納する。内部容器30、44の場合には、例えば長い輸送距離で冷却能力を増大する必要がある場合、最初に、付加的容器37、55を内部容器30、44に固くねじ止めする。この後、断熱カバー8を載せ、ねじ付きカバー11を固くねじ止めして、極力遅滞なく輸送容器1を発送する。  The shipper first adds theinner container 2, 30, 44, 70 and theadditional container 3, 4, 37, 55 to the filled coolant 15 ', 24', 32 ', 38', 47 ', 57', Freeze with liquid nitrogen until 71 ', 78' is completely solidified. Subsequently, thespecimen 17 placed in thespecimen container 18 is inserted into the coolingchambers 16, 31, 46 and 74, and is closed by the threaded covers 14 and 77 or the threadedstoppers 42 and 51. Next, theinner containers 2, 30, 44, 70 and, depending on the situation, theadditional containers 3, 4; 37, 55 are accommodated in theinsulation 6. In the case of theinner containers 30, 44, for example, if it is necessary to increase the cooling capacity at long transport distances, first theadditional containers 37, 55 are firmly screwed to theinner containers 30, 44. Thereafter, theheat insulating cover 8 is placed, the screwed cover 11 is firmly screwed, and thetransport container 1 is shipped without delay as much as possible.

受取人は、逆の手順で、輸送容器1を開放し、標本17を含む標本容器18を取り出す。断熱材6の断熱チャンバ5内の温度、あるいは冷却チャンバ16、31、46、74内の温度は、例えば冷却剤の融点に相当する約−40℃でなければならないが、この温度は、受取人が、輸送容器1を開放する際に適切に測定する。もしこの温度でなければ、輸送時間が大幅に超過したために、充填冷却剤15'、24'、32'、38'、47'、57'、71'、78'の冷却能力が十分でなかったことになり、標本17は多分毀損されている可能性があるので、その場合は排除しなければならないことが結論付けられる。  The recipient opens thetransport container 1 and removes thespecimen container 18 including thespecimen 17 in the reverse procedure. The temperature of theinsulation 6 in theinsulation chamber 5 or in the coolingchambers 16, 31, 46, 74 must be, for example, about −40 ° C., which corresponds to the melting point of the coolant, However, it is measured appropriately when thetransport container 1 is opened. If it was not this temperature, the cooling time of the filling coolants 15 ′, 24 ′, 32 ′, 38 ′, 47 ′, 57 ′, 71 ′, 78 ′ was not sufficient because the transportation time was greatly exceeded. In conclusion, it can be concluded that thespecimen 17 is possibly damaged and in that case it must be eliminated.

上記の仕様に従って5cm厚さの超断熱材で装備された輸送容器1は、例えば、外径24cm、長さ24cmであり、従って取り扱い易く、クーリエサービスによる輸送に理想的に適している。  Thetransport container 1 equipped with a super-insulating material having a thickness of 5 cm in accordance with the above specifications has, for example, an outer diameter of 24 cm and a length of 24 cm, and is therefore easy to handle and ideally suited for transport by a courier service.

重要な部品を含む輸送容器の垂直断面を示す。2 shows a vertical section of a shipping container containing important parts.輸送容器の線II−IIに沿った水平断面を示す。2 shows a horizontal section along the line II-II of the transport container.図1の内部容器の垂直断面を拡大して示す。Fig. 2 shows an enlarged vertical section of the inner container of Fig. 1.図1の2つの付加的な容器の1つの同様の垂直断面を拡大して示す。Figure 2 shows an enlarged similar vertical section of one of the two additional containers of Figure 1;付加的な容器の交換用として想定される対応寸法の断熱ストッパの側面を示す。The side of the heat insulation stopper of the corresponding dimension assumed for exchange of an additional container is shown.変形された内部容器を図3と同じ図で示す。The deformed inner container is shown in the same view as FIG.図6の線VII−VIIに沿った断面を示す。Fig. 7 shows a section along the line VII-VII in Fig. 6;図6の閉止された充填開口を含む詳細の拡大図を示す。FIG. 7 shows an enlarged detail of the details including the closed filling opening of FIG. 6.図4に比べて変形された付加的容器を示す。Fig. 5 shows an additional container which is modified compared to Fig. 4;図3及び6と類似の形態を有する内部容器を示す。7 shows an inner container having a configuration similar to that of FIGS.図10の線XI−XIに沿った水平断面を示す。11 shows a horizontal section along the line XI-XI in FIG.図4及び9と類似の形態を有する付加的容器を示す。FIG. 10 shows an additional container having a configuration similar to that of FIGS.図8に類似の図における研摩座−ストッパを示す。FIG. 9 shows an abrasive seat-stopper in a similar view to FIG.被膜処理後の図13のストッパを示す。FIG. 14 shows the stopper of FIG. 13 after coating.充填開口内に固定し外側を溶接したストッパを示す。The stopper fixed inside the filling opening and welded outside is shown.仕上げ加工完了後の図15の構成を示す。FIG. 16 shows the configuration of FIG. 15 after finishing.充填開口内に固定して溶接しないストッパを示す。The stopper fixed in a filling opening and not welded is shown.仕上げ加工完了後の図17の構成を示す。FIG. 18 shows the configuration of FIG. 17 after finishing.より高温度で融解する冷却剤による付加的なジャケット冷却を備えた内部容器の軸方向の断面を示す。Figure 3 shows an axial cross section of an inner vessel with additional jacket cooling with a coolant that melts at a higher temperature.

Claims (15)

Translated fromJapanese
冷凍材料(17)、特に冷凍された生物組織の標本又は培養細胞の冷却保持用輸送容器において、
a)断熱チャンバ(5)を取り囲む熱伝導率λ≦0.005W/mKである超断熱材(6)と、
b)前記材料(17)用の少なくとも1つの冷却チャンバ(16、31、46、74)と、少なくとも1つの恒久的に密封シールされる冷却剤チャンバ(15、32、47、71)とを内部に有し、かつ前記断熱チャンバ(5)内に取り外し可能に配置される内部容器(2、30、44、70)と、
c)純粋な有機物質であり、温度範囲−100℃から−15℃において固体および液体状態間の相転移が生じ、かつ少なくとも50J/mlの融解熱を有し、固体/液体間相転移によって冷熱を発生する第1の冷却剤(15'、32'、47'、71')と、
を含む輸送容器。
In a frozen material (17), in particular in a transport container for refrigerated holding of frozen biological tissue specimens or cultured cells,
a) superinsulation (6) with thermal conductivity λ ≦ 0.005 W / mK surrounding the thermal insulation chamber (5);
b) interior with at least one cooling chamber (16, 31, 46, 74) for said material (17) and at least one permanently hermetically sealed coolant chamber (15, 32, 47, 71) And an internal container (2, 30, 44, 70) removably disposed in the heat insulation chamber (5);
c) Pure organic material, which undergoes a phase transition between the solid and liquid states in the temperature range of −100 ° C. to −15 ° C., has a heat of fusion of at least 50 J / ml, and is cooled by the solid / liquid phase transition. A first coolant (15 ′, 32 ′, 47 ′, 71 ′) that generates
Including transport container.
前記輸送容器が、温度範囲−15から0℃において固体/液体間相転移する第2の冷却剤(78')を含むジャケットチャンバ(78とカバー(77)とが超断熱材を含む断熱ジャケット(80)によって外部から遮蔽されていることを特徴とする請求項1に記載の輸送容器。Insulation jacket in which the transport container includes a jacket (78 ) including asecond coolant (78 ') that undergoes a solid / liquid phase transition in a temperature range of-15 to 0 ° Cand a cover (77) includes a super-insulation. The transport container according to claim 1, wherein the transport container is shielded from the outside by (80). 前記冷却剤チャンバ(15、32、47、71)が、前記冷却チャンバ(16、31、46、74)と同様に前記内部容器(2、30、44、70)の中に形成されることを特徴とする請求項1又は2に記載の輸送容器。  The coolant chamber (15, 32, 47, 71) is formed in the inner container (2, 30, 44, 70) in the same manner as the cooling chamber (16, 31, 46, 74). The transport container according to claim 1 or 2, characterized in that 少なくとも1つの付加的容器(3、4、37、55)が前記冷却チャンバ(16、31、46、74)内に取り外し可能に配設されることを特徴とする請求項1〜3のいずれか1項に記載の輸送容器。  The at least one additional container (3, 4, 37, 55) is removably disposed in the cooling chamber (16, 31, 46, 74). The transport container according to item 1. 前記内部容器(2、30、44、70)及び/又は前記付加的容器(3、4、37、55)が、高級鋼、チタン又はチタン合金製であるか、あるいは、アルミニウム製であるか、あるいは、耐低温性のプラスチック製であることを特徴とする請求項1〜のいずれか1項に記載の輸送容器。Whether the inner container (2, 30, 44, 70) and / or the additional container (3, 4, 37, 55) is made of high-grade steel, titanium or a titanium alloy, or made of aluminum, Alternatively, the transport container according to any one of claims 1 to4 , wherein the transport container is made of low temperature resistant plastic. 前記第1の冷却剤(15'、32'、47')用の充填開口(20、25、33)が溶接によって閉止されることを特徴とする請求項1〜のいずれか1項に記載の輸送容器。Thefirst coolant (15 ', 32', 47 ') according to any one of claims 1 to5, characterized in that it is closed by the filling opening (20,25,33) is welded for Shipping container. 前記充填開口(20、25)が内側においてねじストッパ(21)によって閉止され、外側において溶接によって閉止されることを特徴とする請求項に記載の輸送容器。7. Transport container according to claim6 , characterized in that the filling opening (20, 25) is closed on the inside by a screw stopper (21) and on the outside by welding. 前記内部容器(2、30)が、内壁と、外壁と、一方の端部の底板と、もう一方の端部の環状壁とを含む二重壁の中空円筒を有しており、その場合、前記冷却剤チャンバ(15、32)が、間隔を置いて離れている前記円筒の壁体と前記環状壁と前記底板との間に形成され、前記冷却チャンバ(18、31)は中心に配置されて、前記内壁と前記底板とによって境界が定められることを特徴とする請求項1〜のいずれか1項に記載の輸送容器。The inner container (2, 30) has a double-walled hollow cylinder including an inner wall, an outer wall, a bottom plate at one end, and an annular wall at the other end; The coolant chamber (15, 32) is formed between the cylindrical wall, the annular wall and the bottom plate spaced apart, and the cooling chamber (18, 31) is centrally disposed. Te, transport container according to any one of claims 1 to7, characterized in that the boundary is defined by said bottom plate and said inner wall. 前記内部容器(2、30、44)の内壁が、前記冷却チャンバ(16、31、46)を閉止するねじ付きカバー(14)又はねじ付きストッパ(42、51)用のねじを有していることを特徴とする請求項1〜のいずれか1項に記載の輸送容器。The inner wall of the inner container (2, 30, 44) has a screw for a threaded cover (14) or a threaded stopper (42, 51) for closing the cooling chamber (16, 31, 46). The transport container according to any one of claims 1 to8 , wherein: 前記断熱材(6)が、その中心に断熱チャンバ(5)を有するカップの形に形成され、その断熱チャンバ(5)は、前記内部容器(2、30、44)に適合し、断熱閉止部材(8)によって閉止することができることを特徴とする請求項1〜のいずれか1項に記載の輸送容器。The heat insulating material (6) is formed in the shape of a cup having a heat insulating chamber (5) at its center, and the heat insulating chamber (5) is adapted to the inner container (2, 30, 44), and is a heat insulating closing member. The transport container according to any one of claims 1 to9 , wherein the transport container can be closed by (8). 前記断熱材(6)が硬質の防護筒(9)によって被包され、この防護筒(9)の端部はそれぞれねじ付きカバー(11、12)によって閉止されることを特徴とする請求項1〜10のいずれか1項に記載の輸送容器。The said heat insulating material (6) is encapsulated by a hard protective cylinder (9), and ends of the protective cylinder (9) are closed by screwed covers (11, 12), respectively. The transport container according to any one of10 to10 .前記第1の冷却剤は、−100から−30℃の温度範囲において固体および液体状態間の相転移を生じることを特徴とする請求項1〜11のいずれか1項に記載の輸送容器。The transport container according to any one of claims 1 to11 ,wherein the first coolant causes a phase transition between a solid state and a liquid state in a temperature range of -100 to -30 ° C.前記第1の冷却剤は、−85から−30℃の温度範囲において固体および液体状態間の相転移を生じることを特徴とする請求項1〜12のいずれか1項に記載の輸送容器。The transport container according to any one of claims 1 to12 ,wherein the first coolant causes a phase transition between a solid state and a liquid state in a temperature range of -85 to -30 ° C. 前記冷却剤(15'、32'、47'、71')が、オクタン、1−ヘキサノール、2−ヘキサノン、ヘキサナール、ピリジン、1,2,4−トリメチルベンゼン、1,3,5−トリメチルベンゼン、またはクロロベンゼンであることを特徴とする請求項1〜13のいずれか1項に記載の輸送容器。The coolant (15 ′, 32 ′, 47 ′, 71 ′) is octane, 1-hexanol, 2-hexanone, hexanal, pyridine, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, transport container according to any one of claims 1 to13, characterized in that or chlorobenzene. 前記超断熱材が、熱伝導率λ≦0.002W/mKである超断熱材であることを特徴とする請求項1〜14のいずれか1項に記載の輸送容器。The super heat insulator, the transport container according to any one of claims 1 to14, characterized in thata super-insulation material that is a thermal conductivity λ ≦ 0.002W / mK.
JP2006548225A2004-01-082005-01-07 Transport container for cooling and holding frozen materialsExpired - Fee RelatedJP4680935B2 (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
DE1020040013512004-01-08
DE1020040328402004-07-06
PCT/EP2005/000086WO2005066559A2 (en)2004-01-082005-01-07Transport container for keeping frozen material chilled

Publications (2)

Publication NumberPublication Date
JP2007523013A JP2007523013A (en)2007-08-16
JP4680935B2true JP4680935B2 (en)2011-05-11

Family

ID=34751375

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2006548225AExpired - Fee RelatedJP4680935B2 (en)2004-01-082005-01-07 Transport container for cooling and holding frozen materials

Country Status (6)

CountryLink
US (1)US20070210090A1 (en)
EP (1)EP1704374A2 (en)
JP (1)JP4680935B2 (en)
CN (1)CN100594347C (en)
DE (1)DE112005000154A5 (en)
WO (1)WO2005066559A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR200491161Y1 (en)2018-12-142020-04-24대한민국Liquid nitrogen housing for straws freezing of sperm

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE102006032435A1 (en)*2006-07-132008-01-17Sixt, Bernhard, Dr. Transport container for keeping refrigerated frozen goods
KR101486407B1 (en)*2006-07-282015-01-26마퍼 리쏘그라피 아이피 비.브이.Lithography system, method of heat dissipation and frame
EP2142431A4 (en)*2007-05-042014-06-18Entropy Solutions IncPackage having phase change materials and method of use in transport of temperature sensitive payload
US8211516B2 (en)2008-05-132012-07-03Tokitae LlcMulti-layer insulation composite material including bandgap material, storage container using same, and related methods
US8887944B2 (en)2007-12-112014-11-18Tokitae LlcTemperature-stabilized storage systems configured for storage and stabilization of modular units
US20090145912A1 (en)*2007-12-112009-06-11Searete Llc, A Limited Liability Corporation Of The State Of DelawareTemperature-stabilized storage containers
US20110127273A1 (en)2007-12-112011-06-02TOKITAE LLC, a limited liability company of the State of DelawareTemperature-stabilized storage systems including storage structures configured for interchangeable storage of modular units
US9205969B2 (en)*2007-12-112015-12-08Tokitae LlcTemperature-stabilized storage systems
US8485387B2 (en)2008-05-132013-07-16Tokitae LlcStorage container including multi-layer insulation composite material having bandgap material
US9140476B2 (en)2007-12-112015-09-22Tokitae LlcTemperature-controlled storage systems
US9174791B2 (en)2007-12-112015-11-03Tokitae LlcTemperature-stabilized storage systems
US8215835B2 (en)2007-12-112012-07-10Tokitae LlcTemperature-stabilized medicinal storage systems
WO2009143364A1 (en)*2008-05-212009-11-26Winterlab LimitedApparatus and method for using a brine solution to freeze biopsy material
US9372016B2 (en)2013-05-312016-06-21Tokitae LlcTemperature-stabilized storage systems with regulated cooling
US9447995B2 (en)2010-02-082016-09-20Tokitac LLCTemperature-stabilized storage systems with integral regulated cooling
DE102010028769A1 (en)2010-05-072011-11-10Pvt Probenverteiltechnik Gmbh System for transporting containers between different stations and container carriers
CN101849535B (en)*2010-05-242013-04-17中国水产科学研究院黄海水产研究所Portable fish sperm frozen cooling device
US20110308271A1 (en)2010-06-182011-12-22Biocision, Inc.Specimen freezing rate regulator device
DK2583078T3 (en)*2010-06-182024-10-07Biocision Inc Apparatus for regulating the freezing rate of samples
US8439221B2 (en)2010-11-152013-05-14Troy M. DavisBeverage container with chill sleeve
CN102246743B (en)*2011-04-202013-07-10中国人民解放军第三军医大学Biological tissue cryopreservation device
EP2589966A1 (en)2011-11-042013-05-08Roche Diagnostics GmbHLaboratory sample distribution system and corresponding method of operation
EP2589968A1 (en)2011-11-042013-05-08Roche Diagnostics GmbHLaboratory sample distribution system, laboratory system and method of operating
EP2589967A1 (en)2011-11-042013-05-08Roche Diagnostics GmbHLaboratory sample distribution system and corresponding method of operation
CN103112661A (en)*2012-12-112013-05-22樊荣Portable refrigerating barrel
CN103190393B (en)*2013-04-092015-05-13上海安久生物科技有限公司Biological sample vitrification carrier and application thereof
US9913777B2 (en)2013-05-162018-03-13Sandy WengreenStorage systems and methods for medicines
US9877894B2 (en)2013-05-162018-01-30Sandy WengreenStorage systems and methods for medicines
US9707156B2 (en)2013-05-162017-07-18Sandy WengreenStorage systems and methods for medicines
US20160262979A1 (en)*2013-05-162016-09-15Sandy WengreenStorage systems and methods for medicines
US10588820B2 (en)2013-05-162020-03-17Sandy WengreenStorage systems and methods for medicines
US9151531B2 (en)*2013-05-162015-10-06Sandy WengreenStorage systems and methods for medicines
US9844782B2 (en)*2013-06-212017-12-19Coldblock Technologies Inc.Systems and methods for preparing samples for chemical analysis using a cooled digestion zone
CN103548815B (en)*2013-11-182015-06-10王意Programmed cell freezing box with direct-in liquid nitrogen
DE102014202838B3 (en)2014-02-172014-11-06Roche Pvt Gmbh Transport device, sample distribution system and laboratory automation system
DE102014202843B3 (en)2014-02-172014-11-06Roche Pvt Gmbh Transport device, sample distribution system and laboratory automation system
CN103848101A (en)*2014-03-142014-06-11杜海兵Medicine cold chain box
EP2927168A1 (en)*2014-03-312015-10-07Roche Diagniostics GmbHTransport device, sample distribution system and laboratory automation system
EP2927625A1 (en)2014-03-312015-10-07Roche Diagniostics GmbHSample distribution system and laboratory automation system
EP2927167B1 (en)2014-03-312018-04-18F. Hoffmann-La Roche AGDispatch device, sample distribution system and laboratory automation system
EP2927163B1 (en)2014-03-312018-02-28Roche Diagnostics GmbHVertical conveyor, sample distribution system and laboratory automation system
EP2927695B1 (en)2014-03-312018-08-22Roche Diagniostics GmbHSample distribution system and laboratory automation system
ES2960772T3 (en)*2014-06-112024-03-06Rmb Products Inc Rigid fluid container with phase change capability with recesses to aid handling
EP2957914B1 (en)2014-06-172018-01-03Roche Diagnostics GmbHLaboratory sample distribution system and laboratory automation system
FR3023714A1 (en)*2014-07-182016-01-22Lab Francais Du Fractionnement INNOVATIVE THERAPY DRUG PACKAGING
EP2977766A1 (en)2014-07-242016-01-27Roche Diagniostics GmbHLaboratory sample distribution system and laboratory automation system
EP2995580A1 (en)2014-09-092016-03-16Roche Diagniostics GmbHLaboratory sample distribution system and laboratory automation system
EP2995960B1 (en)2014-09-092020-07-15Roche Diagniostics GmbHLaboratory sample distribution system and method for calibrating magnetic sensors
US9952242B2 (en)2014-09-122018-04-24Roche Diagnostics Operations, Inc.Laboratory sample distribution system and laboratory automation system
EP2995958A1 (en)2014-09-152016-03-16Roche Diagniostics GmbHMethod of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3006943B1 (en)2014-10-072020-04-22Roche Diagniostics GmbHModule for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3016116A1 (en)2014-11-032016-05-04Roche Diagniostics GmbHPrinted circuit board arrangement, coil for a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3070479B1 (en)2015-03-162019-07-03Roche Diagniostics GmbHTransport carrier, laboratory cargo distribution system and laboratory automation system
EP3073270B1 (en)2015-03-232019-05-29Roche Diagniostics GmbHLaboratory sample distribution system and laboratory automation system
EP3095739A1 (en)2015-05-222016-11-23Roche Diagniostics GmbHMethod of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3096145B1 (en)2015-05-222019-09-04Roche Diagniostics GmbHMethod of operating a laboratory automation system and laboratory automation system
EP3096146A1 (en)2015-05-222016-11-23Roche Diagniostics GmbHMethod of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3112874A1 (en)2015-07-022017-01-04Roche Diagnostics GmbHStorage module, method of operating a laboratory automation system and laboratory automation system
EP3121603A1 (en)2015-07-222017-01-25Roche Diagnostics GmbHSample container carrier, laboratory sample distribution system and laboratory automation system
JP6836235B2 (en)*2015-08-112021-02-24株式会社ジェイ・エム・エス Cell transport container
EP3139175B1 (en)2015-09-012021-12-15Roche Diagnostics GmbHLaboratory cargo distribution system, laboratory automation system and method of operating a laboratory cargo distribution system
EP3153867B1 (en)2015-10-062018-11-14Roche Diagniostics GmbHMethod of configuring a laboratory automation system, laboratory sample distribution system and laboratory automation system
EP3153866A1 (en)2015-10-062017-04-12Roche Diagnostics GmbHMethod of determining a handover position and laboratory automation system
WO2017062692A1 (en)2015-10-062017-04-13Cold Chain Technologies,Inc.Thermally insulated shipping system for pallet-sized payload, methods of making and using the same, and kit for use therein
EP3156352B1 (en)2015-10-132019-02-27Roche Diagniostics GmbHLaboratory sample distribution system and laboratory automation system
EP3156353B1 (en)2015-10-142019-04-03Roche Diagniostics GmbHMethod of rotating a sample container carrier, laboratory sample distribution system and laboratory automation system
KR102703913B1 (en)*2015-12-092024-09-09메디칸(주)Refrigeration equipment and refrigeration cell comprises a cryogenic storage container
DE202016001097U1 (en)*2016-01-282017-05-02Va-Q-Tec Ag Transport container system
EP3211429A1 (en)2016-02-262017-08-30Roche Diagnostics GmbHTransport device having a tiled driving surface
EP3211428A1 (en)2016-02-262017-08-30Roche Diagnostics GmbHTransport device unit for a laboratory sample distribution system
EP3211430A1 (en)2016-02-262017-08-30Roche Diagnostics GmbHTransport device with base plate modules
CN109196363A (en)2016-06-032019-01-11豪夫迈·罗氏有限公司Laboratory sample distribution system and laboratory automation system
EP3255519B1 (en)2016-06-092019-02-20Roche Diagniostics GmbHLaboratory sample distribution system and method of operating a laboratory sample distribution system
EP3260867A1 (en)2016-06-212017-12-27Roche Diagnostics GmbHMethod of setting a handover position and laboratory automation system
MX2016008614A (en)*2016-06-292017-12-28Univ Nacional Autónoma De MexicoDevice for the thermal protection and transport of biomacromolecules.
JP6752350B2 (en)2016-08-042020-09-09エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Laboratory sample distribution system and laboratory automation system
USD804807S1 (en)2016-09-222017-12-12Sandy WengreenInsulated container
EP3330717B1 (en)2016-12-012022-04-06Roche Diagnostics GmbHLaboratory sample distribution system and laboratory automation system
EP3343232B1 (en)2016-12-292021-09-15Roche Diagnostics GmbHLaboratory sample distribution system and laboratory automation system
CN106966060A (en)*2016-12-292017-07-21浙江工商大学A kind of cold-storage express delivery box structure
EP3355065B1 (en)2017-01-312021-08-18Roche Diagnostics GmbHLaboratory sample distribution system and laboratory automation system
EP3357842B1 (en)2017-02-032022-03-23Roche Diagnostics GmbHLaboratory automation system
JP6881710B2 (en)*2017-03-282021-06-02国立研究開発法人宇宙航空研究開発機構 Insulation container and heat and cold insulation device using it
EP3410123B1 (en)2017-06-022023-09-20Roche Diagnostics GmbHMethod of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3428653B1 (en)2017-07-132021-09-15Roche Diagnostics GmbHMethod of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3456415B1 (en)2017-09-132021-10-20Roche Diagnostics GmbHSample container carrier, laboratory sample distribution system and laboratory automation system
EP3457144B1 (en)2017-09-132021-10-20Roche Diagnostics GmbHSample container carrier, laboratory sample distribution system and laboratory automation system
EP3537159B1 (en)2018-03-072022-08-31Roche Diagnostics GmbHMethod of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
EP3540443B1 (en)2018-03-162023-08-30Roche Diagnostics GmbHLaboratory system, laboratory sample distribution system and laboratory automation system
US10722427B2 (en)2018-03-292020-07-28Simon Charles CantorHermetically sealable case for medical device and medicine
CN109160083A (en)*2018-09-272019-01-08佛山科学技术学院A kind of laboratory sample transport save set
GB201917625D0 (en)*2019-12-032020-01-15Asymptote LtdContainer sterilising apparatus and method
US11920862B2 (en)*2019-12-192024-03-05Praxair Technology, Inc.Methods and apparatuses for using dry ice containers
US12127555B2 (en)*2020-04-082024-10-29Biolife Solutions, Inc.Shock absorbing device to protect cryopreserved biological material
EP3925911B1 (en)2020-06-192023-05-24Roche Diagnostics GmbHLaboratory sample distribution system and corresponding method of operation
EP3940388B1 (en)2020-07-152024-04-10Roche Diagnostics GmbHLaboratory sample distribution system and method for operating the same
CN112167242B (en)*2020-09-242022-03-25清华大学No active cooling low temperature storage and transportation device based on multilayer phase change material
WO2022094714A1 (en)*2020-11-052022-05-12Acorn Biolabs, Inc.Temperature-controlled system for the collection and/or transportation of living and/or temperature-sensitive material
EP4001923B1 (en)2020-11-232024-06-05Roche Diagnostics GmbHLaboratory sample distribution system and laboratory automation system
CN114594124A (en)*2020-12-072022-06-07中国科学院大连化学物理研究所 A liquid sample cell with high temperature resistance and good sealing
US11747356B2 (en)2020-12-212023-09-05Roche Diagnostics Operations, Inc.Support element for a modular transport plane, modular transport plane, and laboratory distribution system
KR102276406B1 (en)*2020-12-232021-07-12천성태Storage device for specimen ampoule
CA3111955A1 (en)*2021-03-122022-09-12Proprietect L.P.Composite container
US11602486B2 (en)*2021-06-292023-03-14Daniel SinghDevice for chilling insulin in a travel mug
DE102022212394A1 (en)2022-11-212024-05-23dot.COOL Group Inc. VACUUM CONTAINER, METHOD FOR MANUFACTURING THE SAME AND EVACUATION MODULE
CN117007210A (en)*2023-07-212023-11-07浙江省计量科学研究院Liquid nitrogen constant temperature detector

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US52269A (en)*1866-01-30Improvement in bottle-stoppers
US1771186A (en)*1928-06-201930-07-22Mock HugoServing element for electric refrigerators
GB1004791A (en)*1963-06-191965-09-15Salterpak LtdImprovements relating to thermally-insulated cases
US3858410A (en)*1973-09-241975-01-07Daniel H DrakeDental material mixing holder and cooler
US5355684A (en)*1992-04-301994-10-18Guice Walter LCryogenic shipment or storage system for biological materials
CN2199086Y (en)*1994-06-041995-05-31徐松培Device for transporting refrigerated goods
AU7720596A (en)*1995-11-091997-05-29Aspen Systems, Inc.Flexible aerogel superinsulation and its manufacture
US5895561A (en)*1996-01-171999-04-20Kennecott Utah Copper CorporationMethod of sealing cooling blocks using electrodeposited metal
JP2710606B2 (en)*1996-02-291998-02-10耀明 蔡 Cooling retention media for cooling cups
US6467299B1 (en)*1996-08-302002-10-22Triple Ccc CcContainer for a vial or ampoule
NL1005375C1 (en)*1997-02-261998-08-28Kombo Publishing B VChilled dish for presentation of e.g. perishable cocktail snacks
US5934099A (en)*1997-07-281999-08-10Tcp/Reliable Inc.Temperature controlled container
US6032481A (en)*1997-08-262000-03-07Mosby; Sharon D.Thermoregulating container
US6209343B1 (en)*1998-09-292001-04-03Life Science Holdings, Inc.Portable apparatus for storing and/or transporting biological samples, tissues and/or organs
US6119465A (en)*1999-02-102000-09-19Mullens; Patrick L.Shipping container for storing materials at cryogenic temperatures
US6446461B1 (en)*2001-02-202002-09-10David L. Williams, Jr.Beverage cooler
FR2840289A1 (en)*2002-05-292003-12-05Centre Nat Rech Scient PACKAGING BOX FOR BIOLOGICAL PRODUCTS AND THE LIKE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR200491161Y1 (en)2018-12-142020-04-24대한민국Liquid nitrogen housing for straws freezing of sperm

Also Published As

Publication numberPublication date
EP1704374A2 (en)2006-09-27
JP2007523013A (en)2007-08-16
DE112005000154A5 (en)2007-06-21
CN101124444A (en)2008-02-13
WO2005066559A3 (en)2005-11-10
WO2005066559A2 (en)2005-07-21
US20070210090A1 (en)2007-09-13
CN100594347C (en)2010-03-17

Similar Documents

PublicationPublication DateTitle
JP4680935B2 (en) Transport container for cooling and holding frozen materials
JP7005095B2 (en) Shipping container
US4357809A (en)Cooling arrangement including a gel
US6209343B1 (en)Portable apparatus for storing and/or transporting biological samples, tissues and/or organs
US1369367A (en)Cooling-container
EP3604476B1 (en)Cold storage material composition, method for using cold storage material composition, cold storage material and transport container
WO2008006558A3 (en)Transport container for maintaining the temperature of frozen goods
JP2007118972A (en) Constant temperature cool box and constant temperature cool method
NO337527B1 (en) Method and apparatus for ensuring maintained temperature inside a transport container or equivalent
US10897892B1 (en)Passively regulated controlled cooling rate vial holding apparatus and method for controlling cooling rates
US11597582B1 (en)Double wall insulated beverage housing system with temperature maintenance
JP2017128622A (en) Coolant, cooler and cooler
CN100581942C (en)Beverage container and method of using the same
JP5406129B2 (en) Specimen holder for high-pressure freezing equipment
DE102007008351A1 (en)Self-cooling transport container for sample transport, e.g. for medical and oncologocial samples having a vacuum enclosed sample storage space that is cooled by making use of latent heat principles
KR20070092020A (en) Cold storage combined cooling cup
US7260956B1 (en)System for maintaining materials at freezer temperatures for shipping
JP7319515B2 (en) Insulated container
KR200419437Y1 (en) Cold storage combined cooling cup
KR200250105Y1 (en)A canteen
JP6838906B2 (en) Liquid bag quick freezing container
WO2021104244A1 (en)Cooling device
CN216710031U (en)Multifunctional heat-preservation sampling box
CN223086686U (en) A constant temperature sampling box
US20230404068A1 (en)Methods and devices for thermal stabilization on perishable biological specimens

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20071206

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20100305

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20100316

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20100616

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20110111

A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20110203

R150Certificate of patent or registration of utility model

Free format text:JAPANESE INTERMEDIATE CODE: R150

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20140210

Year of fee payment:3

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp