Movatterモバイル変換


[0]ホーム

URL:


JP4674061B2 - Thin film formation method - Google Patents

Thin film formation method
Download PDF

Info

Publication number
JP4674061B2
JP4674061B2JP2004207752AJP2004207752AJP4674061B2JP 4674061 B2JP4674061 B2JP 4674061B2JP 2004207752 AJP2004207752 AJP 2004207752AJP 2004207752 AJP2004207752 AJP 2004207752AJP 4674061 B2JP4674061 B2JP 4674061B2
Authority
JP
Japan
Prior art keywords
gas
vacuum chamber
film
thin film
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004207752A
Other languages
Japanese (ja)
Other versions
JP2006028572A (en
Inventor
雅通 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac IncfiledCriticalUlvac Inc
Priority to JP2004207752ApriorityCriticalpatent/JP4674061B2/en
Publication of JP2006028572ApublicationCriticalpatent/JP2006028572A/en
Application grantedgrantedCritical
Publication of JP4674061B2publicationCriticalpatent/JP4674061B2/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Landscapes

Description

Translated fromJapanese

本発明は、薄膜形成方法に関し、特にタングステン(W)系金属薄膜であるバリアメタル膜をALD(Atomic Layer Deposition)法とCAT(Catalyst)法とを組み合わせて形成する方法に関する。  The present invention relates to a thin film forming method, and more particularly to a method of forming a barrier metal film, which is a tungsten (W) metal thin film, by combining an ALD (Atomic Layer Deposition) method and a CAT (Catalyst) method.

従来から、熱CVDにより形成したタングステン(W)やアルミニウム(Al)などの金属膜が半導体装置における配線として使用されており、また、熱CVD法により形成された窒化タングステン(WN)などのような窒化物の膜がW膜用の密着層やCu配線膜のバリアメタル膜として使用されている。  Conventionally, a metal film such as tungsten (W) or aluminum (Al) formed by thermal CVD has been used as a wiring in a semiconductor device, and tungsten nitride (WN) formed by thermal CVD or the like. A nitride film is used as an adhesion layer for a W film or a barrier metal film for a Cu wiring film.

WNからなるバリアメタル膜を形成する方法として、6フッ化タングステンガスのような原料ガスとアンモニアガスのような還元性ガスとシランのような補助還元性ガスとを用いて、500℃以下で反応させて、所望の膜を形成する方法が知られている(例えば、特許文献1参照)。半導体装置の配線として基板にCu配線が形成されている場合には、基板が350℃以上の高温に曝されると、Cu配線にボイドが生じてCu配線の信頼性が維持されなくなることがある。そのため、できるだけ低温(例えば、通常300℃以下、好ましくは250℃以下)で成膜を行うことが望ましい。しかし、特許文献1記載の方法では、好ましくは380℃程度に基板を加熱して成膜を行っているので、Cu配線の信頼性を維持しながら成膜プロセスを実施してWN膜を形成することは困難であった。  As a method of forming a barrier metal film made of WN, a reaction is performed at 500 ° C. or lower using a source gas such as tungsten hexafluoride gas, a reducing gas such as ammonia gas, and an auxiliary reducing gas such as silane. Thus, a method for forming a desired film is known (see, for example, Patent Document 1). When Cu wiring is formed on the substrate as the wiring of the semiconductor device, if the substrate is exposed to a high temperature of 350 ° C. or higher, voids may be generated in the Cu wiring and the reliability of the Cu wiring may not be maintained. . Therefore, it is desirable to form a film at as low a temperature as possible (for example, usually 300 ° C. or lower, preferably 250 ° C. or lower). However, in the method described inPatent Document 1, since the film formation is preferably performed by heating the substrate to about 380 ° C., the WN film is formed by performing the film formation process while maintaining the reliability of the Cu wiring. It was difficult.

また、Cu配線技術におけるバリアメタル膜形成方法について、本出願人は、CAT法(触媒法)を使ったバリアメタル(TaN)膜形成方法について出願し(特願2003−390391号)、さらに、CAT法を使わないWN膜の形成方法についても出願した(PCT/JP03/15776)。As for a barrier metal film forming method in Cu wiring technology, the present applicant has applied for a barrier metal (TaN) film forming method using the CAT method (catalyst method) (Japanese Patent Application No. 2003-390391), and further, CAT An application was also filed for a method of forming a Wx N film without using the method (PCT / JP03 / 15776).

これらの本出願人の技術のうち、前者(TaN膜)の場合には、Cu配線プロセスにおけるバリアメタル膜の比抵抗は2000μΩcm以上である。この比抵抗をできるだけ低くしたいという要求に対し、様々な提案がなされているが、現状では2000μΩcm以下にはならないという問題がある。  Among the techniques of the present applicant, in the case of the former (TaN film), the specific resistance of the barrier metal film in the Cu wiring process is 2000 μΩcm or more. Various proposals have been made in response to a request to make this specific resistance as low as possible, but there is a problem that it is not 2000 μΩcm or less at present.

また、後者(WN膜)の場合には、300〜500μΩcmという低抵抗値が得られている。しかし、SiO膜表面上に低温(300℃以下)においてWN膜を形成する際には、予めSiO膜表面をNHプラズマに曝すなどして、表面を改質(Nリッチな膜とする)しなければ、所望のWN膜がSiO膜上に形成されないという問題がある。この場合、NHプラズマは、デバイスウェハーに形成されているビアホールやトレンチを削り、その形状を変えてしまうし、成膜対象物が有機系のLow−k材である場合は、さらにこの成膜対象物に対するエッチングのダメージが深刻であるという問題がある。In the latter case (Wx N film), a low resistance value of 300 to 500 μΩcm is obtained. However, when the Wx N film is formed on the SiO2 film surface at a low temperature (300 ° C. or less), the surface is modified (N-rich film) by exposing the SiO2 film surface to NH3 plasma in advance. Otherwise, there is a problem that a desired Wx N film is not formed on the SiO2 film. In this case, the NH3 plasma cuts the via hole or trench formed in the device wafer and changes its shape, and if the film formation target is an organic low-k material, this film formation is further performed. There is a problem that the etching damage to the object is serious.

ところで、Cu配線形成プロセスにおいて、ALD法を利用してWN膜を形成することが考えられる。しかし、ALD法を利用しようとしても、事実上、ALD法によるWN膜の形成は核成長が起き難いなどの問題があって、ALD法単独では困難であり、さらに下地膜を設けるかその他の手段を取らなければ、満足すべき密着性などの特性を有するWN膜を形成することができないという問題がある。By the way, in the Cu wiring formation process, it is conceivable to form the Wx N film using the ALD method. However, even when trying to use the ALD method, the formation of the Wx N film by the ALD method has a problem that it is difficult for the nucleus to grow, and the ALD method alone is difficult. If this means is not taken, there is a problem that a Wx N film having satisfactory characteristics such as adhesion cannot be formed.

すなわち、低温(例えば、300℃以下)でALD法によりWN膜(ALD−WN膜)を形成するに際し、酸化膜上でのWNの核成長が起き難いという問題は、ALD−WN膜が以下の反応式(1)、(2)及び(3)を利用して形成されることが主因であると考えられる。That is, when forming a Wx N film (ALD-Wx N film) by an ALD method at a low temperature (for example, 300 ° C. or less), the problem that Wx N nucleus growth on the oxide film hardly occurs is ALD. It is considered that the main reason is that the —Wx N film is formed using the following reaction formulas (1), (2), and (3).

Figure 0004674061
Figure 0004674061

Figure 0004674061
Figure 0004674061

Figure 0004674061
Figure 0004674061

上記反応は、いずれも、300℃以下では反応が起き難いからである。特に、250℃以下においては、反応式(2)のみが支配的になり、WSiが生成されることにより、SiリッチなWNが形成されてしまう。SiリッチなWN膜は酸化膜との密着性が悪い上、比抵抗が高い等の問題がある。今日のCu配線形成プロセスでは、配線の信頼性向上、つまりSM(ストレス マイグレーション)耐性向上のために、ウェハー温度のより低温化が要求されている。その要求温度は、将来的には、250℃以下に移行することになると思われる。従って、従来のALD法によるWN膜形成では、250℃以下において密着性が取れないという問題があるため、将来的にCu配線技術に対応できなくなる。This is because the above reactions are unlikely to occur at 300 ° C. or lower. In particular, at a temperature of 250 ° C. or lower, only the reaction formula (2) becomes dominant, and W5 Si3 is generated, so that Si-rich Wx N is formed. The Si-rich Wx N film has problems such as poor adhesion to the oxide film and high specific resistance. In today's Cu wiring forming process, a lower wafer temperature is required to improve wiring reliability, that is, to improve SM (stress migration) resistance. The required temperature is expected to shift to 250 ° C. or lower in the future. Therefore, in the conventional Wx N film formation by the ALD method, there is a problem that adhesion cannot be obtained at 250 ° C. or lower, and it will not be possible to cope with Cu wiring technology in the future.

上記したALD法は、前駆体間の化学反応を利用するという点でCVD法と類似している。しかし、通常のCVD法では、ガス状態の前駆体が互いに接触して反応が起きる現象を利用するのに対し、ALD法では、二つの前駆体間の表面反応を利用するという点で異なる。すなわち、ALD法によれば、一種類の前駆体が基板表面に吸着されている状態で別の前駆体を供給することにより、二つの前駆体が基板表面で互いに接触して反応し、所望の金属膜を形成する。ALD法では、基板表面に最初に吸着された前駆体と次いで供給される前駆体と間の反応が基板表面で非常に速い速度で起きる。前駆体としては、固体、液体、気体状態のいずれでも使用することができ、原料気体は、N、Ar等のようなキャリアーガスにのせて供給される。
特開2001−23930号公報(特許請求の範囲、5頁7欄など)
The ALD method described above is similar to the CVD method in that it uses a chemical reaction between precursors. However, the ordinary CVD method uses a phenomenon in which precursors in a gas state come into contact with each other to cause a reaction, whereas the ALD method is different in that a surface reaction between two precursors is used. That is, according to the ALD method, by supplying another precursor in a state where one kind of precursor is adsorbed on the substrate surface, the two precursors come into contact with each other on the substrate surface and react to each other. A metal film is formed. In the ALD method, the reaction between the precursor first adsorbed on the substrate surface and the precursor supplied next occurs at a very high rate on the substrate surface. The precursor can be used in a solid, liquid, or gaseous state, and the raw material gas is supplied on a carrier gas such as N2 or Ar.
JP 2001-23930 A (claims,page 5, column 7)

本発明の課題は、上述の技術において達成し得なかった問題点を解決することにあり、事前にプラズマ処理により表面改質を行うことが必須ではなく、低温(好ましくは、ウェハー温度250℃以下)で、比抵抗が低く(好ましくは、300μΩcm以下)、かつ下層の酸化膜やCu膜などに対して密着性に優れたWN薄膜などのW系金属薄膜であるバリアメタル膜を形成する方法を提供することにある。An object of the present invention is to solve the problems that could not be achieved in the above-described technology, and it is not essential to perform surface modification by plasma treatment in advance, and a low temperature (preferably, a wafer temperature of 250 ° C. or less). ) And a barrier metal film which is a W-based metal thin film such as a Wx N thin film having a low specific resistance (preferably 300 μΩcm or less) and excellent adhesion to a lower oxide film or Cu film. It is to provide a method.

本発明者は、特定のタングステン含有ガスと反応性ガスとを用い、所定のガスフローシーケンスに従えば、所望のバリアメタル膜をALD法とCAT法とを組み合わせて形成することができることを見出し、本発明を完成させるに至った。  The present inventor has found that a specific barrier metal film can be formed by combining the ALD method and the CAT method by using a specific tungsten-containing gas and a reactive gas and following a predetermined gas flow sequence. The present invention has been completed.

請求項1によれば、本発明の薄膜形成方法は、真空チャンバー内に原料ガスとして、ハロゲン化タングステンガス、オキシハロゲン化タングステンガス、カルボニル化タングステンガス、又は有機タングステン化合物ガスを導入し、成膜対象物上に供給して吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、化学構造中に水素原子及びケイ素原子を含んだ反応性ガス並びに水素原子及び窒素原子を含んだ反応性ガスを触媒体に接触させて活性種にしてから該真空チャンバー内に導入し、吸着している原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返して、該成膜対象物上にW系金属薄膜を形成することを特徴とする。According toclaim 1, in the thin film forming method of the present invention, a tungsten halide gas, a tungsten oxyhalide gas, a carbonylated tungsten gas, or an organic tungsten compound gas is introduced as a source gas into a vacuum chamber to form a film. After supplying and adsorbing on the object, the step of stopping the supply of the source gas and exhausting the inside of the vacuum chamber, the reactive gas containing hydrogen atomsand silicon atoms in the chemical structure, and thehydrogen atoms and A reactive gas containingnitrogen atoms is brought into contact with the catalyst body to form an active species, and then introduced into the vacuum chamber and reacted with the adsorbed source gas, and then the supply of the reactive gas is stopped, A process of exhausting the inside of the vacuum chamber is alternately repeated to form a W-based metal thin film on the film formation target.

請求項2によれば、請求項1におけるハロゲン化タングステンガスがWF又はWClガスであり、オキシハロゲン化タングステンガスがWOF、WOF、WOCl、又はWOClガスであり、カルボニル化タングステンガスがW(CO)又はW(CO)ガスであり、有機タングステン化合物ガスがW(OC)ガスであることを特徴とする。According to claim 2, the tungsten halide gas inclaim 1 is WF6 or WCl6 gas, the tungsten oxyhalide gas is WOF2 , WOF4 , WOCl2 , or WOCl4 gas, and the carbonylated tungsten The gas is W (CO)6 or W (CO)5 gas, and the organic tungsten compound gas is W (OC2 H5 ) gas.

請求項によれば、請求項1又は2における水素原子及びケイ素原子を含んだガスがシランガス、ジハロゲン化シランガスであり、水素原子及び窒素原子を含んだガスがNHガス、ヒドラジンガス、ヒドラジン誘導体ガスであることを特徴とする。According to claim3, includingthat put to claim1 or 2water atomand a silicon atom gasstarvation Rangasu a dihalogenated silane, gas NH3 gas containing a hydrogen atom and a nitrogen atom, hydrazine It is characterized by being a gas or a hydrazine derivative gas.

請求項によれば、請求項におけるシランガスがSiH又はSiガスであり、ジハロゲン化シランガスがSiHClガスであり、ヒドラジン誘導体ガスがヒドラジン中のHをCで置換したものであることを特徴とする。According to claim4 , the silane gas in claim3 is SiH4 or Si2 H6 gas, the dihalogenated silane gas is SiH2 Cl2 gas, and the hydrazine derivative gas converts H in hydrazine to Cx Hy . It is characterized by being replaced.

請求項によれば、本発明の薄膜形成方法はまた、真空チャンバー内に原料ガスとしWF又はW(CO)ガスを導入し、成膜対象物上に供給して吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、化学構造中に水素原子及びケイ素原子を含んだ反応性ガスを触媒体に接触させて活性種にしてから該真空チャンバー内に導入し、吸着している原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返して、成膜対象物上に薄膜を形成し、次いで真空チャンバー内に該原料ガスを導入し、成膜対象物上に形成された薄膜上に供給して吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、化学構造中に水素原子及びケイ素原子を含んだ反応性ガス並びに水素原子及び窒素原子を含んだ反応性ガスを触媒体に接触させて活性種にしてから該真空チャンバー内に導入し、吸着している原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程、又は化学構造中に水素原子のみを含んだ反応性ガス並びに水素原子及び窒素原子を含んだ反応性ガスを触媒体に接触させて活性種にしてから該真空チャンバー内に導入し、吸着している原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返して、該成膜対象物上にW又はWSiの薄膜と、WN又はWSiの薄膜との積層膜を形成することを特徴とする。According toclaim5 , the thin film forming method of the present invention also introduces WF6 or W (CO)6 gas as a raw material gas into the vacuum chamber, and supplies and adsorbs it on the film formation target. A step of stopping the supply of the source gas and evacuating the inside of the vacuum chamber; and a reactive gas containing a hydrogen atom and a silicon atom in the chemical structure is brought into contact with the catalyst body to form an active species; Then, after reacting with the adsorbed source gas, the supply of the reactive gas is stopped and the process of exhausting the inside of the vacuum chamber is alternately repeated to form a thin film on the film formation target. Next, the raw material gas is introduced into the vacuum chamber, supplied onto the thin film formed on the film formation target and adsorbed, and then the supply of the raw material gas is stopped and the inside of the vacuum chamber is evacuated. Process and chemical structure with hydrogen atoms and silicon atoms After a reactive gas containing a child and a reactive gas containing a hydrogen atom and a nitrogen atom are brought into contact with a catalyst body to form an active species, the reactive gas is introduced into the vacuum chamber and reacted with the adsorbed source gas. A step of stopping the supply of the reactive gas and evacuating the vacuum chamber, or a reactive gas containing only hydrogen atoms in the chemical structure and a reactive gas containing hydrogen atoms and nitrogen atoms in the catalyst body. The step of bringing into active species after contact is introduced into the vacuum chamber, and after reacting with the adsorbed source gas, the supply of the reactive gas is stopped and the vacuum chamber is evacuated alternately. Repeatedly, a laminated film of a W or WSix thin film and a Wx N or Wx Ny Siz thin film is formed on the film formation target.

請求項によれば、請求項における水素原子及びケイ素原子を含んだ反応性ガスがシランガス、ジハロゲン化シランガスであり、前記水素原子及び窒素原子を含んだ反応性ガスがNHガス、ヒドラジンガス、ヒドラジン誘導体ガスであり、前記水素原子のみを含んだ反応性ガスが水素ガスであることを特徴とする。According to claim6 , the reactive gas containing hydrogen atoms and silicon atoms inclaim5 is silane gas and dihalogenated silane gas, and the reactive gas containing hydrogen atoms and nitrogen atoms is NH3gas , hydrazine gas. The hydrazine derivative gas is characterized in that the reactive gas containing only hydrogen atoms is hydrogen gas.

請求項によれば、請求項におけるシランガスがSiHガス又はSiガスであり、前記ジハロゲン化シランガスがSiHClガスであり、前記ヒドラジン誘導体ガスがヒドラジン中のHをCで置換したものであることを特徴とする。According to claim7 , the silane gas in claim6 is SiH4 gas or Si2 H6 gas, the dihalogenated silane gas is SiH2 Cl2 gas, and the hydrazine derivative gas converts H in hydrazine to Cx. It is characterized by being substituted withHy .

請求項によれば、本発明の薄膜形成方法はまた、真空チャンバー内に原料ガスとしてWF又はW(CO)ガスを導入して成膜対象物上に吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、反応性ガスとして化学構造中に水素原子及びケイ素原子を含んだガスを触媒体に接触させて活性種にしてから真空チャンバー内に導入して成膜対象物上に吸着された原料ガスと反応せしめた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返し、次いで該原料ガスを真空チャンバー内に導入して成膜対象物上に吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、反応性ガスとして化学構造中に水素原子及び窒素原子を含んだガスを触媒体に接触させて活性種にしてから真空チャンバー内へ導入して成膜対象物上で吸着された原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返して、該成膜対象物上にWN膜を形成することを特徴とする。According to claim8 , the thin film forming method of the present invention also introduces WF6 or W (CO)6 gas as a source gas into the vacuum chamber and adsorbs it on the film formation target, and then the source gas The process of evacuating the vacuum chamber and exhausting the inside of the vacuum chamber, and a gas containing a hydrogen atom and a silicon atom in thechemical structure as a reactive gas is brought into contact with the catalyst body to be activated species and then introduced into the vacuum chamber Then, after reacting with the source gas adsorbed on the film formation target, the supply of the reactive gas is stopped and the process of exhausting the inside of the vacuum chamber is repeated alternately. And the process of stopping the supply of the source gas and exhausting the inside of the vacuum chamber, and the reactivestructure contains hydrogen and nitrogen atoms in thechemical structure. The gas The step of bringing into an active species by touching, introducing into the vacuum chamber and reacting with the source gas adsorbed on the film formation target, then stopping the supply of the reactive gas and exhausting the inside of the vacuum chamber Are alternately repeated to form a Wx N film on the film formation target.

請求項によれば、請求項における水素原子及びケイ素原子を含んだ反応性ガスがシランガス、ジハロゲン化シランガスであり、前記水素原子及び窒素原子を含んだ反応性ガスがNHガス、ヒドラジンガス、ヒドラジン誘導体ガスであることを特徴とする。According to claim9 , the reactive gas containing hydrogen atoms and silicon atoms in claim8 is silane gas and dihalogenated silane gas, and the reactive gas containing hydrogen atoms and nitrogen atoms is NH3 gas, hydrazine gas. It is characterized by being a hydrazine derivative gas.

請求項10によれば、請求項におけるシランガスがSiHガス又はSiガスであり、前記ジハロゲン化シランガスがSiHClガスであり、前記ヒドラジン誘導体ガスがヒドラジン中のHをCで置換したものであることを特徴とする。According toclaim10 , the silane gas in claim9 is SiH4 gas or Si2 H6 gas, the dihalogenated silane gas is SiH2 Cl2 gas, and the hydrazine derivative gas converts H in hydrazine to Cx. It is characterized by being substituted withHy .

上記本発明の薄膜形成方法において、反応性ガスは少なくとも1種のガスであれば良く、複数のガスを用いる場合、真空チャンバー内への導入順序は、同時であっても、或いは別々に所定の順序で行っても良い。  In the thin film forming method of the present invention, the reactive gas may be at least one kind of gas, and when a plurality of gases are used, the order of introduction into the vacuum chamber may be simultaneous or separately predetermined. It may be done in order.

本発明によれば、事前にNHプラズマ処理による表面改質を行わなくとも、低温(例えば、ウェハー温度250℃以下)において、膜の比抵抗が低く(好ましくは、300μΩcm以下)、かつ下層の酸化膜やCu膜などに対して密着性に優れ、Cu配線の信頼性を損なうことのないバリアメタル膜であるW系金属薄膜を形成することができるという効果を奏する。According to the present invention, the specific resistance of the film is low (preferably, 300 μΩcm or less) at a low temperature (for example, a wafer temperature of 250 ° C. or less) without performing surface modification by NH3 plasma treatment in advance. There is an effect that it is possible to form a W-based metal thin film that is a barrier metal film that has excellent adhesion to an oxide film, a Cu film, and the like and does not impair the reliability of Cu wiring.

以下、本発明の好ましい実施の形態を、図面を参照して詳細に説明する。図1に、本発明の薄膜形成方法を実施するための成膜装置の模式的構成図を示す。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, the typical block diagram of the film-forming apparatus for enforcing the thin film formation method of this invention is shown.

図1に示すように、成膜装置101は、真空チャンバー102と触媒室103とからなり、この真空チャンバー102と触媒室103とは、シャッターバルブ104のようなシャッター機構を介して仕切られており、真空チャンバー102には、バルブ、マスフローコントローラー(MFC)を備えた原料ガス導入配管105及び反応性ガス導入配管、並びに排気手段(図示せず)が接続されている。この原料ガス導入配管105の一端は、真空チャンバー102内に設けられたガス噴出手段106に接続され、原料ガスを真空チャンバー内に載置される成膜対象物であるウェハー107の表面に供給できるように構成されている。また、触媒室103には、反応性ガスを活性種に変換せしめることができる触媒体108が設置されている。この触媒室103にはまた、その室内を排気できるように直接に排気手段が設けられていてもよい。  As shown in FIG. 1, thefilm forming apparatus 101 includes avacuum chamber 102 and acatalyst chamber 103, and thevacuum chamber 102 and thecatalyst chamber 103 are partitioned through a shutter mechanism such as ashutter valve 104. The raw materialgas introduction pipe 105 and the reactive gas introduction pipe provided with a valve, a mass flow controller (MFC), and an exhaust means (not shown) are connected to thevacuum chamber 102. One end of the sourcegas introduction pipe 105 is connected to gas ejection means 106 provided in thevacuum chamber 102, and the source gas can be supplied to the surface of thewafer 107 which is a film formation target placed in the vacuum chamber. It is configured as follows. In thecatalyst chamber 103, acatalyst body 108 capable of converting reactive gas into active species is installed. Thecatalyst chamber 103 may also be directly provided with exhaust means so that the chamber can be exhausted.

上記装置は次のようにして作動する。上記原料ガス、例えばWFガス、W(CO)ガス等のような原料ガスを、シャッターバルブ104を閉じた状態で、原料ガス導入配管105を経て真空チャンバー102内へ導入し、ガス噴出手段106を介して、このガス噴出手段に対向して配置された成膜対象物であって、例えば予めSiO膜やCu膜が形成されている所定の温度に加熱されたウェハー107の表面に供給し、表面上に原料ガスを吸着せしめる。このガス噴出手段106には、原料ガスをウェハー107の表面に均一に供給できるように、その中心方向にガス噴出用の穴が等間隔に設けられており、その形状は例えばリング状であることが好ましい。次いで、原料の導入を停止し、シャッターバルブ104を閉じた状態で所定の時間排気する。その後、シャッターバルブ104を開放すると同時に、SiH、NH、Hなどの反応性ガスを少なくとも1種触媒室103内へ導入し、所定の温度に加熱されている触媒体108に接触させ、反応性の高いラジカルなどの中性物質に変換せしめ、生成したラジカルなどを真空チャンバー102内へ導入する。ウェハー107の表面に達したラジカルなどは、表面に吸着されていた原料と反応し、薄膜が形成される。The device operates as follows. A raw material gas such as WF6 gas, W (CO)6 gas or the like is introduced into thevacuum chamber 102 through the raw materialgas introduction pipe 105 with theshutter valve 104 closed, and gas ejection means A film forming target disposed via the gas jetting means 106 is supplied to the surface of thewafer 107 heated to a predetermined temperature where, for example, a SiO2 film or a Cu film is formed in advance. Then, the source gas is adsorbed on the surface. The gas ejection means 106 is provided with gas ejection holes at equal intervals in the central direction so that the source gas can be uniformly supplied to the surface of thewafer 107, and the shape thereof is, for example, a ring shape. Is preferred. Next, the introduction of the raw material is stopped, and the exhaust is performed for a predetermined time while theshutter valve 104 is closed. Thereafter, simultaneously with opening theshutter valve 104, a reactive gas such as SiH4 , NH3 , H2 or the like is introduced into the at least onecatalyst chamber 103 and brought into contact with thecatalyst body 108 heated to a predetermined temperature, It is converted into a neutral substance such as a highly reactive radical, and the generated radical is introduced into thevacuum chamber 102. Radicals reaching the surface of thewafer 107 react with the raw material adsorbed on the surface to form a thin film.

次いで、反応性ガスの導入を停止すると同時に、シャッターバルブ104を閉じて、所定の時間排気する。このようなガスフローシーケンス、すなわち、原料ガスの吸着工程及び反応性ガスとの反応工程を所定の回数、例えば数回〜数十回繰り返し、所望の膜厚を有する薄膜を形成することができる。  Next, the introduction of the reactive gas is stopped, and at the same time, theshutter valve 104 is closed and the exhaust is performed for a predetermined time. Such a gas flow sequence, that is, a raw material gas adsorption step and a reactive gas reaction step can be repeated a predetermined number of times, for example, several times to several tens of times, to form a thin film having a desired film thickness.

本発明で用いる上記触媒体は、ALD法で用いられるものであれば特に制限されず、例えば、W、Ta、Ti、Moなどの金属からなるワイヤー状、螺旋状などの触媒体であってもよく、通常真空雰囲気中で1500〜2000℃程度、好ましくは1700〜1800℃程度に加熱して用いられる。例えば、直径0.5mm程度の細線を用いる場合は、1本又は2本以上を平行に配置したり、網状に配置したりして用いる。  The catalyst body used in the present invention is not particularly limited as long as it is used in the ALD method. For example, it may be a wire or spiral catalyst body made of a metal such as W, Ta, Ti, or Mo. It is usually used by heating to about 1500 to 2000 ° C., preferably about 1700 to 1800 ° C. in a vacuum atmosphere. For example, when using a thin wire having a diameter of about 0.5 mm, one or two or more wires are arranged in parallel or arranged in a net shape.

上記原料ガスや反応性ガスを流す際には、アルゴンなどの不活性ガスを希釈ガス、キャリアーガスとして用いてもよい。また、各工程での排気時間は、吸着した原料ガス及び反応性ガス以外の剰余ガスを真空チャンバー内から除去するために行われる。さらに、反応性ガスと共に酸素含有ガス(Oガスなど)などの添加ガスを流すと、得られた薄膜と成膜対象物との密着性はさらに向上する。原料ガスや反応性ガスを供給する際の到達圧力は特に制限はなく、例えば、10−2〜10Pa、好ましくは数Pa以下の範囲で、成膜目的に合わせて適宜設定すればよい。さらにまた、使用する反応性ガスは、少なくとも1種であり、2種類以上の反応性ガスを使用する場合には、触媒室内へ、それぞれ別々に所定の順番で、或いはそれぞれの混合ガスとして同時に導入しても良い。When flowing the source gas or the reactive gas, an inert gas such as argon may be used as a dilution gas or a carrier gas. Moreover, the exhaust time in each process is performed in order to remove surplus gases other than the adsorbed source gas and reactive gas from the vacuum chamber. Furthermore, when an additive gas such as an oxygen-containing gas (such as O2 gas) is flowed together with the reactive gas, the adhesion between the obtained thin film and the film formation target is further improved. The ultimate pressure at the time of supplying the raw material gas or the reactive gas is not particularly limited, and may be appropriately set according to the purpose of film formation, for example, in the range of 10−2 to 102 Pa, preferably several Pa or less. Furthermore, at least one type of reactive gas is used, and when two or more types of reactive gas are used, they are separately introduced into the catalyst chamber in a predetermined order or simultaneously as respective mixed gases. You may do it.

本発明の実施の形態の一つとして、原料ガスとしてWFガス、反応性ガスとしてSiH、NHガスを用いてWN膜を形成する場合について、図2に示すガスフローシーケンスに基づいて説明する。As one embodiment of the present invention, the case of forming a Wx N film using WF6 gas as a source gas and SiH4 or NH3 gas as a reactive gas is based on the gas flow sequence shown in FIG. I will explain.

まず、所定流量のWFガスを、シャッターバルブ104を閉じた状態で、ガス導入配管105を経て真空チャンバー102内へ所定の時間導入し、ガス噴出手段106から所定の温度に加熱されているウェハー107の表面に供給し、表面上に吸着せしめる。シャッターバルブ104を閉じた状態で、WFガスの導入を停止して真空チャンバー102内を所定の時間排気する。次いで、シャッターバルブ104を開放し、同時に、所定流量のSiHガスを所定の時間触媒室103内へ導入し、加熱されている触媒体108に接触させて反応性の高いラジカルに変換せしめ、生成したラジカルを真空チャンバー102内へ導入する。次いで、シャッターバルブ104を閉じ、同時に、SiHガスの導入を停止して真空チャンバー102内を所定の時間排気する。シャッターバルブ104を閉じた状態で、所定流量のWFガスを所定の時間真空チャンバー102内の加熱されているウェハー107表面に導入する。シャッターバルブ104を閉じた状態で、WFガスの導入を停止して真空チャンバー102内を排気する。次いで、シャッターバルブ104を開放し、同時に、所定流量のNHガスを所定の時間触媒室103へ導入し、加熱されている触媒体108に接触させて反応性の高いラジカルに変換せしめ、生成したラジカルを真空チャンバー102内へ導入する。その後、シャッターバルブ104を閉じ、同時に、NHガスの導入を停止して真空チャンバー102内を所定の時間排気する。これらのガスフローシーケンスを1サイクルとし、所定の回数繰り返すことによって、所望の膜厚を有するWN膜を形成することができる。このようなガスフローシーケンスに従った成膜プロセスを、例えば10回程度繰り返すことにより膜厚5nm程度のWN膜(xが5以上のWリッチな膜)を形成することができる。本発明では、W/N比が5以上、好ましくは5〜7、より好ましくは5〜6であれば、良好な比抵抗、バリア性を有する膜が得られる。First, a wafer having a predetermined flow rate of WF6 gas introduced into thevacuum chamber 102 through thegas introduction pipe 105 for a predetermined time with theshutter valve 104 closed, and heated to a predetermined temperature from the gas ejection means 106. It is supplied to the surface of 107 and adsorbed on the surface. With theshutter valve 104 closed, the introduction of the WF6 gas is stopped and thevacuum chamber 102 is evacuated for a predetermined time. Next, theshutter valve 104 is opened, and at the same time, a predetermined flow rate of SiH4 gas is introduced into thecatalyst chamber 103 for a predetermined time, and is brought into contact with theheated catalyst body 108 to be converted into highly reactive radicals. The radicals thus introduced are introduced into thevacuum chamber 102. Next, theshutter valve 104 is closed, and at the same time, the introduction of the SiH4 gas is stopped and thevacuum chamber 102 is evacuated for a predetermined time. With theshutter valve 104 closed, a predetermined flow rate of WF6 gas is introduced to the surface of theheated wafer 107 in thevacuum chamber 102 for a predetermined time. With theshutter valve 104 closed, the introduction of the WF6 gas is stopped and thevacuum chamber 102 is exhausted. Next, theshutter valve 104 is opened, and at the same time, a predetermined flow rate of NH3 gas is introduced into thecatalyst chamber 103 for a predetermined time, and is brought into contact with theheated catalyst body 108 to be converted into radicals having high reactivity. Radicals are introduced into thevacuum chamber 102. Thereafter, theshutter valve 104 is closed, and at the same time, the introduction of NH3 gas is stopped and thevacuum chamber 102 is evacuated for a predetermined time. By repeating these gas flow sequences as one cycle and repeating a predetermined number of times, a Wx N film having a desired film thickness can be formed. By repeating the film forming process according to such a gas flow sequence, for example, about 10 times, a Wx N film having a thickness of about 5 nm (a W-rich film having x of 5 or more) can be formed. In the present invention, when the W / N ratio is 5 or more, preferably 5 to 7, more preferably 5 to 6, a film having good specific resistance and barrier properties can be obtained.

本発明によれば、原料ガスとしては、上記以外に、WClなどのハロゲン化タングステンのガス、WOF、WOF、WOCl、WOClなどのオキシハロゲン化タングステンのガス、W(CO)などのカルボニル化タングステンのガス、W(OC)などの有機金属化合物のガスなどを用いることもできる。また、反応性ガスとしては、上記以外に、Siなどのジシランのガス、SiHClなどのジハロゲン化シランのガス、ヒドラジン中のHがCなどの炭化水素基で置換されたヒドラジン誘導体のガスなどを用いることもできる。In addition to the above, according to the present invention, other than the above, tungsten halide gas such as WCl6 , tungsten oxyhalide gas such as WOF2 , WOF4 , WOCl2 , WOCl4 , W (CO)5 A carbonylated tungsten gas such as W (OC2 H5 ) or an organic metal compound gas can also be used. In addition to the above, reactive gases include disilane gas such as Si2 H6 , dihalogenated silane gas such as SiH2 Cl2, and H in hydrazine is replaced with a hydrocarbon group such as Cx Hy. The gas of the hydrazine derivative made can also be used.

本実施例では、図1に示す成膜装置101を用い、原料ガスとしてWFガス及び反応性ガスとしてSiH、NHガスを用い、図2のガスフローシーケンスに従ってWN膜を形成した。In this example, thefilm forming apparatus 101 shown in FIG. 1 was used, WF6 gas was used as the source gas, SiH4 and NH3 gas were used as the reactive gas, and the Wx N film was formed according to the gas flow sequence shown in FIG. .

シャッターバルブ104を閉じた状態で、ガス導入配管105を経て真空チャンバー102内へWFガスを20sccm、5秒間流し、ガス噴出手段106を介して250℃に加熱されている、予めSiO膜やCu膜が形成されているウェハー107の表面に供給し、表面上に吸着せしめた。シャッターバルブ104を閉じた状態で、WFガスの導入を停止して真空チャンバー102内を5秒間排気した。シャッターバルブ104を開放し、同時に、SiHガスを50sccm、5秒間触媒室103内へ流し、1700℃に加熱されている触媒体108に接触させて反応性の高いラジカルに変換せしめ、生成したラジカルを真空チャンバー102内へ導入した。次いで、シャッターバルブ104を閉じ、同時に、SiHガスの導入を停止して真空チャンバー102内を5秒間排気した。シャッターバルブ104を閉じた状態で、WFガスを20sccm、5秒間、真空チャンバー102内の250℃に加熱されているウェハー107表面に流した。シャッターバルブ104を閉じた状態で、WFガスの導入を停止して真空チャンバー102内を5秒間排気した。次いで、シャッターバルブ104を開放し、同時に、NHガスを50sccm、5秒間、触媒室103へ流し、1700℃に加熱されている触媒体108に接触させて反応性の高いラジカルに変換せしめ、生成したラジカルを真空チャンバー102内へ導入した。その後、シャッターバルブ104を閉じ、同時に、NHガスの導入を停止して真空チャンバー102内を5秒間排気した。これらのガスフローシーケンスを1サイクルとし、10サイクル及び20サイクル繰り返して、それぞれ、5nm及び10nm程度の膜厚を有するWN膜(いずれの膜の場合も、xは5以上のWリッチな膜であった)を形成することができた。この膜のうち、20サイクル繰り返した場合に得られた膜は、xがほぼ5.3のWN膜であった。In the closed state of theshutter valve 104, through thegas introduction pipe 105 to WF6 gas flow 20 sccm, 5 seconds into thevacuum chamber 102, and is heated to 250 ° C. through the gas injection means 106, Ya advance SiO2 film The Cu film was supplied to the surface of thewafer 107 and was adsorbed on the surface. With theshutter valve 104 closed, the introduction of the WF6 gas was stopped and thevacuum chamber 102 was evacuated for 5 seconds. Theshutter valve 104 is opened, and at the same time, SiH4 gas is allowed to flow into thecatalyst chamber 103 at 50 sccm for 5 seconds to contact thecatalyst body 108 heated to 1700 ° C. to be converted into highly reactive radicals. Was introduced into thevacuum chamber 102. Next, theshutter valve 104 was closed, and at the same time, the introduction of the SiH4 gas was stopped, and thevacuum chamber 102 was evacuated for 5 seconds. With theshutter valve 104 closed, WF6 gas was allowed to flow over the surface of thewafer 107 heated to 250 ° C. in thevacuum chamber 102 for 20 sccm for 5 seconds. With theshutter valve 104 closed, the introduction of the WF6 gas was stopped and thevacuum chamber 102 was evacuated for 5 seconds. Next, theshutter valve 104 is opened, and at the same time, NH3 gas is flowed to thecatalyst chamber 103 for 50 seconds at 50 sccm, and is contacted with thecatalyst body 108 heated to 1700 ° C. to be converted into highly reactive radicals. The radicals thus introduced were introduced into thevacuum chamber 102. Thereafter, theshutter valve 104 was closed, and at the same time, the introduction of NH3 gas was stopped, and thevacuum chamber 102 was evacuated for 5 seconds. These gas flow sequences are set as one cycle, and 10 cycles and 20 cycles are repeated, and a Wx N film having a film thickness of about 5 nm and 10 nm, respectively (in any film, x is a W-rich film of 5 or more) Could be formed). Among these films, the film obtained when 20 cycles were repeated was a Wx N film havingx of about 5.3.

比較のために、触媒体を用いない従来のALD法により、原料ガスとしてWFガス及び反応性ガスとしてSiH、NHガスを用い、上記に準じてWN膜を形成した。For comparison, a Wx N film was formed according to the above by using a conventional ALD method without a catalyst body, using WF6 gas as a source gas and SiH4 and NH3 gas as a reactive gas.

すなわち、真空チャンバー内へWFガスを20sccm、5秒間流し、ガス噴出手段106を介して、NHプラズマで前処理された、270℃に加熱されているウェハー107の表面に供給し、表面上に吸着せしめた。次いで、SiHガスを50sccm、5秒間、真空チャンバー102内へ導入した。その後、WFガスを20sccm、5秒間、真空チャンバー内の270℃に加熱されているウェハー表面に流した。その後、NHガスを50sccm、5秒間、真空チャンバー内へ導入した。これらのガスフローシーケンスを1サイクルとし、20サイクル繰り返して、10nmの膜厚を有するWN膜を形成した。この場合、xはほぼ2.8であった。That is, WF6 gas was allowed to flow into the vacuum chamber at 20 sccm for 5 seconds, and was supplied to the surface of thewafer 107 heated to 270 ° C. that had been pretreated with NH3 plasma through the gas ejection means 106. It was adsorbed on. Next, SiH4 gas was introduced into thevacuum chamber 102 at 50 sccm for 5 seconds. Thereafter, WF6 gas was flowed to the surface of the wafer heated to 270 ° C. in a vacuum chamber at 20 sccm for 5 seconds. Thereafter, NH3 gas was introduced into the vacuum chamber at 50 sccm for 5 seconds. These gas flow sequences were set to 1 cycle, and 20 cycles were repeated to form a Wx N film having a thickness of 10 nm. In this case, x was approximately 2.8.

上記のようにして触媒体を用いるALD法(以下、CAT−ALD法と呼ぶ)により形成したWN膜と従来のALD法により形成したWN膜との特性を比較した。その結果を表1に示す。ALD method using a catalytic element as described above (hereinafter, referred to as CAT-ALD method) comparison of characteristics of theW x N film formed byW x N film and the conventional ALD method formed by. The results are shown in Table 1.

表1において、比抵抗ρ(μΩcm)は、4探針プローブ法でシート抵抗(Rs)を測定し、SEMで膜厚(T)を測定して、式:ρ=Rs・Tに基づいて算出したものである。また、密着性は、8インチウェハー上のSiO膜の表面やPVD法により堆積させたCu膜(膜厚200nm)の表面にバリアメタル膜(WN膜)10nmを堆積させた後、公知のテープテストにより得られた肉眼観察結果である。さらに、表1中の不純物(Si、F)濃度は、上記のようにして形成した2種類のWN膜に対し、オージェ電子分光法(AES)により組成分析を行った結果であり、そのスペクトルを図3及び4に示す。In Table 1, the specific resistance ρ (μΩcm) is calculated based on the formula: ρ = Rs · T by measuring the sheet resistance (Rs) by the 4-probe probe method and measuring the film thickness (T) by SEM. It is a thing. The adhesion is known after depositing a 10 nm barrier metal film (Wx N film) on the surface of a SiO2 film on an 8-inch wafer or the surface of a Cu film (thickness 200 nm) deposited by the PVD method. It is the result of visual observation obtained by the tape test. Furthermore, the impurity (Si, F) concentration in Table 1 is a result of composition analysis by Auger electron spectroscopy (AES) on the two types of Wx N films formed as described above. The spectra are shown in FIGS.

Figure 0004674061
Figure 0004674061

表1から明らかなように、本発明のCAT−ALD法によれば、酸化膜(SiO膜)表面を予めNHプラズマに曝しておかなくとも、230℃という低温で220μΩcmという低抵抗WN膜を得ることができた。SiO膜及びCu膜への密着性に関しては、CAT−ALD法の場合も、従来のALD法の場合もウェハー全面において膜剥離は見られず、バリアメタル膜は酸化物膜及びCu膜に対して強固な密着性を示した。As is apparent from Table 1, according to the CAT-ALD method of the present invention, the low resistance Wx of 220 μΩcm at a low temperature of 230 ° C. is obtained even if the surface of the oxide film (SiO2 film) is not exposed to NH3 plasma in advance. An N film could be obtained. Regarding the adhesion to the SiO2 film and the Cu film, neither the CAT-ALD method nor the conventional ALD method showed film peeling on the entire surface of the wafer, and the barrier metal film was compared with the oxide film and the Cu film. And showed strong adhesion.

また、図3に示すAESによる分析結果によれば、CAT−ALD法の場合、膜中のSi及びFの濃度に関しては、Si濃度は0.9%であり、F濃度は0.18%であった。また、Wはほぼ80%であり、Nは15%であるので、xはほぼ5.3であった。図4に示すAESによる分析結果によれば、従来のALD法の場合、CAT−ALD法の場合に比べて、Si濃度は6.7%と極めて高く、また、F濃度も0.6%と高かった。この場合、Wはほぼ70%であり、Nはほぼ15%であるので、xはほぼ2.8であった。図3及び4において、線a、b、c、d、e及びfは、それぞれ膜中の元素W、N、Si、F、O及びCに対するスパッタエッチ時間(秒)と原子濃度(%)との関係を示すオージェ電子のスペクトルである。  Further, according to the analysis result by AES shown in FIG. 3, in the case of the CAT-ALD method, regarding the Si and F concentrations in the film, the Si concentration is 0.9% and the F concentration is 0.18%. there were. Further, since W is approximately 80% and N is 15%, x is approximately 5.3. According to the analysis result by AES shown in FIG. 4, in the case of the conventional ALD method, the Si concentration is very high as 6.7% and the F concentration is also 0.6% as compared with the case of the CAT-ALD method. it was high. In this case, W was approximately 70% and N was approximately 15%, so x was approximately 2.8. 3 and 4, lines a, b, c, d, e, and f represent the sputter etch time (seconds) and atomic concentration (%) for the elements W, N, Si, F, O, and C in the film, respectively. It is a spectrum of Auger electrons showing the relationship.

ところで、膜中に含まれる不純物のうち、Siは酸化物膜に対する密着性を低下させる原因となるし、FはCuと反応してCuFを形成するので、配線の信頼性を低下させてしまうという問題がある。しかるに、上記したように、図3及び4によれば、CAT−ALD法によりWN膜を形成した場合、触媒を使わないALD法の場合に比べてSi、F含量が少ないので、本発明に従って形成されたWN膜は、酸化物膜に対する密着性が優れ、かつCu配線の信頼性を損なうこともないことが分かる。なお、上記したように、CAT−ALD法により形成されたWN膜中のSi、F濃度が低いのは、反応性の高いSiHのラジカル、NHのラジカル、WFとの間の反応は、化学量論的な理想に近い形(上記反応式(1)及び(3))で起こるために、不純物が入りにくいものと考えられる。By the way, among impurities contained in the film, Si causes a decrease in adhesion to the oxide film, and F reacts with Cu to form CuF, thereby reducing the reliability of the wiring. There's a problem. However, as described above, according to FIGS. 3 and 4, when the Wx N film is formed by the CAT-ALD method, the Si and F contents are less than those in the case of the ALD method without using the catalyst. It can be seen that the Wx N film formed according to the above has excellent adhesion to the oxide film and does not impair the reliability of the Cu wiring. As described above, the Si and F concentrations in the Wx N film formed by the CAT-ALD method are low because of the high reactivity between SiH4 radicals, NH3 radicals, and WF6 . Since the reaction occurs in a form close to the stoichiometric ideal (the above reaction formulas (1) and (3)), it is considered that impurities are difficult to enter.

(比較例1)
実施例1において用いた反応性ガスであるNHガス及びSiHガスの流す順序を変え、最初にNHガスを流し、次いでSiHガスを流して同様にしてWN成膜プロセスを実施した。得られたWN膜中のwの比率は5以下であり、膜全体に占めるwの比率が1.5程度であるWNが酸化物膜表面上に10%程度存在し、得られた膜の比抵抗は数千から数万μΩcmと高く、また、下地膜との密着性を劣化させた。
(Comparative Example 1)
The flow sequence of the NH3 gas and SiH4 gas, which are the reactive gases used in Example 1, was changed, the NH3 gas was first flowed, and then the SiH4 gas was flowed to carry out the Wx N film forming process in the same manner. did. The ratio of w in the obtained Wx N film is 5 or less, and about 10% of Wx N having a ratio of w to the entire film of about 1.5 is present on the surface of the oxide film. The specific resistance of the film was as high as several thousand to several tens of thousands of μΩcm, and the adhesion with the base film was deteriorated.

本実施例では、図1に示す成膜装置101を用い、実施例1に準じて、但し原料ガスとしてWFガス及び反応性ガスとしてSiHガスを用い、また、図5のガスフローシーケンスに従ってW膜を形成した。In this example, thefilm forming apparatus 101 shown in FIG. 1 is used, and in accordance with Example 1, except that WF6 gas and SiH4 gas are used as the reactive gas, and according to the gas flow sequence of FIG. A W film was formed.

シャッターバルブ104を閉じた状態で、ガス導入配管105を経て真空チャンバー102内へWFガスを20sccm、5秒間流し、ガス噴出手段106を介して250℃に加熱されているウェハー107の表面に供給し、表面上に吸着せしめた。シャッターバルブ104を閉じた状態で、WFガスの導入を停止して真空チャンバー内を5秒間排気した。その後、シャッターバルブ104を開放し、同時に、SiHガスを50sccm、5秒間触媒室103内へ流し、1700℃に加熱されている触媒体108に接触させ、反応性の高いラジカルに変換せしめ、生成したラジカルを真空チャンバー102内へ導入した。その後、シャッターバルブ104を閉じて5秒間排気した。これらのガスフローシーケンスを1サイクルとし、40サイクル繰り返して、15nmの膜厚を有するW膜を形成することができた。With theshutter valve 104 closed, WF6 gas is allowed to flow into thevacuum chamber 102 through thegas introduction pipe 105 into thevacuum chamber 102 for 5 seconds, and is supplied to the surface of thewafer 107 heated to 250 ° C. via the gas ejection means 106. And adsorbed onto the surface. With theshutter valve 104 closed, the introduction of the WF6 gas was stopped and the vacuum chamber was evacuated for 5 seconds. Thereafter, theshutter valve 104 is opened, and at the same time, SiH4 gas is allowed to flow into thecatalyst chamber 103 at 50 sccm for 5 seconds, and is contacted with thecatalyst body 108 heated to 1700 ° C. to be converted into highly reactive radicals. The radicals thus introduced were introduced into thevacuum chamber 102. Thereafter, theshutter valve 104 was closed and exhausted for 5 seconds. These gas flow sequences were set to one cycle, and 40 cycles were repeated to form a W film having a film thickness of 15 nm.

比較のために、触媒体を用いない従来のALD法により、原料ガスとしてWFガス及び反応性ガスとしてSiHガスを用い、上記に準じてW膜を形成した。For comparison, a W film was formed in accordance with the above by using a conventional ALD method without using a catalyst body, using WF6 gas as a source gas and SiH4 gas as a reactive gas.

すなわち、真空チャンバー102内へWFガスを20sccm、5秒間流し、ガス噴出手段106を介して、270℃に加熱されているウェハー107の表面に供給し、表面上に吸着せしめた。次いで、真空チャンバー102を5秒間排気した後、SiHガスを50sccm、5秒間、真空チャンバー102内へ導入した。その後、真空チャンバー102内を5秒間排気した。これらのガスフローシーケンスを1サイクルとし、40サイクル繰り返して、20nmの膜厚を有するW膜を形成した。That is, WF6 gas was allowed to flow into thevacuum chamber 102 at 20 sccm for 5 seconds, and was supplied to the surface of thewafer 107 heated to 270 ° C. through the gas ejection means 106 and adsorbed on the surface. Next, after evacuating thevacuum chamber 102 for 5 seconds, SiH4 gas was introduced into thevacuum chamber 102 at 50 sccm for 5 seconds. Thereafter, the inside of thevacuum chamber 102 was evacuated for 5 seconds. These gas flow sequences were set to 1 cycle, and 40 cycles were repeated to form a W film having a thickness of 20 nm.

上記のようにしてCAT−ALD法により形成したW膜と従来のALD法に従って形成したW膜とについて、オージェ電子分光法(AES)により組成分析を行い、不純物濃度を調べた。得られたスペクトルをそれぞれ図6及び7に示す。  The W film formed by the CAT-ALD method as described above and the W film formed by the conventional ALD method were subjected to composition analysis by Auger electron spectroscopy (AES), and the impurity concentration was examined. The obtained spectra are shown in FIGS. 6 and 7, respectively.

図6に示すAESによる分析結果によれば、CAT−ALD法の場合、膜中のSi濃度に関しては、0.5%と極めて低く、また、図7に示すAESによる分析結果によれば、従来のALD法の場合、膜中のSi濃度に関しては、CAT−ALD法の場合に比べて、37%と極めて高かった。図6及び7において、線a、b、c、d、e及びfは、それぞれ膜中の元素W、N、Si、F、O及びCに対するスパッタエッチ時間(秒)と原子濃度(%)との関係を示すオージェ電子のスペクトルである。  According to the analysis result by AES shown in FIG. 6, in the case of the CAT-ALD method, the Si concentration in the film is extremely low as 0.5%, and according to the analysis result by AES shown in FIG. In the case of the ALD method, the Si concentration in the film was extremely high at 37% compared to the case of the CAT-ALD method. 6 and 7, lines a, b, c, d, e, and f represent the sputter etch time (seconds) and atomic concentration (%) for the elements W, N, Si, F, O, and C in the film, respectively. It is a spectrum of Auger electrons showing the relationship.

ところで、図6及び7によれば、CAT−ALD法によりW膜を形成した場合、触媒を使わないALD法の場合に比べて圧倒的にSi含量が少ないのは、ほぼ純粋なW膜が得られているといえ、触媒を使わないALD法の場合は、WSi膜が形成されてしまう。このように、CAT−ALD法により形成したW膜中のSi濃度が低いのは、反応性の高いSiHのラジカルとWFとの反応は、化学量論的な理想に近い形(上記反応式(1))で起こるためであると考えられる。一方、触媒を使わないALD法の場合は、上記反応式(2)に従って反応が起こるためであると考えられる。By the way, according to FIGS. 6 and 7, when the W film is formed by the CAT-ALD method, the Si content is overwhelmingly smaller than that in the case of the ALD method without using a catalyst. However, in the case of the ALD method that does not use a catalyst, a WSix film is formed. Thus, the Si concentration in the W film formed by the CAT-ALD method is low because the reaction between the highly reactive SiH4 radical and WF6 is close to the stoichiometric ideal (the above reaction). This is considered to be caused by the equation (1)). On the other hand, in the case of the ALD method without using a catalyst, it is considered that the reaction occurs according to the above reaction formula (2).

上記したように、CAT−ALD法によりW膜を形成した場合、触媒を使わないALD法の場合に比べてSi含量が少ないので、本発明に従って形成されたW膜は、酸化物膜に対する密着性が優れ、また、F含量も極めて少ないので、Cu配線の信頼性を損なうこともないことが分かる。  As described above, when the W film is formed by the CAT-ALD method, the Si content is smaller than that in the case of the ALD method without using a catalyst. Therefore, the W film formed according to the present invention has an adhesion property to the oxide film. In addition, since the F content is extremely small, it is understood that the reliability of the Cu wiring is not impaired.

本実施例では、図1に示す成膜装置101により、原料ガスとしてWFガス及び反応性ガスとしてSiH、NHガスを用いてWN膜を形成した。In this example, a Wx N film was formed by using thefilm forming apparatus 101 shown in FIG. 1 using WF6 gas as a source gas and SiH4 and NH3 gas as reactive gases.

まず、1.4Paに設定された触媒室103内にHガス200sccmを流して、1700℃に加熱されている触媒体に接触させ、生成したラジカルを真空チャンバー102へ導入して成膜対象物であるウェハー107表面の前処理を行い、そのホールやトレンチの底面に露出しているCu膜などの金属膜表面の酸化物を還元除去せしめ、清浄な金属表面を露出せしめた。なお、H以外の反応性ガスを用いても同様な結果が得られる。First, 200 sccm of H2 gas is caused to flow through thecatalyst chamber 103 set to 1.4 Pa to be brought into contact with the catalyst body heated to 1700 ° C., and the generated radical is introduced into thevacuum chamber 102 to form a film formation target. The surface of thewafer 107 was pretreated to reduce and remove oxides on the surface of the metal film such as the Cu film exposed at the bottoms of the holes and trenches, thereby exposing a clean metal surface. Similar results can be obtained even when a reactive gas other than H2 is used.

上記前処理後、シャッターバルブ104を閉じた状態で、ガス導入配管105を経て真空チャンバー102内へWFガスを20sccm、10秒間流し、ガス噴出手段106を介して250℃に加熱されている予めSiO膜やCu膜が形成されているウェハー107の表面に供給し、表面上に吸着せしめた。シャッターバルブ104を閉じた状態で、WFガスの導入を停止して真空チャンバー102を10秒間排気した。次いで、シャッターバルブ104を開放し、同時に、SiHガスを50sccm、10秒間触媒室103内へ流し、1700℃に加熱されている触媒体108に接触させて反応性の高いラジカルに変換せしめ、生成したラジカルを真空チャンバー102内へ導入した。次いで、シャッターバルブ104を閉じ、同時に、SiHガスの導入を停止して真空チャンバー102内を10秒間排気した。シャッターバルブ104を閉じた状態で、WFガスを20sccm、10秒間、真空チャンバー102内の250℃に加熱されているウェハー107表面に流した。シャッターバルブ104を閉じた状態で、WFガスの導入を停止して真空チャンバー102内を10秒間排気した。次いで、シャッターバルブ104を開放して、同時に、NHガスを50sccm、10秒間、触媒室103へ流し、1700℃に加熱されている触媒体108に接触させて反応性の高いラジカル変換せしめ、生成したラジカルを真空チャンバー102内へ導入した。その後、シャッターバルブ104を閉じ、同時に、NHガスの導入を停止して真空チャンバー102内を10秒間排気した。これらのガスフローシーケンスを1サイクルとし、20サイクル繰り返して、11nmの膜厚を有し、比抵抗290μΩcmのWN膜(xが5以上のWリッチな膜であった)を形成することができた。この膜は、密着性に優れ、Cu配線の信頼性を損なうこともなかった。After the above pre-treatment, with theshutter valve 104 closed, WF6 gas is allowed to flow into thevacuum chamber 102 through thegas introduction pipe 105 into thevacuum chamber 102 for 10 seconds and heated to 250 ° C. via the gas ejection means 106 in advance. It was supplied to the surface of thewafer 107 on which the SiO2 film or Cu film was formed, and was adsorbed on the surface. With theshutter valve 104 closed, the introduction of WF6 gas was stopped and thevacuum chamber 102 was evacuated for 10 seconds. Next, theshutter valve 104 is opened, and at the same time, SiH4 gas is allowed to flow into thecatalyst chamber 103 at 50 sccm for 10 seconds and is brought into contact with thecatalyst body 108 heated to 1700 ° C. to be converted into highly reactive radicals. The radicals thus introduced were introduced into thevacuum chamber 102. Next, theshutter valve 104 was closed, and at the same time, the introduction of SiH4 gas was stopped and thevacuum chamber 102 was evacuated for 10 seconds. With theshutter valve 104 closed, WF6 gas was allowed to flow over the surface of thewafer 107 heated to 250 ° C. in thevacuum chamber 102 for 20 sccm for 10 seconds. With theshutter valve 104 closed, the introduction of WF6 gas was stopped and thevacuum chamber 102 was evacuated for 10 seconds. Next, theshutter valve 104 is opened, and at the same time, NH3 gas is allowed to flow into thecatalyst chamber 103 at 50 sccm for 10 seconds, and is contacted with thecatalyst body 108 heated to 1700 ° C. to perform radical conversion with high reactivity. The radicals thus introduced were introduced into thevacuum chamber 102. Thereafter, theshutter valve 104 was closed, and at the same time, the introduction of NH3 gas was stopped and thevacuum chamber 102 was evacuated for 10 seconds. One cycle of these gas flow sequences is repeated 20 times to form a Wx N film having a thickness of 11 nm and a specific resistance of 290 μΩcm (x was a W-rich film having x of 5 or more). did it. This film was excellent in adhesion and did not impair the reliability of the Cu wiring.

また、上記と同様なガスフローシーケンスを60サイクル繰り返したところ、33nmの膜厚を有し、比抵抗250μΩcmのWN膜を形成することができた。Further, when the same gas flow sequence as described above was repeated 60 cycles, a Wx N film having a thickness of 33 nm and a specific resistance of 250 μΩcm could be formed.

実施例2記載の方法に準じて、但し原料ガスとしてWFガス及び反応性ガスとしてSiHガスを用いてW又はWSi膜を形成した。In accordance with the method described in Example 2, a W or WSix film was formed using WF6 gas as a source gas and SiH4 gas as a reactive gas.

すなわち、シャッターバルブ104を閉じた状態で、ガス導入配管105を経て真空チャンバー102内へWFガスを20sccm、10秒間流し、ガス噴出手段106を介して250℃に加熱されているウェハー107の表面に供給し、表面上に吸着せしめた。次いで、シャッターバルブ104を閉じた状態で10秒間排気した後に、シャッターバルブ104を開放して、SiHガスを50sccm、10秒間触媒室103内へ流し、1700℃に加熱されている触媒体108に接触させ、反応性の高いラジカルに変換せしめ、生成したラジカルを真空チャンバー102内へ導入した。その後、10秒間排気した。これらのガスフローシーケンスを1サイクルとし、40サイクル繰り返して15nmの膜厚を有するW膜を形成せしめた。得られた膜の比抵抗は80μΩcmであった。That is, with theshutter valve 104 closed, the surface of thewafer 107 heated to 250 ° C. through the gas ejection means 106 by flowing WF6 gas into thevacuum chamber 102 through thegas introduction pipe 105 into thevacuum chamber 102 for 10 seconds. And adsorbed onto the surface. Next, after evacuating for 10 seconds with theshutter valve 104 closed, theshutter valve 104 is opened and SiH4 gas is allowed to flow into thecatalyst chamber 103 at 50 sccm for 10 seconds to reach thecatalyst body 108 heated to 1700 ° C. The resulting radicals were converted into highly reactive radicals, and the generated radicals were introduced into thevacuum chamber 102. Then, it exhausted for 10 seconds. These gas flow sequences were set to 1 cycle, and 40 cycles were repeated to form a W film having a thickness of 15 nm. The specific resistance of the obtained film was 80 μΩcm.

実施例1記載の方法に準じて、但し原料ガスとしてWFガス及び反応性ガスとしてNHガスとSiHガスとの混合ガスを用いて低抵抗のWN膜を形成した。In accordance with the method described in Example 1, a low resistance Wx N film was formed using WF6 gas as a raw material gas and a mixed gas of NH3 gas and SiH4 gas as a reactive gas.

すなわち、シャッターバルブ104を閉じた状態で、ガス導入配管105を経て真空チャンバー102内へWFガスを20sccm、10秒間流し、ガス噴出手段106を介して250℃に加熱されており、予めSiO膜やCu膜の形成されていたウェハー107の表面に供給し、表面上に吸着せしめた。10秒間排気した後に、NHガスとSiHガスとの等量混合ガスを50sccm、10秒間触媒室103内へ流し、1700℃に加熱されている触媒体108に接触させ、反応性の高いラジカルに変換せしめた。次いで、シャッターバルブ104を開放し、生成したラジカルを真空チャンバー102内へ導入した。その後、10秒間排気した。これらのガスフローシーケンスを1サイクルとし、20サイクル繰り返して10nmの膜厚を有するWN膜を形成せしめた。得られた膜の比抵抗は実施例1の場合と同程度であった。この膜は、密着性に優れ、Cu配線の信頼性を損なうこともなかった。That is, with theshutter valve 104 closed, WF6 gas is allowed to flow into thevacuum chamber 102 through thegas introduction pipe 105 into thevacuum chamber 102 for 10 seconds, and is heated to 250 ° C. via the gas ejection means 106, and is previously SiO2. The film was supplied to the surface of thewafer 107 on which the film or Cu film was formed, and was adsorbed on the surface. After evacuating for 10 seconds, an equivalent mixed gas of NH3 gas and SiH4 gas is allowed to flow into thecatalyst chamber 103 for 50 sccm for 10 seconds and contacted with thecatalyst body 108 heated to 1700 ° C. Converted to. Next, theshutter valve 104 was opened, and the generated radical was introduced into thevacuum chamber 102. Then, it exhausted for 10 seconds. These gas flow sequences were set to 1 cycle, and 20 cycles were repeated to form a Wx N film having a thickness of 10 nm. The specific resistance of the obtained film was almost the same as in Example 1. This film was excellent in adhesion and did not impair the reliability of the Cu wiring.

実施例1記載の方法に準じて、但し原料ガスとしてWFガス及び反応性ガスとしてNHガスとHガスとの混合ガスを用いて低抵抗WN膜を形成した。In accordance with the method described in Example 1, a low-resistance Wx N film was formed using WF6 gas as a source gas and a mixed gas of NH3 gas and H2 gas as a reactive gas.

すなわち、シャッターバルブ104を閉じた状態で、ガス導入配管105を経て真空チャンバー102内へWFガスを20sccm、10秒間流し、ガス噴出手段106を介して250℃に加熱されており、予めSiO膜やCu膜の形成されていたウェハー107の表面に供給し、表面上に吸着せしめた。10秒間排気した後に、NHガスとHガスとの等量混合ガスを50sccm、10秒間触媒室103内へ流し、1700℃に加熱されている触媒体108に接触させ、反応性の高いラジカルに変換せしめた。次いで、シャッターバルブ104を開放し、生成したラジカルを真空チャンバー102内へ導入した。その後、10秒間排気した。これらのガスフローシーケンスを1サイクルとし、20サイクル繰り返して10nmの膜厚を有するWN膜を形成せしめた。得られた膜の比抵抗は実施例1の場合と同程度であった。この膜は、密着性に優れ、Cu配線の信頼性を損なうこともなかった。That is, with theshutter valve 104 closed, WF6 gas is allowed to flow into thevacuum chamber 102 through thegas introduction pipe 105 into thevacuum chamber 102 for 10 seconds, and is heated to 250 ° C. via the gas ejection means 106, and is previously SiO2. The film was supplied to the surface of thewafer 107 on which the film or Cu film was formed, and was adsorbed on the surface. After exhausting for 10 seconds, an equivalent mixed gas of NH3 gas and H2 gas is flowed into thecatalyst chamber 103 at 50 sccm for 10 seconds and brought into contact with thecatalyst body 108 heated to 1700 ° C. Converted to. Next, theshutter valve 104 was opened, and the generated radical was introduced into thevacuum chamber 102. Then, it exhausted for 10 seconds. These gas flow sequences were set to 1 cycle, and 20 cycles were repeated to form a Wx N film having a thickness of 10 nm. The specific resistance of the obtained film was almost the same as in Example 1. This film was excellent in adhesion and did not impair the reliability of the Cu wiring.

なお、反応性ガスとしてNHガス及びHガスを混合ガスではなく、別々に用いた場合には、原料ガスの後に、最初にHガスを流し、その後NHガスを流す方が最初にNHガスを流し、その後Hガスを流すよりも膜中のwの比率は高く、得られた膜の比抵抗も低い。In addition, when NH3 gas and H2 gas are used separately as a reactive gas instead of a mixed gas, it is first to flow H2 gas first after the source gas and then flow NH3 gas first. The ratio of w in the film is higher than that of flowing NH3 gas and then H2 gas, and the specific resistance of the obtained film is also low.

本発明の薄膜形成方法によれば、事前にNHプラズマ処理により表面改質を行うことなく、低温(例えば、ウェハー温度230℃以下)において、膜の比抵抗が低く(好ましくは、300μΩcm以下)、かつ下層の酸化膜及びCu膜などに対して密着性に優れ、Cu配線の信頼性を損なうことのないバリアメタル膜を形成することができる。そのため、本発明は、例えば、ホール、トレンチ等の内部をCuやAl等の配線材料で埋め込んで半導体集積回路を作製する技術分野に適用できる。According to the thin film forming method of the present invention, the specific resistance of the film is low (preferably, 300 μΩcm or less) at a low temperature (for example, a wafer temperature of 230 ° C. or less) without surface modification by NH3 plasma treatment in advance. In addition, it is possible to form a barrier metal film that has excellent adhesion to the underlying oxide film, Cu film, and the like and does not impair the reliability of the Cu wiring. Therefore, the present invention can be applied to a technical field in which a semiconductor integrated circuit is manufactured by embedding holes, trenches, and the like with a wiring material such as Cu or Al.

本発明の薄膜形成方法を実施するための成膜装置の一構成例を模式的に示す構成図。The block diagram which shows typically the example of 1 structure of the film-forming apparatus for enforcing the thin film formation method of this invention.本発明の薄膜形成方法を実施するためのガスフローシーケンスの一例を示すフロー図。The flowchart which shows an example of the gas flow sequence for enforcing the thin film formation method of this invention.本発明のCAT−ALD法により得られたWN膜のオージェ電子分光法による組成分析の結果を示すスペクトル。Spectrum shows the results of composition analysis by Auger electron spectroscopy Wx N film obtained by CAT-ALD process of the present invention.従来の触媒を使用しないALD法により得られたWN膜のオージェ電子分光法により組成分析による組成分析の結果を示すスペクトル。Spectrum shows the results of composition analysis by composition analysis by Auger electron spectroscopy Wx N film obtained by the ALD method that does not use the conventional catalyst.本発明の薄膜形成方法を実施するためのガスフローシーケンスの別の一例を示すフロー図。The flowchart which shows another example of the gas flow sequence for enforcing the thin film formation method of this invention.本発明のCAT−ALD法により得られたW膜のオージェ電子分光法による組成分析の結果を示すスペクトル。The spectrum which shows the result of the composition analysis by the Auger electron spectroscopy of W film | membrane obtained by the CAT-ALD method of this invention.従来の触媒を使用しないALD法により得られたW膜のオージェ電子分光法により組成分析による組成分析の結果を示すスペクトル。The spectrum which shows the result of the composition analysis by a composition analysis by the Auger electron spectroscopy of the W film | membrane obtained by the ALD method which does not use the conventional catalyst.

符号の説明Explanation of symbols

101 成膜装置 102 真空チャンバー
103 触媒室 104 シャッターバルブ
105 原料ガス導入配管 106 ガス噴出手段
107 ウェハー 108 触媒体
DESCRIPTION OFSYMBOLS 101 Film-formingapparatus 102Vacuum chamber 103Catalyst chamber 104Shutter valve 105 Raw material gas introduction piping 106 Gas ejection means 107Wafer 108 Catalyst body

Claims (10)

Translated fromJapanese
真空チャンバー内に原料ガスとして、ハロゲン化タングステンガス、オキシハロゲン化タングステンガス、カルボニル化タングステンガス、又は有機タングステン化合物ガスを導入し、成膜対象物上に供給して吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、化学構造中に水素原子及びケイ素原子を含んだ反応性ガス並びに水素原子及び窒素原子を含んだ反応性ガスを触媒体に接触させて活性種にしてから該真空チャンバー内に導入し、吸着している原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返して、該成膜対象物上にW系金属薄膜を形成することを特徴とする薄膜形成方法。After introducing tungsten halide gas, tungsten oxyhalide gas, carbonylated tungsten gas, or organic tungsten compound gas as a source gas into the vacuum chamber and supplying and adsorbing it onto the film formation target, the source gas A step of evacuating the vacuum chamber and exhausting the inside of the vacuum chamber, contactinga reactive gas containing hydrogen atomsand silicon atoms and a reactive gas containing hydrogen atoms and nitrogen atoms in the chemical structure with the catalyst body After the active species is introduced into the vacuum chamber and reacted with the adsorbed source gas, the supply of the reactive gas is stopped and the process of exhausting the vacuum chamber is repeated alternately. A thin film forming method, comprising: forming a W-based metal thin film on the film formation target. 前記ハロゲン化タングステンガスがWF又はWClガスであり、オキシハロゲン化タングステンガスがWOF、WOF、WOCl、又はWOClガスであり、カルボニル化タングステンガスがW(CO)又はW(CO)ガスであり、有機タングステン化合物ガスがW(OC)ガスであることを特徴とする請求項1記載の薄膜形成方法。The tungsten halide gas is WF6 or WCl6 gas, the tungsten oxyhalide gas is WOF2 , WOF4 , WOCl2 , or WOCl4 gas, and the carbonylated tungsten gas is W (CO)6 or W ( CO) is5 gas, a thin film forming method according to claim 1, wherein the organic tungsten compound gas is W (OC 2H5) gas. 前記水素原子及びケイ素原子を含んだガスがシランガス、ジハロゲン化シランガスであり、水素原子及び窒素原子を含んだガスがNHガス、ヒドラジンガス、又はヒドラジン誘導体ガスであることを特徴とする請求項1又は2記載の薄膜形成方法。The hydrogen atomand a silicon atom laden gasstarvation Rangasu a dihalogenated silane, claims, characterized in that gas containing hydrogen and nitrogen atoms are NH3 gas, hydrazine gas, or a hydrazine derivative gas3. The method for forming a thin film according to1 or 2 . 前記シランガスがSiH又はSiガスであり、ジハロゲン化シランガスがSiHClガスであり、ヒドラジン誘導体ガスがヒドラジン中のHをCで置換したものであることを特徴とする請求項記載の薄膜形成方法。The silane gas is SiH4 or Si2 H6 gas, the dihalogenated silane gas is SiH2 Cl2 gas, and the hydrazine derivative gas is obtained by substituting H in hydrazine with Cx Hy. The thin film forming method according to claim3 . 真空チャンバー内に原料ガスとしてWF又はW(CO)ガスを導入し、成膜対象物上に供給して吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、化学構造中に水素原子及びケイ素原子を含んだ反応性ガスを触媒体に接触させて活性種にしてから該真空チャンバー内に導入し、吸着している原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返して、成膜対象物上に薄膜を形成し、次いで真空チャンバー内に該原料ガスを導入し、成膜対象物上に形成された薄膜上に供給して吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、化学構造中に水素原子及びケイ素原子を含んだ反応性ガス並びに水素原子及び窒素原子を含んだ反応性ガスを触媒体に接触させて活性種にしてから該真空チャンバー内に導入し、吸着している原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程、又は化学構造中に水素原子のみを含んだ反応性ガス並びに水素原子及び窒素原子を含んだ反応性ガスを触媒体に接触させて活性種にしてから該真空チャンバー内に導入し、吸着している原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返して、該成膜対象物上にW又はWSiの薄膜と、WN又はWSiの薄膜との積層膜を形成することを特徴とする薄膜形成方法。WF6 or W (CO)6 gas is introduced into the vacuum chamber as a source gas, supplied onto the film formation object and adsorbed, and then the supply of the source gas is stopped and the inside of the vacuum chamber is evacuated. A reactive gas containing a hydrogen atom and a silicon atom in the chemical structure is brought into contact with the catalyst body to form an active species, and then introduced into the vacuum chamber and reacted with the adsorbed source gas; The supply of the reactive gas is stopped and the process of exhausting the inside of the vacuum chamber is alternately repeated to form a thin film on the film formation target, and then the source gas is introduced into the vacuum chamber to form the film. Supplying and adsorbing onto a thin film formed on the object, and then stopping the supply of the source gas and evacuating the vacuum chamber, and a reaction containing hydrogen atoms and silicon atoms in the chemical structure Gas, hydrogen atom and nitrogen source The reactive gas containing the catalyst is brought into contact with the catalyst body to form an active species, and then introduced into the vacuum chamber and reacted with the adsorbed source gas, and then the supply of the reactive gas is stopped, A process of exhausting the inside of the vacuum chamber, or a reactive gas containing only hydrogen atoms in the chemical structure and a reactive gas containing hydrogen atoms and nitrogen atoms are brought into contact with the catalyst body to form active species, and then the inside of the vacuum chamber And reacting with the adsorbed source gas, the supply of the reactive gas is stopped, and the process of exhausting the inside of the vacuum chamber is alternately repeated, so that W or A method of forming a thin film, comprising forming a laminated film of a thin film of WSix and a thin film of Wx N or Wx Ny Siz . 前記水素原子及びケイ素原子を含んだ反応性ガスがシランガス、ジハロゲン化シランガスであり、前記水素原子及び窒素原子を含んだ反応性ガスがNHガス、ヒドラジンガス、ヒドラジン誘導体ガスであり、前記水素原子のみを含んだ反応性ガスが水素ガスであることを特徴とする請求項記載の薄膜形成方法。The reactive gas containing hydrogen atoms and silicon atoms is a silane gas or a dihalogenated silane gas, the reactive gas containing hydrogen atoms and nitrogen atoms is NH3 gas, hydrazine gas, hydrazine derivative gas, and the hydrogen atoms 6. The thin film forming method according to claim5 , wherein the reactive gas containing only hydrogen is hydrogen gas. 前記シランガスがSiHガス又はSiガスであり、前記ジハロゲン化シランガスがSiHClガスであり、前記ヒドラジン誘導体ガスがヒドラジン中のHをCで置換したものであることを特徴とする請求項記載の薄膜形成方法。Said silane gas is SiH4 gas orSi 2H 6 gas, the dihalogenated silane gas isSiH 2 Cl2 gas, in which the hydrazine derivative gas to replace the H in hydrazineC xH y The method for forming a thin film according to claim6 . 真空チャンバー内に原料ガスとしてWF又はW(CO)ガスを導入して成膜対象物上に吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、反応性ガスとして化学構造中に水素原子及びケイ素原子を含んだガスを触媒体に接触させて活性種にしてから真空チャンバー内に導入して成膜対象物上に吸着された原料ガスと反応せしめた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返し、次いで該原料ガスを真空チャンバー内に導入して成膜対象物上に吸着せしめた後、該原料ガスの供給を停止し、該真空チャンバー内を排気する工程と、反応性ガスとして化学構造中に水素原子及び窒素原子を含んだガスを触媒体に接触させて活性種にしてから真空チャンバー内へ導入して成膜対象物上で吸着された原料ガスと反応させた後、該反応性ガスの供給を停止し、該真空チャンバー内を排気する工程とを交互に繰り返して、該成膜対象物上にWN膜を形成することを特徴とする薄膜形成方法。Introducing WF6 or W (CO)6 gas as a source gas into the vacuum chamber and adsorbing it on the film formation target, then stopping the supply of the source gas and evacuating the vacuum chamber; As a reactive gas, a gas containing a hydrogen atom and a silicon atomin the chemical structure is brought into contact with the catalyst body to make it an active species, and then introduced into a vacuum chamber to react with the source gas adsorbed on the film formation target. Thereafter, the supply of the reactive gas is stopped, and the process of exhausting the inside of the vacuum chamber is alternately repeated, and then the source gas is introduced into the vacuum chamber and adsorbed onto the film formation target, The process of stopping the supply of the source gas and exhausting the inside of the vacuum chamber, and bringing the gas containing a hydrogen atom and a nitrogen atom into thechemical structure as a reactive gas into contact with the catalyst body to make an active species, then the vacuum chamber Introducing Then, after reacting with the raw material gas adsorbed on the film formation target, the supply of the reactive gas is stopped and the process of exhausting the inside of the vacuum chamber is repeated alternately, And forming a Wx N film on the thin film. 前記水素原子及びケイ素原子を含んだ反応性ガスがシランガス、ジハロゲン化シランガスであり、水素原子及び窒素原子を含んだ反応性ガスがNHガス、ヒドラジンガス、ヒドラジン誘導体ガスであることを特徴とする請求項記載の薄膜形成方法。The reactive gas containing hydrogen atoms and silicon atoms is silane gas or dihalogenated silane gas, and the reactive gas containing hydrogen atoms and nitrogen atoms is NH3 gas, hydrazine gas, or hydrazine derivative gas. The thin film forming method according to claim8 . 前記シランガスがSiHガス又はSiガスであり、前記ジハロゲン化シランガスがSiHClガスであり、前記ヒドラジン誘導体ガスがヒドラジン中のHをCで置換したものであることを特徴とする請求項記載の薄膜形成方法。Said silane gas is SiH4 gas orSi 2H 6 gas, the dihalogenated silane gas isSiH 2 Cl2 gas, in which the hydrazine derivative gas to replace the H in hydrazineC xH y The method for forming a thin film according to claim9 .
JP2004207752A2004-07-142004-07-14 Thin film formation methodExpired - LifetimeJP4674061B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2004207752AJP4674061B2 (en)2004-07-142004-07-14 Thin film formation method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2004207752AJP4674061B2 (en)2004-07-142004-07-14 Thin film formation method

Publications (2)

Publication NumberPublication Date
JP2006028572A JP2006028572A (en)2006-02-02
JP4674061B2true JP4674061B2 (en)2011-04-20

Family

ID=35895280

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2004207752AExpired - LifetimeJP4674061B2 (en)2004-07-142004-07-14 Thin film formation method

Country Status (1)

CountryLink
JP (1)JP4674061B2 (en)

Families Citing this family (283)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP2039799A4 (en)*2006-04-182015-09-30Ulvac IncFilm forming apparatus and barrier film manufacturing method
JP5135710B2 (en)*2006-05-162013-02-06東京エレクトロン株式会社 Film forming method and film forming apparatus
JP2008034684A (en)*2006-07-312008-02-14Sony CorpSolid-state imaging device, manufacturing method thereof, and imaging apparatus
WO2008143024A1 (en)*2007-05-232008-11-27Canon Anelva CorporationThin film forming apparatus
WO2012049823A1 (en)*2010-10-152012-04-19株式会社アルバックSemiconductor device production method and semiconductor device
US20130023129A1 (en)2011-07-202013-01-24Asm America, Inc.Pressure transmitter for a semiconductor processing environment
US8952355B2 (en)2011-09-292015-02-10Intel CorporationElectropositive metal containing layers for semiconductor applications
US10714315B2 (en)2012-10-122020-07-14Asm Ip Holdings B.V.Semiconductor reaction chamber showerhead
US20160376700A1 (en)2013-02-012016-12-29Asm Ip Holding B.V.System for treatment of deposition reactor
JP6554418B2 (en)2013-11-272019-07-31東京エレクトロン株式会社 Tungsten film forming method and film forming apparatus
US11015245B2 (en)2014-03-192021-05-25Asm Ip Holding B.V.Gas-phase reactor and system having exhaust plenum and components thereof
JP6608026B2 (en)*2014-03-252019-11-20東京エレクトロン株式会社 Method and apparatus for forming tungsten film
US10941490B2 (en)2014-10-072021-03-09Asm Ip Holding B.V.Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
JP6706903B2 (en)2015-01-302020-06-10東京エレクトロン株式会社 Method for forming tungsten film
CN105839068B (en)2015-01-302018-09-21东京毅力科创株式会社The film build method of tungsten film
US10276355B2 (en)2015-03-122019-04-30Asm Ip Holding B.V.Multi-zone reactor, system including the reactor, and method of using the same
JP6416679B2 (en)2015-03-272018-10-31東京エレクトロン株式会社 Method for forming tungsten film
JP6541438B2 (en)2015-05-282019-07-10東京エレクトロン株式会社 Method of reducing stress of metal film and method of forming metal film
JP6478813B2 (en)2015-05-282019-03-06東京エレクトロン株式会社 Method for forming metal film
US10458018B2 (en)2015-06-262019-10-29Asm Ip Holding B.V.Structures including metal carbide material, devices including the structures, and methods of forming same
US11139308B2 (en)2015-12-292021-10-05Asm Ip Holding B.V.Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en)2016-02-192020-01-07Asm Ip Holding B.V.Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10343920B2 (en)2016-03-182019-07-09Asm Ip Holding B.V.Aligned carbon nanotubes
JP6710089B2 (en)2016-04-042020-06-17東京エレクトロン株式会社 Method for forming tungsten film
US10367080B2 (en)2016-05-022019-07-30Asm Ip Holding B.V.Method of forming a germanium oxynitride film
US11453943B2 (en)2016-05-252022-09-27Asm Ip Holding B.V.Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10612137B2 (en)2016-07-082020-04-07Asm Ip Holdings B.V.Organic reactants for atomic layer deposition
US9859151B1 (en)2016-07-082018-01-02Asm Ip Holding B.V.Selective film deposition method to form air gaps
US10714385B2 (en)*2016-07-192020-07-14Asm Ip Holding B.V.Selective deposition of tungsten
US9812320B1 (en)2016-07-282017-11-07Asm Ip Holding B.V.Method and apparatus for filling a gap
KR102532607B1 (en)2016-07-282023-05-15에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus and method of operating the same
US9887082B1 (en)2016-07-282018-02-06Asm Ip Holding B.V.Method and apparatus for filling a gap
US11532757B2 (en)2016-10-272022-12-20Asm Ip Holding B.V.Deposition of charge trapping layers
US10714350B2 (en)2016-11-012020-07-14ASM IP Holdings, B.V.Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en)2016-11-152023-06-21에이에스엠 아이피 홀딩 비.브이.Gas supply unit and substrate processing apparatus including the same
KR102762543B1 (en)2016-12-142025-02-05에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus
US11447861B2 (en)2016-12-152022-09-20Asm Ip Holding B.V.Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en)2016-12-152023-02-14Asm Ip Holding B.V.Sequential infiltration synthesis apparatus
KR102700194B1 (en)2016-12-192024-08-28에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus
US10269558B2 (en)2016-12-222019-04-23Asm Ip Holding B.V.Method of forming a structure on a substrate
US11390950B2 (en)2017-01-102022-07-19Asm Ip Holding B.V.Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en)2017-02-152019-11-05Asm Ip Holding B.V.Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en)2017-03-292020-01-07Asm Ip Holdings B.V.Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en)2017-05-082020-09-08Asm Ip Holdings B.V.Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US12040200B2 (en)2017-06-202024-07-16Asm Ip Holding B.V.Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en)2017-06-282022-04-19Asm Ip Holding B.V.Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en)2017-07-182019-01-28에이에스엠 아이피 홀딩 비.브이.Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en)2017-07-192020-01-21Asm Ip Holding B.V.Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en)2017-07-192021-05-25Asm Ip Holding B.V.Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en)2017-07-192022-06-28Asm Ip Holding B.V.Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en)2017-07-262020-03-17Asm Ip Holdings B.V.Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en)2017-08-082020-06-23Asm Ip Holdings B.V.Radiation shield
US10770336B2 (en)2017-08-082020-09-08Asm Ip Holding B.V.Substrate lift mechanism and reactor including same
US11139191B2 (en)2017-08-092021-10-05Asm Ip Holding B.V.Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en)2017-08-092023-09-26Asm Ip Holding B.V.Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en)2017-08-292023-11-28Asm Ip Holding B.V.Layer forming method and apparatus
US11056344B2 (en)2017-08-302021-07-06Asm Ip Holding B.V.Layer forming method
US11295980B2 (en)2017-08-302022-04-05Asm Ip Holding B.V.Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (en)2017-08-302023-01-26에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus
US10658205B2 (en)2017-09-282020-05-19Asm Ip Holdings B.V.Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en)2017-10-052019-09-03Asm Ip Holding B.V.Method for selectively depositing a metallic film on a substrate
US10923344B2 (en)2017-10-302021-02-16Asm Ip Holding B.V.Methods for forming a semiconductor structure and related semiconductor structures
US11022879B2 (en)2017-11-242021-06-01Asm Ip Holding B.V.Method of forming an enhanced unexposed photoresist layer
WO2019103613A1 (en)2017-11-272019-05-31Asm Ip Holding B.V.A storage device for storing wafer cassettes for use with a batch furnace
CN111344522B (en)2017-11-272022-04-12阿斯莫Ip控股公司Including clean mini-environment device
US10872771B2 (en)2018-01-162020-12-22Asm Ip Holding B. V.Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (en)2018-01-192023-04-21荷蘭商Asm 智慧財產控股公司Deposition method
KR102695659B1 (en)2018-01-192024-08-14에이에스엠 아이피 홀딩 비.브이. Method for depositing a gap filling layer by plasma assisted deposition
US11081345B2 (en)2018-02-062021-08-03Asm Ip Holding B.V.Method of post-deposition treatment for silicon oxide film
WO2019158960A1 (en)2018-02-142019-08-22Asm Ip Holding B.V.A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en)2018-02-142021-01-19Asm Ip Holding B.V.Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en)2018-02-152020-08-04Asm Ip Holding B.V.Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (en)2018-02-202024-02-13에이에스엠 아이피 홀딩 비.브이.Substrate processing method and apparatus
US10975470B2 (en)2018-02-232021-04-13Asm Ip Holding B.V.Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en)2018-03-012022-10-18Asm Ip Holding B.V.Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en)2018-03-092023-04-18Asm Ip Holding B.V.Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en)2018-03-162021-09-07Asm Ip Holding B.V.Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en)2018-03-272024-03-11에이에스엠 아이피 홀딩 비.브이.Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en)2018-03-292022-01-25Asm Ip Holding B.V.Substrate processing apparatus and method
US11088002B2 (en)2018-03-292021-08-10Asm Ip Holding B.V.Substrate rack and a substrate processing system and method
KR102600229B1 (en)2018-04-092023-11-10에이에스엠 아이피 홀딩 비.브이.Substrate supporting device, substrate processing apparatus including the same and substrate processing method
US12025484B2 (en)2018-05-082024-07-02Asm Ip Holding B.V.Thin film forming method
US12272527B2 (en)2018-05-092025-04-08Asm Ip Holding B.V.Apparatus for use with hydrogen radicals and method of using same
KR102596988B1 (en)2018-05-282023-10-31에이에스엠 아이피 홀딩 비.브이.Method of processing a substrate and a device manufactured by the same
TWI840362B (en)2018-06-042024-05-01荷蘭商Asm Ip私人控股有限公司Wafer handling chamber with moisture reduction
US11718913B2 (en)2018-06-042023-08-08Asm Ip Holding B.V.Gas distribution system and reactor system including same
US11286562B2 (en)2018-06-082022-03-29Asm Ip Holding B.V.Gas-phase chemical reactor and method of using same
US10797133B2 (en)2018-06-212020-10-06Asm Ip Holding B.V.Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en)2018-06-212023-08-21에이에스엠 아이피 홀딩 비.브이.Substrate processing system
TWI873894B (en)2018-06-272025-02-21荷蘭商Asm Ip私人控股有限公司Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
KR102854019B1 (en)2018-06-272025-09-02에이에스엠 아이피 홀딩 비.브이. Periodic deposition method for forming a metal-containing material and films and structures comprising the metal-containing material
US10612136B2 (en)2018-06-292020-04-07ASM IP Holding, B.V.Temperature-controlled flange and reactor system including same
US10755922B2 (en)2018-07-032020-08-25Asm Ip Holding B.V.Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en)2018-07-032019-08-20Asm Ip Holding B.V.Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en)2018-08-062021-07-06Asm Ip Holding B.V.Multi-port gas injection system and reactor system including same
US11430674B2 (en)2018-08-222022-08-30Asm Ip Holding B.V.Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en)2018-09-112021-06-01Asm Ip Holding B.V.Substrate processing apparatus and method
KR102707956B1 (en)2018-09-112024-09-19에이에스엠 아이피 홀딩 비.브이.Method for deposition of a thin film
US11049751B2 (en)2018-09-142021-06-29Asm Ip Holding B.V.Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344B (en)2018-10-012024-10-25Asmip控股有限公司Substrate holding apparatus, system comprising the same and method of using the same
US11232963B2 (en)2018-10-032022-01-25Asm Ip Holding B.V.Substrate processing apparatus and method
KR102592699B1 (en)2018-10-082023-10-23에이에스엠 아이피 홀딩 비.브이.Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102546322B1 (en)2018-10-192023-06-21에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus and substrate processing method
KR102605121B1 (en)2018-10-192023-11-23에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus and substrate processing method
USD948463S1 (en)2018-10-242022-04-12Asm Ip Holding B.V.Susceptor for semiconductor substrate supporting apparatus
US12378665B2 (en)2018-10-262025-08-05Asm Ip Holding B.V.High temperature coatings for a preclean and etch apparatus and related methods
US11087997B2 (en)2018-10-312021-08-10Asm Ip Holding B.V.Substrate processing apparatus for processing substrates
KR102748291B1 (en)2018-11-022024-12-31에이에스엠 아이피 홀딩 비.브이.Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en)2018-11-062023-02-07Asm Ip Holding B.V.Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en)2018-11-072021-06-08Asm Ip Holding B.V.Methods for depositing a boron doped silicon germanium film
US10818758B2 (en)2018-11-162020-10-27Asm Ip Holding B.V.Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en)2018-11-162020-11-24Asm Ip Holding B.V.Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US12040199B2 (en)2018-11-282024-07-16Asm Ip Holding B.V.Substrate processing apparatus for processing substrates
US11217444B2 (en)2018-11-302022-01-04Asm Ip Holding B.V.Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en)2018-12-042024-02-13에이에스엠 아이피 홀딩 비.브이.A method for cleaning a substrate processing apparatus
US11158513B2 (en)2018-12-132021-10-26Asm Ip Holding B.V.Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TWI874340B (en)2018-12-142025-03-01荷蘭商Asm Ip私人控股有限公司Method of forming device structure, structure formed by the method and system for performing the method
TWI866480B (en)2019-01-172024-12-11荷蘭商Asm Ip 私人控股有限公司Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR102727227B1 (en)2019-01-222024-11-07에이에스엠 아이피 홀딩 비.브이.Semiconductor processing device
CN111524788B (en)2019-02-012023-11-24Asm Ip私人控股有限公司 Method for forming topologically selective films of silicon oxide
TWI873122B (en)2019-02-202025-02-21荷蘭商Asm Ip私人控股有限公司Method of filling a recess formed within a surface of a substrate, semiconductor structure formed according to the method, and semiconductor processing apparatus
TWI845607B (en)2019-02-202024-06-21荷蘭商Asm Ip私人控股有限公司Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
KR102626263B1 (en)2019-02-202024-01-16에이에스엠 아이피 홀딩 비.브이.Cyclical deposition method including treatment step and apparatus for same
TWI838458B (en)2019-02-202024-04-11荷蘭商Asm Ip私人控股有限公司Apparatus and methods for plug fill deposition in 3-d nand applications
TWI842826B (en)2019-02-222024-05-21荷蘭商Asm Ip私人控股有限公司Substrate processing apparatus and method for processing substrate
KR102782593B1 (en)2019-03-082025-03-14에이에스엠 아이피 홀딩 비.브이.Structure Including SiOC Layer and Method of Forming Same
KR102858005B1 (en)2019-03-082025-09-09에이에스엠 아이피 홀딩 비.브이.Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
US11742198B2 (en)2019-03-082023-08-29Asm Ip Holding B.V.Structure including SiOCN layer and method of forming same
JP2020167398A (en)2019-03-282020-10-08エーエスエム・アイピー・ホールディング・ベー・フェー Door openers and substrate processing equipment provided with door openers
KR102809999B1 (en)2019-04-012025-05-19에이에스엠 아이피 홀딩 비.브이.Method of manufacturing semiconductor device
KR20200123380A (en)2019-04-192020-10-29에이에스엠 아이피 홀딩 비.브이.Layer forming method and apparatus
KR20200125453A (en)2019-04-242020-11-04에이에스엠 아이피 홀딩 비.브이.Gas-phase reactor system and method of using same
KR20200130121A (en)2019-05-072020-11-18에이에스엠 아이피 홀딩 비.브이.Chemical source vessel with dip tube
US11289326B2 (en)2019-05-072022-03-29Asm Ip Holding B.V.Method for reforming amorphous carbon polymer film
KR20200130652A (en)2019-05-102020-11-19에이에스엠 아이피 홀딩 비.브이.Method of depositing material onto a surface and structure formed according to the method
JP7612342B2 (en)2019-05-162025-01-14エーエスエム・アイピー・ホールディング・ベー・フェー Wafer boat handling apparatus, vertical batch furnace and method
JP7598201B2 (en)2019-05-162024-12-11エーエスエム・アイピー・ホールディング・ベー・フェー Wafer boat handling apparatus, vertical batch furnace and method
USD947913S1 (en)2019-05-172022-04-05Asm Ip Holding B.V.Susceptor shaft
USD975665S1 (en)2019-05-172023-01-17Asm Ip Holding B.V.Susceptor shaft
USD935572S1 (en)2019-05-242021-11-09Asm Ip Holding B.V.Gas channel plate
USD922229S1 (en)2019-06-052021-06-15Asm Ip Holding B.V.Device for controlling a temperature of a gas supply unit
KR20200141002A (en)2019-06-062020-12-17에이에스엠 아이피 홀딩 비.브이.Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200141931A (en)2019-06-102020-12-21에이에스엠 아이피 홀딩 비.브이.Method for cleaning quartz epitaxial chambers
KR20200143254A (en)2019-06-112020-12-23에이에스엠 아이피 홀딩 비.브이.Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en)2019-06-142022-03-01Asm Ip Holding B.V.Shower plate
USD931978S1 (en)2019-06-272021-09-28Asm Ip Holding B.V.Showerhead vacuum transport
KR20210005515A (en)2019-07-032021-01-14에이에스엠 아이피 홀딩 비.브이.Temperature control assembly for substrate processing apparatus and method of using same
JP7499079B2 (en)2019-07-092024-06-13エーエスエム・アイピー・ホールディング・ベー・フェー Plasma device using coaxial waveguide and substrate processing method
CN112216646A (en)2019-07-102021-01-12Asm Ip私人控股有限公司Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en)2019-07-162021-01-27에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus
KR102860110B1 (en)2019-07-172025-09-16에이에스엠 아이피 홀딩 비.브이.Methods of forming silicon germanium structures
KR20210010816A (en)2019-07-172021-01-28에이에스엠 아이피 홀딩 비.브이.Radical assist ignition plasma system and method
US11643724B2 (en)2019-07-182023-05-09Asm Ip Holding B.V.Method of forming structures using a neutral beam
TWI839544B (en)2019-07-192024-04-21荷蘭商Asm Ip私人控股有限公司Method of forming topology-controlled amorphous carbon polymer film
KR20210010817A (en)2019-07-192021-01-28에이에스엠 아이피 홀딩 비.브이.Method of Forming Topology-Controlled Amorphous Carbon Polymer Film
TWI851767B (en)2019-07-292024-08-11荷蘭商Asm Ip私人控股有限公司Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309900A (en)2019-07-302021-02-02Asm Ip私人控股有限公司Substrate processing apparatus
US12169361B2 (en)2019-07-302024-12-17Asm Ip Holding B.V.Substrate processing apparatus and method
CN112309899A (en)2019-07-302021-02-02Asm Ip私人控股有限公司Substrate processing apparatus
US11587815B2 (en)2019-07-312023-02-21Asm Ip Holding B.V.Vertical batch furnace assembly
US11587814B2 (en)2019-07-312023-02-21Asm Ip Holding B.V.Vertical batch furnace assembly
US11227782B2 (en)2019-07-312022-01-18Asm Ip Holding B.V.Vertical batch furnace assembly
CN112323048B (en)2019-08-052024-02-09Asm Ip私人控股有限公司Liquid level sensor for chemical source container
CN112342526A (en)2019-08-092021-02-09Asm Ip私人控股有限公司Heater assembly including cooling device and method of using same
USD965044S1 (en)2019-08-192022-09-27Asm Ip Holding B.V.Susceptor shaft
USD965524S1 (en)2019-08-192022-10-04Asm Ip Holding B.V.Susceptor support
JP2021031769A (en)2019-08-212021-03-01エーエスエム アイピー ホールディング ビー.ブイ.Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD949319S1 (en)2019-08-222022-04-19Asm Ip Holding B.V.Exhaust duct
USD979506S1 (en)2019-08-222023-02-28Asm Ip Holding B.V.Insulator
USD930782S1 (en)2019-08-222021-09-14Asm Ip Holding B.V.Gas distributor
USD940837S1 (en)2019-08-222022-01-11Asm Ip Holding B.V.Electrode
KR20210024423A (en)2019-08-222021-03-05에이에스엠 아이피 홀딩 비.브이.Method for forming a structure with a hole
US11286558B2 (en)2019-08-232022-03-29Asm Ip Holding B.V.Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en)2019-08-232021-03-05에이에스엠 아이피 홀딩 비.브이.Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR102806450B1 (en)2019-09-042025-05-12에이에스엠 아이피 홀딩 비.브이.Methods for selective deposition using a sacrificial capping layer
KR102733104B1 (en)2019-09-052024-11-22에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus
US11562901B2 (en)2019-09-252023-01-24Asm Ip Holding B.V.Substrate processing method
CN112593212B (en)2019-10-022023-12-22Asm Ip私人控股有限公司Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TWI846953B (en)2019-10-082024-07-01荷蘭商Asm Ip私人控股有限公司Substrate processing device
KR20210042810A (en)2019-10-082021-04-20에이에스엠 아이피 홀딩 비.브이.Reactor system including a gas distribution assembly for use with activated species and method of using same
TW202128273A (en)2019-10-082021-08-01荷蘭商Asm Ip私人控股有限公司Gas injection system, reactor system, and method of depositing material on surface of substratewithin reaction chamber
TWI846966B (en)2019-10-102024-07-01荷蘭商Asm Ip私人控股有限公司Method of forming a photoresist underlayer and structure including same
US12009241B2 (en)2019-10-142024-06-11Asm Ip Holding B.V.Vertical batch furnace assembly with detector to detect cassette
TWI834919B (en)2019-10-162024-03-11荷蘭商Asm Ip私人控股有限公司Method of topology-selective film formation of silicon oxide
US11637014B2 (en)2019-10-172023-04-25Asm Ip Holding B.V.Methods for selective deposition of doped semiconductor material
KR102845724B1 (en)2019-10-212025-08-13에이에스엠 아이피 홀딩 비.브이.Apparatus and methods for selectively etching films
KR20210050453A (en)2019-10-252021-05-07에이에스엠 아이피 홀딩 비.브이.Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en)2019-10-292023-05-09Asm Ip Holding B.V.Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en)2019-11-052021-05-14에이에스엠 아이피 홀딩 비.브이.Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en)2019-11-152022-11-15Asm Ip Holding B.V.Method for providing a semiconductor device with silicon filled gaps
KR102861314B1 (en)2019-11-202025-09-17에이에스엠 아이피 홀딩 비.브이.Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697B (en)2019-11-262025-07-29Asmip私人控股有限公司Substrate processing apparatus
US11450529B2 (en)2019-11-262022-09-20Asm Ip Holding B.V.Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885692B (en)2019-11-292025-08-15Asmip私人控股有限公司Substrate processing apparatus
CN120432376A (en)2019-11-292025-08-05Asm Ip私人控股有限公司Substrate processing apparatus
JP7527928B2 (en)2019-12-022024-08-05エーエスエム・アイピー・ホールディング・ベー・フェー Substrate processing apparatus and substrate processing method
KR20210070898A (en)2019-12-042021-06-15에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus
KR20210078405A (en)2019-12-172021-06-28에이에스엠 아이피 홀딩 비.브이.Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (en)2019-12-192021-06-30에이에스엠 아이피 홀딩 비.브이.Methods for filling a gap feature on a substrate and related semiconductor structures
JP7636892B2 (en)2020-01-062025-02-27エーエスエム・アイピー・ホールディング・ベー・フェー Channeled Lift Pins
JP7730637B2 (en)2020-01-062025-08-28エーエスエム・アイピー・ホールディング・ベー・フェー Gas delivery assembly, components thereof, and reactor system including same
US11993847B2 (en)2020-01-082024-05-28Asm Ip Holding B.V.Injector
KR20210093163A (en)2020-01-162021-07-27에이에스엠 아이피 홀딩 비.브이.Method of forming high aspect ratio features
KR102675856B1 (en)2020-01-202024-06-17에이에스엠 아이피 홀딩 비.브이.Method of forming thin film and method of modifying surface of thin film
TWI889744B (en)2020-01-292025-07-11荷蘭商Asm Ip私人控股有限公司Contaminant trap system, and baffle plate stack
TW202513845A (en)2020-02-032025-04-01荷蘭商Asm Ip私人控股有限公司Semiconductor structures and methods for forming the same
KR20210100010A (en)2020-02-042021-08-13에이에스엠 아이피 홀딩 비.브이.Method and apparatus for transmittance measurements of large articles
US11776846B2 (en)2020-02-072023-10-03Asm Ip Holding B.V.Methods for depositing gap filling fluids and related systems and devices
TW202146691A (en)2020-02-132021-12-16荷蘭商Asm Ip私人控股有限公司Gas distribution assembly, shower plate assembly, and method of adjusting conductance of gas to reaction chamber
KR20210103956A (en)2020-02-132021-08-24에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus including light receiving device and calibration method of light receiving device
TWI855223B (en)2020-02-172024-09-11荷蘭商Asm Ip私人控股有限公司Method for growing phosphorous-doped silicon layer
CN113410160A (en)2020-02-282021-09-17Asm Ip私人控股有限公司System specially used for cleaning parts
KR20210113043A (en)2020-03-042021-09-15에이에스엠 아이피 홀딩 비.브이.Alignment fixture for a reactor system
US11876356B2 (en)2020-03-112024-01-16Asm Ip Holding B.V.Lockout tagout assembly and system and method of using same
KR20210116240A (en)2020-03-112021-09-27에이에스엠 아이피 홀딩 비.브이.Substrate handling device with adjustable joints
KR102775390B1 (en)2020-03-122025-02-28에이에스엠 아이피 홀딩 비.브이.Method for Fabricating Layer Structure Having Target Topological Profile
US12173404B2 (en)2020-03-172024-12-24Asm Ip Holding B.V.Method of depositing epitaxial material, structure formed using the method, and system for performing the method
KR102755229B1 (en)2020-04-022025-01-14에이에스엠 아이피 홀딩 비.브이.Thin film forming method
TWI887376B (en)2020-04-032025-06-21荷蘭商Asm Ip私人控股有限公司Method for manufacturing semiconductor device
TWI888525B (en)2020-04-082025-07-01荷蘭商Asm Ip私人控股有限公司Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en)2020-04-152023-11-21Asm Ip Holding B.V.Method for forming precoat film and method for forming silicon-containing film
KR20210128343A (en)2020-04-152021-10-26에이에스엠 아이피 홀딩 비.브이.Method of forming chromium nitride layer and structure including the chromium nitride layer
US11996289B2 (en)2020-04-162024-05-28Asm Ip Holding B.V.Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
KR20210130646A (en)2020-04-212021-11-01에이에스엠 아이피 홀딩 비.브이.Method for processing a substrate
KR20210132600A (en)2020-04-242021-11-04에이에스엠 아이피 홀딩 비.브이.Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
TW202208671A (en)2020-04-242022-03-01荷蘭商Asm Ip私人控股有限公司Methods of forming structures including vanadium boride and vanadium phosphide layers
KR20210132612A (en)2020-04-242021-11-04에이에스엠 아이피 홀딩 비.브이.Methods and apparatus for stabilizing vanadium compounds
CN113555279A (en)2020-04-242021-10-26Asm Ip私人控股有限公司 Methods of forming vanadium nitride-containing layers and structures comprising the same
KR102866804B1 (en)2020-04-242025-09-30에이에스엠 아이피 홀딩 비.브이.Vertical batch furnace assembly comprising a cooling gas supply
KR102783898B1 (en)2020-04-292025-03-18에이에스엠 아이피 홀딩 비.브이.Solid source precursor vessel
KR20210134869A (en)2020-05-012021-11-11에이에스엠 아이피 홀딩 비.브이.Fast FOUP swapping with a FOUP handler
KR102788543B1 (en)2020-05-132025-03-27에이에스엠 아이피 홀딩 비.브이.Laser alignment fixture for a reactor system
TW202146699A (en)2020-05-152021-12-16荷蘭商Asm Ip私人控股有限公司Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system
KR20210143653A (en)2020-05-192021-11-29에이에스엠 아이피 홀딩 비.브이.Substrate processing apparatus
KR20210145079A (en)2020-05-212021-12-01에이에스엠 아이피 홀딩 비.브이.Flange and apparatus for processing substrates
KR102795476B1 (en)2020-05-212025-04-11에이에스엠 아이피 홀딩 비.브이.Structures including multiple carbon layers and methods of forming and using same
TWI873343B (en)2020-05-222025-02-21荷蘭商Asm Ip私人控股有限公司Reaction system for forming thin film on substrate
KR20210146802A (en)2020-05-262021-12-06에이에스엠 아이피 홀딩 비.브이.Method for depositing boron and gallium containing silicon germanium layers
TWI876048B (en)2020-05-292025-03-11荷蘭商Asm Ip私人控股有限公司Substrate processing device
TW202212620A (en)2020-06-022022-04-01荷蘭商Asm Ip私人控股有限公司Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate
TW202208659A (en)2020-06-162022-03-01荷蘭商Asm Ip私人控股有限公司Method for depositing boron containing silicon germanium layers
TW202218133A (en)2020-06-242022-05-01荷蘭商Asm Ip私人控股有限公司Method for forming a layer provided with silicon
TWI873359B (en)2020-06-302025-02-21荷蘭商Asm Ip私人控股有限公司Substrate processing method
US12431354B2 (en)2020-07-012025-09-30Asm Ip Holding B.V.Silicon nitride and silicon oxide deposition methods using fluorine inhibitor
TW202202649A (en)2020-07-082022-01-16荷蘭商Asm Ip私人控股有限公司Substrate processing method
KR20220010438A (en)2020-07-172022-01-25에이에스엠 아이피 홀딩 비.브이.Structures and methods for use in photolithography
TWI878570B (en)2020-07-202025-04-01荷蘭商Asm Ip私人控股有限公司Method and system for depositing molybdenum layers
KR20220011092A (en)2020-07-202022-01-27에이에스엠 아이피 홀딩 비.브이.Method and system for forming structures including transition metal layers
US12322591B2 (en)2020-07-272025-06-03Asm Ip Holding B.V.Thin film deposition process
KR20220021863A (en)2020-08-142022-02-22에이에스엠 아이피 홀딩 비.브이.Method for processing a substrate
US12040177B2 (en)2020-08-182024-07-16Asm Ip Holding B.V.Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
TW202228863A (en)2020-08-252022-08-01荷蘭商Asm Ip私人控股有限公司Method for cleaning a substrate, method for selectively depositing, and reaction system
US11725280B2 (en)2020-08-262023-08-15Asm Ip Holding B.V.Method for forming metal silicon oxide and metal silicon oxynitride layers
TW202229601A (en)2020-08-272022-08-01荷蘭商Asm Ip私人控股有限公司Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system
TW202217045A (en)2020-09-102022-05-01荷蘭商Asm Ip私人控股有限公司Methods for depositing gap filing fluids and related systems and devices
USD990534S1 (en)2020-09-112023-06-27Asm Ip Holding B.V.Weighted lift pin
KR20220036866A (en)2020-09-162022-03-23에이에스엠 아이피 홀딩 비.브이.Silicon oxide deposition method
USD1012873S1 (en)2020-09-242024-01-30Asm Ip Holding B.V.Electrode for semiconductor processing apparatus
TWI889903B (en)2020-09-252025-07-11荷蘭商Asm Ip私人控股有限公司Semiconductor processing method
US12009224B2 (en)2020-09-292024-06-11Asm Ip Holding B.V.Apparatus and method for etching metal nitrides
KR20220045900A (en)2020-10-062022-04-13에이에스엠 아이피 홀딩 비.브이.Deposition method and an apparatus for depositing a silicon-containing material
CN114293174A (en)2020-10-072022-04-08Asm Ip私人控股有限公司Gas supply unit and substrate processing apparatus including the same
TW202229613A (en)2020-10-142022-08-01荷蘭商Asm Ip私人控股有限公司Method of depositing material on stepped structure
TW202232565A (en)2020-10-152022-08-16荷蘭商Asm Ip私人控股有限公司Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-cat
TW202217037A (en)2020-10-222022-05-01荷蘭商Asm Ip私人控股有限公司Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en)2020-10-282022-06-16荷蘭商Asm Ip私人控股有限公司Method for forming layer on substrate, and semiconductor processing system
TW202229620A (en)2020-11-122022-08-01特文特大學Deposition system, method for controlling reaction condition, method for depositing
TW202229795A (en)2020-11-232022-08-01荷蘭商Asm Ip私人控股有限公司A substrate processing apparatus with an injector
TW202235649A (en)2020-11-242022-09-16荷蘭商Asm Ip私人控股有限公司Methods for filling a gap and related systems and devices
TW202235675A (en)2020-11-302022-09-16荷蘭商Asm Ip私人控股有限公司Injector, and substrate processing apparatus
US12255053B2 (en)2020-12-102025-03-18Asm Ip Holding B.V.Methods and systems for depositing a layer
TW202233884A (en)2020-12-142022-09-01荷蘭商Asm Ip私人控股有限公司Method of forming structures for threshold voltage control
US11946137B2 (en)2020-12-162024-04-02Asm Ip Holding B.V.Runout and wobble measurement fixtures
TW202232639A (en)2020-12-182022-08-16荷蘭商Asm Ip私人控股有限公司Wafer processing apparatus with a rotatable table
TW202231903A (en)2020-12-222022-08-16荷蘭商Asm Ip私人控股有限公司Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
TW202226899A (en)2020-12-222022-07-01荷蘭商Asm Ip私人控股有限公司Plasma treatment device having matching box
TW202242184A (en)2020-12-222022-11-01荷蘭商Asm Ip私人控股有限公司Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel
USD981973S1 (en)2021-05-112023-03-28Asm Ip Holding B.V.Reactor wall for substrate processing apparatus
USD980814S1 (en)2021-05-112023-03-14Asm Ip Holding B.V.Gas distributor for substrate processing apparatus
USD980813S1 (en)2021-05-112023-03-14Asm Ip Holding B.V.Gas flow control plate for substrate processing apparatus
USD990441S1 (en)2021-09-072023-06-27Asm Ip Holding B.V.Gas flow control plate
USD1060598S1 (en)2021-12-032025-02-04Asm Ip Holding B.V.Split showerhead cover
JP2024047686A (en)*2022-09-272024-04-08東京エレクトロン株式会社Film deposition method, film deposition apparatus and film deposition system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP3522738B2 (en)*1992-07-242004-04-26東京エレクトロン株式会社 Metal thin film formation method by chemical vapor deposition
JPH09183697A (en)*1995-12-281997-07-15Mitsubishi Heavy Ind LtdProduction of diamond single crystal thin film and production apparatus therefor
JP4009034B2 (en)*1999-02-172007-11-14株式会社アルバック Barrier film manufacturing method

Also Published As

Publication numberPublication date
JP2006028572A (en)2006-02-02

Similar Documents

PublicationPublication DateTitle
JP4674061B2 (en) Thin film formation method
JP7182676B2 (en) Method of forming metallic films on substrates by cyclical deposition and related semiconductor device structures
US11056385B2 (en)Selective formation of metallic films on metallic surfaces
US7144806B1 (en)ALD of tantalum using a hydride reducing agent
US10049924B2 (en)Selective formation of metallic films on metallic surfaces
JP6813983B2 (en) Selective deposition of materials containing aluminum and nitrogen
KR102189781B1 (en)Methods for depositing manganese and manganese nitrides
US8101521B1 (en)Methods for improving uniformity and resistivity of thin tungsten films
US8278216B1 (en)Selective capping of copper
KR101870501B1 (en)Tungsten film forming method
JP2004525510A (en) Copper interconnect structure with diffusion barrier
JP2008244298A (en)Film forming method of metal film, forming method of multilayer wiring structure, manufacturing method of semiconductor device, and film forming apparatus
KR20170104936A (en)Selective formation of metal silicides
US7358188B2 (en)Method of forming conductive metal silicides by reaction of metal with silicon
CN117882184A (en) Method of forming a metal liner for an interconnect structure
KR20220087543A (en) Methods for growing low resistivity metal containing films
Eisenbraun et al.Atomic layer deposition (ALD) of tantalum-based materials for zero thickness copper barrier applications
US20240162036A1 (en)Selective deposition of material comprising silicon and nitrogen
US12297531B2 (en)Methods of preparing molybdenum-containing films
WO2006046386A1 (en)Film forming method, semiconductor device manufacturing method, semiconductor device, program and recording medium
JP2006173299A (en)Method of manufacturing semiconductor device
JP2005123281A (en)Manufacturing method for semiconductor device

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20070525

RD02Notification of acceptance of power of attorney

Free format text:JAPANESE INTERMEDIATE CODE: A7422

Effective date:20081216

RD04Notification of resignation of power of attorney

Free format text:JAPANESE INTERMEDIATE CODE: A7424

Effective date:20081216

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20091221

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20100119

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A821

Effective date:20100323

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20100323

RD02Notification of acceptance of power of attorney

Free format text:JAPANESE INTERMEDIATE CODE: A7422

Effective date:20100323

RD05Notification of revocation of power of attorney

Free format text:JAPANESE INTERMEDIATE CODE: A7425

Effective date:20100421

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A821

Effective date:20100421

A02Decision of refusal

Free format text:JAPANESE INTERMEDIATE CODE: A02

Effective date:20100721

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20101021

A911Transfer to examiner for re-examination before appeal (zenchi)

Free format text:JAPANESE INTERMEDIATE CODE: A911

Effective date:20101213

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20110112

A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20110124

R150Certificate of patent or registration of utility model

Ref document number:4674061

Country of ref document:JP

Free format text:JAPANESE INTERMEDIATE CODE: R150

Free format text:JAPANESE INTERMEDIATE CODE: R150

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20140128

Year of fee payment:3

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp