技術分野
本発明は、熱伝導性感圧接着剤と、これを熱伝導性基材上に設けてシート状やテープ状などの形態とした接着シート類とに関するものである。
背景技術
従来より、ハイブリツドパツケージ、マルチモジユール、あるいはプラスチツクや金属による密封型集積回路などの電子部品では、IC回路の高集積化などにともなつて発熱量が増大し、温度上昇のために電子部品が機能障害を起こすおそれがあることから、電子部品にヒートシンクなどの放熱部材を付設して機能障害を予防する対策が講じられている。
電子部品に放熱部材を付設する方法として、重合性アクリル酸エステルモノマーとフリーラジカル開始剤を含む組成物にアルミニウム粉などを添加した接着剤を用いる方法が知られている(米国特許第4,722,960号明細書)。しかし、上記の接着剤は、これを電子部品と放熱部材との一方または両方に塗設したのち、プライマーを用いるか酸素を遮断して硬化処理する必要があり、接着処理に多時間、多労力を要し、また硬化するまでの間、被着体を仮固定しておく必要があるなど、電子装置の製造効率に乏しいという問題がある。
これに対して、熱伝導性と感圧接着性を備えた、いわゆる熱伝導性感圧接着剤を用いる方法も知られており、これによれば、接着処理に多時間、多労力を要することなく、電子部品に放熱部材を簡便に付設することが可能である。しかし、放熱板や半導体パツケージの材料は、高極性の表面状態を持つ金属や金属酸化物であるため、これらに対してすぐれた接着性を示し、しかも良好な熱伝導性を示す感圧接着剤を用いる必要があるが、このような特性を満足する熱伝導性感圧接着剤は、現在のところ、ほとんどみられない。
たとえば、アクリル系感圧接着剤では、接着性ポリマーの合成時に、アクリル酸などの高極性モノマーを多く用いると、放熱板や半導体パツケージなどへの接着性が向上してくるものと期待される。しかし、高極性モノマーは、ホモポリマーとしてのガラス転移点が常温(20℃)以上となるものがほとんどのため、多量に用いると、ポリマーのガラス転移点が高まり、接着剤の一般的な使用温度である常温前後での弾性率が上昇する。このような弾性率の上昇は、接着剤の放熱板や半導体パツケージに対する接触面積を得るための妨げとなり、高い圧力または高い温度で圧着しなければならない。ところが、最近の半導体パツケージは、高集積化されてデリケートになつており、高い圧力をかけて圧着すると、ピンが折れたり、パツケージ自体が破壊されてしまう。これを避けるために、低い圧力で圧着すると、上記の接触面積が十分取れず、熱伝導性や接着性が低下して、機能障害や脱落が起こる。
これらのことから、接着性ポリマーの合成に際し、アクリル酸などの高極性モノマーの使用量を減らして、上記の接触面積を確保しようとすると、今度は放熱板や半導体パツケージなどに対する接着力自体が低下し、やはり脱落などの問題を生じてしまう。また、この種の熱伝導性感圧接着剤では、通常、感圧接着剤中に熱伝導性フイラーを含ませることにより、熱伝導性を得るようにしているが、熱伝導性フイラーの添加量が少ないと、良好な熱伝導性が得られにくく、一方、上記添加量を多くして、熱伝導性の向上を図るようにすると、放熱板などへの接着力が低下して、脱落などの問題を生じるようになる。
このように、熱伝導性感圧接着剤によれば、接着処理に多時間、多労力を要することなく、電子部品に対して放熱部材を簡便に付設できるという利点はあるものの、高極性の放熱板や半導体パツケージなどに対して良好な接着力を示して、しかも熱伝導性にすぐれた感圧接着剤は、今日に至るまでほとんど見い出されておらず、そのために、放熱部材の付設によつて、温度上昇に起因した電子部品の機能障害の発生を効果的に防止できるとは必ずしもいえなかつた。
本発明は、このような事情に照らし、接着性および熱伝導性にすぐれた熱伝導性感圧接着剤とその接着シート類であつて、とくに、電子部品と放熱部材とを、電子部品を破壊することのない低い圧力で圧着しても、熱伝導性良好に接着固定でき、これにより電子部品による発生熱を放熱部材に効率よく伝達させて温度上昇に起因した電子部品の機能障害の発生を確実に防止できる、上記熱伝導性感圧接着剤とその接着シート類を提供することを目的としている。
発明の開示
本発明者らは、上記の目的を達成するため、鋭意検討した結果、ホモポリマーとしてのガラス転移点が0℃以下となる特定の極性モノマーを共重合成分としたアクリル系共重合体によれば、上記モノマーに基づく優れた接着性が得られるとともに、共重合体のガラス転移点の上昇、これに伴う常温前後の弾性率の上昇がほとんどみられなくなり、この共重合体に適量の熱伝導性フイラーを加えてなる熱伝導性感圧接着剤は、電子部品と放熱部材との接着固定時に十分な接着面積を確保し、電子部品を破壊することのない低い圧力で圧着しても、電子部品と放熱部材とを熱伝導性良好に接着固定できる、接着性および熱伝導性にすぐれたものとなることを見い出し、本発明を完成するに至つた。
即ち、本発明は、a)アルキル基の炭素数が平均2〜14個である(メタ)アクリル酸アルキルエステル88〜100重量%とこれと共重合可能なモノエチレン性不飽和単量体12〜0重量%とからなる主単量体、及びホモポリマーとしてのガラス転移点が0℃以下で、かつ分子内に極性基としてカルボキシル基を有するモノマーを前記主単量体に対して1〜30重量%の割合で含んでなる単量体混合物の共重合体と、b)この共重合体100重量部に対して10〜300重量部となる割合の熱伝導性フイラーとを含むことを特徴とする熱伝導性感圧接着剤(請求の範囲第1項)に係るものである。また、本発明は、熱伝導性基材の片面または両面に上記構成の熱伝導性感圧接着剤の層が設けられてなる接着シート類(請求の範囲第2項、第3項)に係るものである。
【図面の簡単な説明】
第1図は、本発明の接着シート類を用いて電子部品と放熱部材とを接着固定した状態を示す断面図であり、第2図は、本発明の熱伝導性感圧接着剤を用いて電子部品と放熱部材とを接着固定した状態を示す断面図である。
発明を実施するための最良の形態
本発明のa成分の共重合体においては、主単量体として、アルキル基の炭素数が平均2〜14個である(メタ)アクリル酸アルキルエステル88〜100重量%、好ましくは94〜99重量%と、これと共重合可能なモノエチレン性不飽和単量体12〜0重量%、好ましくは6〜1重量%を使用する。後者のモノエチレン性不飽和単量体は、共重合体の接着力や凝集力などの特性を微量調整する目的で、必要により用いられるが、この使用量が上記範囲を超えると、共重合体の弾性率の上昇などによつて接着面積の低下などの不都合が起こる。
主単量体中、アルキル基の炭素数が平均2〜14個である(メタ)アクリル酸アルキルエステルとしては、たとえば、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルヘキシルなどが挙げられる。また、共重合可能なモノエチレン性不飽和単量体としては、たとえば、アクリル酸、メタクリル酸、マレイン酸などのカルボキシル基含有モノマー、アクリルアミド、N−ビニルピロリドン、アクリロイルモルフオリンなどの窒素含有モノマーなどが挙げられる。
本発明では、上記の主単量体とともに、ホモポリマーとしてのガラス転移点(以下、Tgという)が0℃以下となる極性モノマーを用いて、共重合体を構成するための単量体混合物とする。上記の極性モノマーは、主単量体に対して1〜30重量%、好ましくは5〜20重量%の割合で用いられる。1重量%に満たないときは、接着性の向上および共重合体のTg低下に寄与できず、電子部品と放熱部材との熱伝導性良好な接着固定に支障をきたしやすい。また、30重量%を超えてしまうと、接着力と凝集力とのバランスやアクリル系本来の耐熱性などの特性が損なわれ、結果として上記同様の問題を生じやすい。
上記の極性モノマーとしては、分子内に極性基としてカルボキシル基を有するモノマーが好ましく、たとえば、カプロラクトン変性のアクリレート〔東亜合成化学(株)製の「アロニツクスM−5300」(Tg=<−50℃)〕、2−アクリロイルオキシエチルコハク酸〔東亜合成化学(株)製の「アロニツクスM−5400」(Tg=<−50℃)〕、2−アクリロイルオキシエチルフタル酸〔東亜合成化学(株)製の「アロニツクスM−5500」(Tg=−40℃)〕などが挙げられる。
本発明のa成分の共重合体は、上記の単量体混合物を用いて、これを常法により溶液重合、乳化重合、懸濁重合、塊状重合、光重合などの種々の重合法により共重合させることにより、合成することができる。
本発明のb成分の熱伝導性フイラーとしては、たとえば、種々の金属粉、酸化アルミニウム、窒化アルミニウム、二酸化チタン、ホウ化チタン、窒化ホウ素、窒化ケイ素、炭化ケイ素などのセラミツクス粉が用いられる。熱伝導性フイラーの使用量は、上記a成分の共重合体100重量部に対し、10〜300重量部、好ましくは20〜120重量部であるのがよい。この量が10重量部に満たないときは、良好な熱伝導性が得られにくく、また300重量部を超えてしまうと、接着性などが損なわれるため、好ましくない。
本発明の熱伝導性感圧接着剤は、上記a成分の共重合体とb成分の熱伝導性フイラーとを上記割合で含むほか、必要により一般の充填剤、顔料、老化防止剤、粘着付与樹脂、難燃剤などの公知の各種の添加剤を含ませてもよい。また、感圧接着剤の保持特性を向上させるために、交叉結合剤として、多官能イソシアネート系化合物、多官能エポキシ系化合物などの外部架橋剤を加えたり、上記a成分の共重合体を光重合法などで得る際に内部架橋剤として多官能(メタ)アクリレートを添加するようにしてもよい。上記の多官能(メタ)アクリレートには、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、1,2−エチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレートなどがある。
これらの外部架橋剤や内部架橋剤は、上記a成分の共重合体とb成分の熱伝導性フイラーとの合計量100重量部に対して、0.05〜5重量部、好ましくは0.1〜3重量部の割合で使用するのがよい。内部架橋剤である多官能(メタ)アクリレートを用いる場合、上記範囲内において、2官能の場合は多く、3官能ないしそれ以上の多官能の場合は少なくするのがよい。外部架橋剤や内部架橋剤の使用量が過少では、十分な架橋度が得られず、感圧接着剤の層を形成した時に形状保持特性を向上させにくい。また、過多となると、感圧接着剤の弾性率が高くなり、接着面積の低下により、熱伝導性や接着性の低下を引き起こしやすい。
本発明の接着シート類は、熱伝導性基材の片面または両面に上記の熱伝導性感圧接着剤を設けて、シート状やテープ状の形態としたものである。熱伝導性基材としては、アルミニウム、銅、ステンレス、ベリリウム銅などの熱伝導性にすぐれる金属(合金を含む)の箔状物、熱伝導性シリコーンなどのそれ自体熱伝導性にすぐれるポリマーからなるシート状物、熱伝導性フイラーを含ませたプラスチツクフイルムが挙げられる。また、プラスチックフイルムとして、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリテトラフルオロエチレン、ポリエーテルケトン、ポリエーテルスルホン、ポリメチルペンテン、ポリエーテルイミド、ポリスルホン、ポリフエニレンサルフアイド、ポリアミドイミド、ポリエステルイミド、芳香族ポリアミドなどの耐熱性ポリマーからなるフイルムを使用することもできる。
特に本発明の接着シート類が電気絶縁性を必要とされる場合においては、熱伝導性基材として例えば上記のようなプラスチックフィルムを使用することが好ましい。上記プラスチックフィルムの中でも、耐熱性の点より、ポリイミドフィルム又はポリアミドイミドフィルムが好ましい。また、これらのフィルム中に電気絶縁性の熱伝導性フィラーを含有したプラスチックフィルムも、熱伝導性の面より好ましい。電気絶縁性の熱伝導性フィラーとしては、SiO2、TiB2、BN、Si3N4、TiO2、MgO、NiO、CuO、Al2O3、Fe2O3などが挙げられる。これらの中でも、熱伝導性や入手の容易さから、BNまたはAl2O3が特に好ましく用いられる。これら電気絶縁性の熱伝導性フィラーは、通常、1〜250μm、好ましくは1〜100μm、より好ましくは2〜10μmの平均粒子径を有しているのがよい。粒子形状は、球状、針状、フレーク状、スター状などのいかなる形状でもよい。また、使用量は、フィルム中、2〜50容量%、好ましくは10〜35容量%となるようにするのがよい。
熱伝導性基材の厚さは、適宜に決定しうるが、熱伝導性感圧接着剤の層を設けた状態での耐熱性および熱伝導性の点より、通常10〜125μm、好ましくは25〜100μmとするのがよい。また、この上に設ける熱伝導性感圧接着剤の層の厚さも、適宜に決定しうるが、接着特性や熱伝導性などの点より、通常10〜200μm、好ましくは30〜130μmとするのがよい。なお、60μm以上の厚さとする場合、接着性や熱伝導性などの点より、共重合体の合成に際し、塊状重合や光重合、とくに光重合による重合法を採用するのが望ましい。
本発明の接着シート類の製造は、剥離ライナー上に熱伝導性感圧接着剤を塗布したり、この塗布後に光重合などの重合処理を施して、上記感圧接着剤の層を形成したのち、この層を熱伝導性基材の片面または両面に転写することにより、行うことができる。また、剥離ライナーを使用せず、熱伝導性基材の片面または両面に上記の熱伝導性感圧接着剤を直接塗布したり、この塗布後に光重合などの重合処理を施して、上記感圧接着剤の層を形成するといつた方法で行つてもよい。熱伝導性基材の種類などに応じて、適宜の方法を採用できる。
本発明において、上記熱伝導性感圧接着剤またはその接着シート類を用いて電子部品と放熱部材とを接着固定するには、両者間に上記の接着材料を介装し、その感圧接着性を利用して圧着処理すればよい。その際、熱伝導性感圧接着剤の接着力が大きく、しかも適度な弾性率によつて十分な接着面積を確保できることから、電子部品などに損傷をきたすことのない低い圧力で圧着したときでも、熱伝導性良好にして強固な接着固定が可能となる。
図1は、上記接着固定の一例を示したものであり、この例では、電子部品1と放熱部材3との間に、熱伝導性基材21の両面に熱伝導性感圧接着剤の層22,23を設けてなる接着シート類2を介装して、上記表裏の感圧接着剤の層22,23にて電子部品1と放熱部材3とを熱伝導性良好に接着固定したものである。また、図2は、他の接着固定の例を示したものであり、電子部品1と放熱部材3との一方または両方、好ましくは放熱部材3の方に、熱伝導性感圧接着剤の層24を塗布法や転写法などにより直接形成し、この層24により電子部品1と放熱部材3とを熱伝導性良好に接着固定したものである。
接着固定対象の電子部品には、ICチツプ、ハイブリツドパツケージ、マルチモジユール、パワートランジスタ、プラスチツクや金属による密封型の集積回路などが挙げられる。本発明は、IC回路を高度に集積したもののように、発熱量の大きい電子部品の接着固定に有利に適用することができる。
また、接着固定の対象となる他方の放熱部材には、たとえば、熱伝導性基材の形成材として例示したアルミニウムや銅などの金属の箔状物やシート状物などからなるヒートシンクや、その他の放熱器などが挙げられる。上記ヒートシンクの厚さは10μm〜10mm、好ましくは50μm〜5mm、より好ましくは100μm〜3mmが一般的であるが、これに限定されない。また、放熱器は、冷却フインを有する形態などの適宜の構造物であつてもよい。
なお、本発明の熱伝導性感圧接着剤またはその接着シート類は、上記した電子部品と放熱部材との接着固定だけではなく、建材、車輛、航空機、船舶などの各種分野での部材の固定目的などの用にも供することができ、これらの用途目的に対しても上記と同様の効果を奏することができる。
つぎに、本発明の実施例を記載して、より具体的に説明する。なお、以下において、部とあるのは重量部を意味する。
(実施例1)
アクリル酸2−エチルヘキシル85部、アクリル酸5部、カプロラクトン変性のアクリレート〔東亜合成化学(株)製の「アロニツクスM−5300」(Tg=<−50℃)〕10部を、210部の酢酸エチル中で、2,2−アゾビスイソブチロニトリル0.4部の共存下、かつ窒素置換下に60〜80℃で撹拌しながら溶液重合処理して、粘度約120ポイズ、重合率99.2重量%、固形分30重量%の共重合体溶液を得た。この溶液に、共重合体100重量部に対して、多官能イソシアネート系架橋剤3部と窒化ホウ素(BN)40部を加えて、よく混合することにより、熱伝導性感圧接着剤を調製した。
つぎに、剥離剤で表面処理したポリエステルフイルムを剥離ライナーとして、これに上記の熱伝導性感圧接着剤を塗布し、熱風乾燥機中、40℃で5分間乾燥後、さらに130℃で5分間乾燥処理して、厚さ50μmの熱伝導性感圧接着剤の層を形成した。この層を、熱伝導性基材としての厚さ30μmのアルミニウム箔の両面に転写して、全厚が130μmとなる接着シートを作製した。
(実施例2)
アクリル酸イソノニル66部、アクリル酸ブチル20部、アクリル酸4部、カプロラクトン変性のアクリレート(実施例1と同じもの)10部および2,2−ジメトキシ−2−フエニルアセトフエノン(光重合開始剤)0.1部からなるプレミツクスを、窒素雰囲気中で紫外線に暴露して部分重合させ、粘度が約4,000センチポイズの塗布可能なシロツプを得た。このシロツプ100部に、トリメチロールプロパントリアクリレート(交叉結合剤)0.2部と窒化ホウ素40部を加え、よく混合して、光重合性組成物を調製した。
つぎに、剥離剤で表面処理したポリエステルフイルムを剥離ライナーとして、これに上記の光重合性組成物を塗布し、窒素ガス雰囲気下に光強度5mW/cm2の高圧水銀ランプで900mj/cm2の紫外線を照射して光重合処理したのち、熱風乾燥機中、130℃で5分間乾燥処理して、厚さ50μmの熱伝導性感圧接着剤の層を形成した。この層を、熱伝導性基材としての厚さ30μmのアルミニウム箔の両面に転写して、全厚が130μmとなる接着シートを作製した。
(実施例3)
光重合性組成物における窒化ホウ素の添加量を100部に変更した以外は、実施例2と同様にして、接着シートを作製した。
(実施例4)
単量体混合物として、アクリル酸イソノニル64部、アクリル酸1部およびカプロラクトン変性のアクリレート(実施例1と同じもの)15部を用いた以外は、実施例2と同様にして、接着シートを作製した。
(実施例5)
アクリル酸イソオクチル66部、アクリル酸ブチル20部、アクリロイルモルフオリン4部、2−アクリロイルオキシエチルコハク酸〔東亜合成化学(株)製の「アロニツクスM−5400」(Tg=<−50℃)〕10部および2,2−ジメトキシ−2−フエニルアセトフエノン(光重合開始剤)0.1部からなるプレミツクスを、窒素雰囲気中で紫外線に暴露して部分重合させ、粘度が約4,000センチポイズの塗布可能なシロツプを得た。このシロツプ100重量部に、トリメチロールプロパントリアクリレート(交叉結合剤)0.2部と窒化ホウ素40部を加え、よく混合して、光重合性組成物を調製した。
つぎに、剥離剤で表面処理したポリエステルフイルムを剥離ライナーとして、これに上記の光重合性組成物を塗布し、窒素ガス雰囲気下に光強度5mW/cm2の高圧水銀ランプで900mj/cm2の紫外線を照射して光重合処理したのち、熱風乾燥機中、130℃で5分間乾燥処理して、厚さ50μmの熱伝導性感圧接着剤の層を形成した。この層を、熱伝導性基材としての厚さ30μmのアルミニウム箔の両面に転写して、全厚が130μmとなる接着シートを作製した。
(実施例6)
アクリル酸2−エチルヘキシル95部、アクリル酸5部、カプロラクトン変性のアクリレート〔東亜合成化学(株)製の「アロニツクスM−5300」(Tg=<−50℃)〕10部を、210部の酢酸エチル中で、2,2−アゾビスイソブチロニトリル0.4部の共存下、かつ窒素置換下に60〜80℃で撹拌しながら溶液重合処理して、粘度約120ポイズ、重合率99.2重量%、固形分30重量%の共重合体溶液を得た。この溶液に、共重合体100重量部に対して、多官能イソシアネート系架橋剤3部と窒化ホウ素(BN)40部を加えて、よく混合することにより、熱伝導性感圧接着剤を調製した。
つぎに、剥離剤で表面処理したポリエステルフイルムを剥離ライナーとして、これに上記の熱伝導性感圧接着剤を塗布し、熱風乾燥機中、40℃で5分間乾燥後、さらに130℃で5分間乾燥処理して、厚さ50μmの熱伝導性感圧接着剤の層を形成した。
(実施例7)
アクリル酸イソオクチル66部、アクリル酸ブチル20部、アクリロイルモルフオリン4部、2−アクリロイルオキシエチルコハク酸〔東亜合成化学(株)製の「アロニツクスM−5400」(Tg=<−50℃)〕10部および2,2−ジメトキシ−2−フエニルアセトフエノン(光重合開始剤)0.1部からなるプレミツクスを、窒素雰囲気中で紫外線に暴露して部分重合させ、粘度が約4,000センチポイズの塗布可能なシロツプを得た。このシロツプ100重量部に、トリメチロールプロパントリアクリレート(交叉結合剤)0.2部とアルミナ(Al2O3)100部を加え、よく混合して、光重合性組成物を調製した。
つぎに、上記光重合性組成物を、Al2O3を約17容量%含有したポリイミドフィルム(厚さ25μm)の片面に塗布し、窒素ガス雰囲気下に光強度5mW/cm2の高圧水銀ランプで900mj/cm2の紫外線を照射して光重合処理したのち、熱風乾燥機中、130℃で5分間乾燥処理して、厚さ50μmの熱伝導性感圧接着剤の層を有する接着シート(全厚75μm)を作製した。
(実施例8)
光重合性組成物を、Al2O3を約17容量%含有したポリイミドフィルム(厚さ25μm)の両面に塗布した以外は、実施例7と同様にして接着シート(全厚み125μm)を作製した。
(比較例1)
アクリル酸イソオクチル67部、アクリル酸ブチル30部、アクリル酸3部、および2,2−ジメトキシ−2−フエニルアセトフエノン(光重合開始剤)0.1部からなるプレミツクスを、窒素雰囲気中で紫外線に暴露して部分重合させ、粘度が約4,000センチポイズの塗布可能なシロツプを得た。このシロツプ100部に、トリメチロールプロパントリアクリレート(交叉結合剤)0.2部と窒化ホウ素40部を加え、よく混合して、光重合性組成物を調製した。
つぎに、剥離剤で表面処理したポリエステルフイルムを剥離ライナーとして、これに上記の光重合性組成物を塗布し、窒素ガス雰囲気下に光強度5mW/cm2の高圧水銀ランプで900mj/cm2の紫外線を照射して光重合処理したのち、熱風乾燥機中、130℃で5分間乾燥処理して、厚さ50μmの熱伝導性感圧接着剤の層を形成した。この層を、熱伝導性基材としての厚さ30μmのアルミニウム箔の両面に転写して、全厚が130μmとなる接着シートを作製した。
(比較例2)
単量体混合物として、アクリル酸イソオクチル65部、アクリル酸ブチル20部およびアクリル酸15部を用いた以外は、実施例2と同様にして、接着シートを作製した。
(比較例3)
アクリル酸ブチル77部、アクリル酸イソボルニル20部、アクリル酸3部および2,2−ジメトキシ−2−フエニルアセトフエノン(光重合開始剤)0.1部からなるプレミツクスを、窒素雰囲気中で紫外線に暴露して部分重合させ、粘度が約4,000センチポイズの塗布可能なシロツプを得た。このシロツプ100部に、トリメチロールプロパントリアクリレート(交叉結合剤)0.2部と窒化ホウ素40部を加え、よく混合して、光重合性組成物を調製した。
つぎに、剥離剤で表面処理したポリエステルフイルムを剥離ライナーとして、これに上記の光重合性組成物を塗布し、窒素ガス雰囲気下に光強度5mW/cm2の高圧水銀ランプで900mj/cm2の紫外線を照射して光重合処理したのち、熱風乾燥機中、130℃で5分間乾燥処理して、厚さ50μmの熱伝導性感圧接着剤の層を形成した。この層を、熱伝導性基材としての厚さ30μmのアルミニウム箔の両面に転写して、全厚が130μmとなる接着シートを作製した。
(比較例4)
アクリル酸ブチル95部、アクリル酸5部および2,2−ジメトキシ−2−フエニルアセトフエノン(光重合開始剤)0.1部からなるプレミツクスを、窒素雰囲気中で紫外線に暴露して部分重合させ、粘度が約4,000センチポイズの塗布可能なシロツプを得た。このシロツプ100部に、トリメチロールプロパントリアクリレート(交叉結合剤)0.2部と窒化ホウ素400部を加え、よく混合して、光重合性組成物を調製した。
つぎに、剥離剤で表面処理したポリエステルフイルムを剥離ライナーとして、これに上記の光重合性組成物を塗布し、窒素ガス雰囲気下に光強度5mW/cm2の高圧水銀ランプで900mj/cm2の紫外線を照射して光重合処理したのち、熱風乾燥機中、130℃で5分間乾燥処理して、厚さ50μmの熱伝導性感圧接着剤の層を形成した。この層を、熱伝導性基材としての厚さ30μmのアルミニウム箔の両面に転写して、全厚が130μmとなる接着シートを作製した。
以上の実施例1〜8および比較例1〜4で作製した各接着シートについて、接着力試験および熱抵抗試験を下記の方法により行つた。これらの結果は、後記の表1に示されるとおりであつた。
<接着力試験>
接着シートの片面に厚さが25μmのポリエステルフイルムを貼り付けて、幅20mm、長さ100mmの試験テープを作製する。これを研磨されたステンレス板に2Kgローラで1往復させて貼り付け、23℃、相対湿度65%の条件で30分間エージングしたのち、23℃、相対湿度65%の条件で引つ張り試験機により、300mm/分の引つ張り速度で180°引き剥がし、接着力を測定した。
なお、実施例7の接着シートについては、ポリエステルフィルムを貼り付けずに測定を行なった。
<熱抵抗試験>
TO−220パツケージ中のトランジスタを、接着シートを用いて、水に浸し一定温度になつたヒートシンクに、圧着圧力1kg/cm2で接着若しくはクリップ等の治具にて固定したのち、トランジスタに一定量の出力を供給し、トランジスタの温度(T2)と接着シート下側の表面温度(T1)の温度差(T2−T1)を測定した。この温度差より、下記にしたがつて、熱抵抗を測定した。
熱抵抗(℃・cm2/W)=(T2−T1)×A/P
A:トランジスタの面積(cm2)
P:トランジスタの消費電力(W)
なお、トランジスタの温度(T2)は、トランジスタパッケージの金属ベース部分にスポツト溶接された熱電対により測定した。また、接着シート下側の表面温度(T1)は、ヒートシンクに微小の穴をあけ、熱電対を押し込むことにより測定した。その際、熱電対を接着シートの接着面積に影響がないように極力近接して保持するようにした。なおまた、上記方法にて測定される熱抵抗は、その値が小さいほど熱伝導性にすぐれていることを意味している。
上記の表1の結果から明らかなように、本発明の実施例1〜8の各接着シートは、高極性のステンレス板に対する接着力が600gf/20mm幅以上と大きく、しかも熱抵抗が5.0℃・cm2/W以下と小さくなつており、接着性および熱伝導性に非常にすぐれたものであることがわかる。
産業上の利用可能性
以上のように、本発明は、ホモポリマーのガラス転移点が0℃以下となる極性モノマーを共重合成分としたアクリル系共重合体に熱伝導性フイラーを加えることにより、電子部品を破壊することのない低い圧力で圧着しても、電子部品と放熱部材とを熱伝導性良好に接着固定できる、接着性および熱伝導性にすぐれる熱伝導性感圧接着剤とその接着シート類を提供することができる。Technical field
The present invention relates to a heat conductive pressure-sensitive adhesive and adhesive sheets that are provided on a heat conductive base material to form a sheet or tape.
Background art
Conventionally, in electronic components such as hybrid packages, multi-modules, and sealed integrated circuits made of plastics and metals, the amount of heat generated increases with the integration of IC circuits, and the electronic components are Since there is a possibility of causing a functional failure, measures are taken to prevent functional failure by attaching a heat radiating member such as a heat sink to the electronic component.
As a method for attaching a heat radiating member to an electronic component, there is known a method using an adhesive in which aluminum powder or the like is added to a composition containing a polymerizable acrylate monomer and a free radical initiator (US Pat. No. 4,722). 960 specification). However, the above adhesive must be applied to one or both of the electronic component and the heat radiating member and then cured by using a primer or blocking oxygen. There is a problem that the manufacturing efficiency of the electronic device is poor, for example, it is necessary to temporarily fix the adherend until it is cured.
On the other hand, a method using a so-called heat-conductive pressure-sensitive adhesive having heat conductivity and pressure-sensitive adhesive property is also known. According to this, the bonding process does not require much time and labor. It is possible to easily attach a heat radiating member to the electronic component. However, since the material of the heat sink and semiconductor package is a metal or metal oxide having a highly polar surface state, it exhibits excellent adhesion to these, and pressure sensitive adhesives that exhibit good thermal conductivity However, at present, few heat-conductive pressure-sensitive adhesives satisfying such properties have been found.
For example, acrylic pressure-sensitive adhesives are expected to improve adhesion to heat sinks, semiconductor packages, and the like when a large amount of highly polar monomer such as acrylic acid is used during the synthesis of the adhesive polymer. However, since most polar monomers have a glass transition point as a homopolymer of room temperature (20 ° C.) or higher, when used in a large amount, the glass transition point of the polymer is increased, and the general use temperature of the adhesive is increased. That is, the elastic modulus increases at around room temperature. Such an increase in elastic modulus hinders the contact area of the adhesive to the heat sink or semiconductor package, and it must be pressure-bonded at a high pressure or high temperature. However, recent semiconductor packages are highly integrated and delicate. When a high pressure is applied to the semiconductor package, the pins are broken or the package itself is destroyed. In order to avoid this, when the pressure bonding is performed at a low pressure, the above contact area cannot be obtained sufficiently, the thermal conductivity and the adhesiveness are lowered, and the functional failure and dropout occur.
For these reasons, when synthesizing adhesive polymers, if the amount of high polar monomers such as acrylic acid is reduced and the above contact area is secured, the adhesion itself to heat sinks and semiconductor packages will be reduced. However, problems such as dropping off will also occur. Further, in this type of heat conductive pressure sensitive adhesive, heat conductivity is usually obtained by including a heat conductive filler in the pressure sensitive adhesive, but the amount of heat conductive filler added is small. If the amount is small, it is difficult to obtain good thermal conductivity. On the other hand, if the amount added is increased to improve the thermal conductivity, the adhesive strength to the heat sink and the like will drop, causing problems such as falling off. Will be produced.
As described above, according to the heat conductive pressure-sensitive adhesive, there is an advantage that the heat dissipating member can be easily attached to the electronic component without requiring a lot of labor and time for the adhering process, but a high-polarity heat dissipating plate. Pressure-sensitive adhesives that show good adhesion to semiconductor packages and the like and have excellent thermal conductivity have not been found until today. It has not always been possible to effectively prevent the occurrence of functional failure of electronic components due to temperature rise.
In light of such circumstances, the present invention is a heat-conductive pressure-sensitive adhesive and adhesive sheets excellent in adhesiveness and heat conductivity, and particularly destroys electronic components and heat dissipation members. Even when crimped at a low pressure, it can be bonded and fixed with good thermal conductivity, thereby efficiently transferring the heat generated by the electronic components to the heat radiating member and ensuring the occurrence of functional failure of the electronic components due to temperature rise It is an object of the present invention to provide the above heat conductive pressure sensitive adhesive and its adhesive sheet.
Disclosure of the invention
As a result of intensive investigations to achieve the above object, the present inventors have found that an acrylic copolymer having a specific polar monomer having a glass transition point of 0 ° C. or less as a homopolymer as a copolymerization component is used. In addition to providing excellent adhesion based on the above monomers, there is almost no increase in the glass transition point of the copolymer and a corresponding increase in the elastic modulus around room temperature, and this copolymer has an appropriate amount of thermal conductivity. Thermally conductive pressure-sensitive adhesive with filler added ensures sufficient adhesion area when bonding electronic components and heat dissipation members, and even when crimped with low pressure without destroying electronic components, It has been found that the heat dissipating member can be bonded and fixed with good heat conductivity and has excellent adhesion and heat conductivity, and the present invention has been completed.
That is, in the present invention, a) (meth) acrylic acid alkyl ester having an alkyl group having an average of 2 to 14 carbon atoms in an amount of 88 to 100% by weight and a monoethylenically unsaturated monomer 12 to 12 copolymerizable therewith. 1 to 30% by weight of a main monomer composed of 0% by weight and a monomer having a glass transition point of 0 ° C. or less as a homopolymer and having a carboxyl group as a polar group in the molecule % Of a monomer mixture copolymer, and b) a heat conductive filler in a proportion of 10 to 300 parts by weight with respect to 100 parts by weight of the copolymer. This relates to a heat conductive pressure-sensitive adhesive (claim 1). The present invention also relates to adhesive sheets (
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state in which an electronic component and a heat radiating member are bonded and fixed using the adhesive sheets of the present invention, and FIG. 2 is an electronic diagram using the heat conductive pressure sensitive adhesive of the present invention. It is sectional drawing which shows the state which adhere | attached and fixed the components and the heat radiating member.
BEST MODE FOR CARRYING OUT THE INVENTION
In the copolymer of the component a of the present invention, the main monomer is an alkyl (meth) acrylic acid alkyl ester having an average of 2 to 14 carbon atoms in an alkyl group of 88 to 100% by weight, preferably 94 to 99% by weight. %, And 12 to 0% by weight, preferably 6 to 1% by weight, of a monoethylenically unsaturated monomer copolymerizable therewith. The latter monoethylenically unsaturated monomer is used as necessary for the purpose of adjusting a small amount of properties such as adhesive strength and cohesive strength of the copolymer, but if this amount exceeds the above range, the copolymer is used. Inconvenience such as a decrease in the adhesion area occurs due to an increase in the elastic modulus of the material.
Examples of the (meth) acrylic acid alkyl ester having an average of 2 to 14 carbon atoms in the main monomer include, for example, butyl (meth) acrylate, isononyl (meth) acrylate, and (meth) acrylic acid. Examples include isooctyl and 2-ethylhexyl (meth) acrylate. Examples of copolymerizable monoethylenically unsaturated monomers include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, and maleic acid, and nitrogen-containing monomers such as acrylamide, N-vinylpyrrolidone, and acryloylmorpholine. Is mentioned.
In the present invention, together with the main monomer, a monomer mixture for constituting a copolymer using a polar monomer having a glass transition point (hereinafter referred to as Tg) as a homopolymer of 0 ° C. or less, and To do. The polar monomer is used in an amount of 1 to 30% by weight, preferably 5 to 20% by weight, based on the main monomer. When it is less than 1% by weight, it cannot contribute to improvement in adhesion and Tg reduction of the copolymer, and it tends to hinder the adhesion and fixation between the electronic component and the heat dissipation member with good thermal conductivity. On the other hand, if it exceeds 30% by weight, properties such as the balance between the adhesive force and the cohesive force and the inherent heat resistance of the acrylic system are impaired, and as a result, the same problems as described above are likely to occur.
As the polar monomer, a monomer having a carboxyl group as a polar group in the molecule is preferable. For example, caprolactone-modified acrylate [“Aronix M-5300” manufactured by Toagosei Co., Ltd. (Tg = <− 50 ° C.) ] 2-acryloyloxyethyl succinic acid [“Aronix M-5400” (Tg = <− 50 ° C.) manufactured by Toa Synthetic Chemical Co., Ltd.], 2-acryloyloxyethylphthalic acid [manufactured by Toa Synthetic Chemical Co., Ltd. “Aronix M-5500” (Tg = −40 ° C.)] and the like.
The copolymer of component a of the present invention is obtained by copolymerizing the above monomer mixture by various polymerization methods such as solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization, and photopolymerization by a conventional method. Can be synthesized.
As the heat conductive filler of the component b of the present invention, for example, various metal powders, ceramic powders such as aluminum oxide, aluminum nitride, titanium dioxide, titanium boride, boron nitride, silicon nitride, silicon carbide and the like are used. The amount of the heat conductive filler used is 10 to 300 parts by weight, preferably 20 to 120 parts by weight, based on 100 parts by weight of the copolymer of component a. When this amount is less than 10 parts by weight, it is difficult to obtain good thermal conductivity, and when it exceeds 300 parts by weight, adhesiveness and the like are impaired.
The heat conductive pressure-sensitive adhesive of the present invention contains the above component a copolymer and the component b heat conductive filler in the above proportions, and if necessary, a general filler, pigment, anti-aging agent, and tackifying resin. Various known additives such as a flame retardant may be included. In addition, in order to improve the holding property of the pressure-sensitive adhesive, an external cross-linking agent such as a polyfunctional isocyanate compound or polyfunctional epoxy compound is added as a cross-linking agent, or the copolymer of the component a is photopolymerized. When obtained by a legal method or the like, polyfunctional (meth) acrylate may be added as an internal crosslinking agent. Examples of the polyfunctional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, and 1,6-hexanediol di (meth). Examples include acrylate.
These external cross-linking agents and internal cross-linking agents are 0.05 to 5 parts by weight, preferably 0.1 parts per 100 parts by weight of the total amount of the copolymer of component a and the thermally conductive filler of component b. It is good to use at a ratio of ˜3 parts by weight. In the case of using a polyfunctional (meth) acrylate that is an internal cross-linking agent, it is preferable that the number of difunctionals is large within the above range, and the number of trifunctional or higher functionals is small. If the amount of the external cross-linking agent or internal cross-linking agent used is too small, a sufficient degree of cross-linking cannot be obtained, and it is difficult to improve the shape retention characteristics when a pressure-sensitive adhesive layer is formed. On the other hand, if the amount is excessive, the elastic modulus of the pressure-sensitive adhesive increases, and a decrease in the adhesion area tends to cause a decrease in thermal conductivity and adhesion.
The adhesive sheets of the present invention are formed into a sheet-like or tape-like form by providing the above-mentioned thermally conductive pressure-sensitive adhesive on one side or both sides of a thermally conductive substrate. Thermally conductive base materials include foils of metals (including alloys) with excellent thermal conductivity such as aluminum, copper, stainless steel, and beryllium copper, and polymers with excellent thermal conductivity such as thermal conductive silicone. And a plastic film containing a heat conductive filler. Also, as plastic film, polyimide, polyethylene terephthalate, polyethylene naphthalate, polytetrafluoroethylene, polyether ketone, polyethersulfone, polymethylpentene, polyetherimide, polysulfone, polyphenylene sulfide, polyamideimide, polyesterimide, A film made of a heat-resistant polymer such as aromatic polyamide can also be used.
In particular, when the adhesive sheets of the present invention require electrical insulation, it is preferable to use, for example, the plastic film as described above as the thermally conductive substrate. Among the plastic films, a polyimide film or a polyamideimide film is preferable from the viewpoint of heat resistance. Moreover, the plastic film which contained the electrically insulating heat conductive filler in these films is also preferable from the surface of heat conductivity. As an electrically insulating thermally conductive filler, SiO2 TiB2 , BN, SiThree NFour TiO2 , MgO, NiO, CuO, Al2 OThree , Fe2 OThree Etc. Among these, BN or Al due to thermal conductivity and availability2 OThree Is particularly preferably used. These electrically insulating heat conductive fillers usually have an average particle diameter of 1 to 250 μm, preferably 1 to 100 μm, more preferably 2 to 10 μm. The particle shape may be any shape such as a spherical shape, a needle shape, a flake shape, or a star shape. The amount used is 2 to 50% by volume in the film, preferably 10 to 35% by volume.
Although the thickness of a heat conductive base material can be determined suitably, it is 10-125 micrometers normally from the point of the heat resistance in the state which provided the layer of the heat conductive pressure sensitive adhesive, and heat conductivity, Preferably it is 25-25. It is good to set it as 100 micrometers. Further, the thickness of the thermally conductive pressure-sensitive adhesive layer provided thereon can be determined as appropriate, but is usually 10 to 200 μm, preferably 30 to 130 μm, from the viewpoint of adhesive properties and thermal conductivity. Good. When the thickness is 60 μm or more, it is desirable to employ a polymerization method by bulk polymerization or photopolymerization, particularly photopolymerization, in synthesizing the copolymer from the viewpoints of adhesion and thermal conductivity.
Production of the adhesive sheets of the present invention, after applying a heat conductive pressure sensitive adhesive on the release liner, or after performing a polymerization treatment such as photopolymerization after this coating, to form the pressure sensitive adhesive layer, This can be done by transferring this layer to one or both sides of the thermally conductive substrate. In addition, without using a release liner, the above heat-sensitive pressure-sensitive adhesive may be directly applied to one or both sides of the heat-conductive substrate, or after this application, a polymerization treatment such as photopolymerization may be applied to the pressure-sensitive adhesive. It may be done in any way once the agent layer is formed. An appropriate method can be adopted according to the type of the heat conductive substrate.
In the present invention, in order to bond and fix the electronic component and the heat dissipating member using the heat conductive pressure sensitive adhesive or the adhesive sheet thereof, the above adhesive material is interposed between the two and the pressure sensitive adhesive property is increased. What is necessary is just to carry out a crimping process using it. At that time, the adhesive force of the heat conductive pressure sensitive adhesive is large, and since a sufficient adhesion area can be secured by an appropriate elastic modulus, even when crimped at a low pressure that does not cause damage to electronic components, It is possible to achieve strong adhesive fixation with good thermal conductivity.
FIG. 1 shows an example of the above-described adhesive fixing. In this example, a
Examples of the electronic parts to be bonded and fixed include IC chips, hybrid packages, multi-modules, power transistors, plastics and metal-sealed integrated circuits. The present invention can be advantageously applied to bonding and fixing electronic components having a large amount of heat generation, such as a highly integrated IC circuit.
In addition, the other heat radiating member to be bonded and fixed includes, for example, a heat sink made of a metal foil or sheet such as aluminum or copper exemplified as a material for forming a heat conductive substrate, and other For example, a radiator. The thickness of the heat sink is generally 10 μm to 10 mm, preferably 50 μm to 5 mm, more preferably 100 μm to 3 mm, but is not limited thereto. Further, the radiator may be an appropriate structure such as a form having a cooling fin.
The heat conductive pressure sensitive adhesive of the present invention or adhesive sheets thereof are not only used for bonding and fixing the electronic component and the heat radiating member, but also for fixing members in various fields such as building materials, vehicles, aircraft, ships, etc. The same effects as described above can be obtained for these purposes.
Next, examples of the present invention will be described in more detail. In the following, “parts” means parts by weight.
Example 1
85 parts of 2-ethylhexyl acrylate, 5 parts of acrylic acid, 10 parts of caprolactone-modified acrylate [“Aronix M-5300” (Tg = <− 50 ° C.) manufactured by Toagosei Co., Ltd.], 210 parts of ethyl acetate In this, solution polymerization treatment was performed with stirring at 60 to 80 ° C. in the presence of 0.4 part of 2,2-azobisisobutyronitrile and under nitrogen substitution, and the viscosity was about 120 poise and the polymerization rate was 99.2. A copolymer solution having a weight percentage of 30% and a solid content of 30% was obtained. To this solution, 3 parts of a polyfunctional isocyanate-based crosslinking agent and 40 parts of boron nitride (BN) were added to 100 parts by weight of the copolymer and mixed well to prepare a heat conductive pressure sensitive adhesive.
Next, a polyester film surface-treated with a release agent is used as a release liner, and the above heat conductive pressure-sensitive adhesive is applied thereto, dried in a hot air dryer at 40 ° C. for 5 minutes, and further dried at 130 ° C. for 5 minutes. A layer of 50 μm thick thermally conductive pressure sensitive adhesive was formed. This layer was transferred onto both sides of an aluminum foil having a thickness of 30 μm as a heat conductive substrate to produce an adhesive sheet having a total thickness of 130 μm.
(Example 2)
66 parts of isononyl acrylate, 20 parts of butyl acrylate, 4 parts of acrylic acid, 10 parts of caprolactone-modified acrylate (the same as in Example 1) and 2,2-dimethoxy-2-phenylacetophenone (photopolymerization initiator) ) 0.1 part of the premix was exposed to ultraviolet rays in a nitrogen atmosphere and partially polymerized to obtain a coatable coat having a viscosity of about 4,000 centipoise. To 100 parts of this syrup, 0.2 part of trimethylolpropane triacrylate (crosslinking agent) and 40 parts of boron nitride were added and mixed well to prepare a photopolymerizable composition.
Next, the polyester film surface-treated with a release agent is used as a release liner, and the above-mentioned photopolymerizable composition is applied thereto, and the light intensity is 5 mW / cm in a nitrogen gas atmosphere.2 900mj / cm with high pressure mercury lamp2 After being subjected to photopolymerization treatment by irradiating the ultraviolet rays, a drying treatment was performed at 130 ° C. for 5 minutes in a hot air dryer to form a heat conductive pressure sensitive adhesive layer having a thickness of 50 μm. This layer was transferred onto both sides of an aluminum foil having a thickness of 30 μm as a heat conductive substrate to produce an adhesive sheet having a total thickness of 130 μm.
(Example 3)
An adhesive sheet was produced in the same manner as in Example 2 except that the amount of boron nitride added in the photopolymerizable composition was changed to 100 parts.
Example 4
An adhesive sheet was prepared in the same manner as in Example 2, except that 64 parts of isononyl acrylate, 1 part of acrylic acid, and 15 parts of caprolactone-modified acrylate (same as Example 1) were used as the monomer mixture. .
(Example 5)
Isooctyl acrylate 66 parts, butyl acrylate 20 parts, acryloyl morpholine 4 parts, 2-acryloyloxyethyl succinic acid [“Aronix M-5400” (Tg = <− 50 ° C.) manufactured by Toagosei Co., Ltd.]] 10 And a prepolymer consisting of 0.1 part of 2,2-dimethoxy-2-phenylacetophenone (photopolymerization initiator) and partially polymerized by exposure to ultraviolet light in a nitrogen atmosphere, and a viscosity of about 4,000 centipoise An applicable syrup was obtained. To 100 parts by weight of this syrup, 0.2 part of trimethylolpropane triacrylate (cross-linking agent) and 40 parts of boron nitride were added and mixed well to prepare a photopolymerizable composition.
Next, the polyester film surface-treated with a release agent is used as a release liner, and the above-mentioned photopolymerizable composition is applied thereto, and the light intensity is 5 mW / cm in a nitrogen gas atmosphere.2 900mj / cm with high pressure mercury lamp2 After being subjected to photopolymerization treatment by irradiating the ultraviolet rays, a drying treatment was performed at 130 ° C. for 5 minutes in a hot air dryer to form a heat conductive pressure sensitive adhesive layer having a thickness of 50 μm. This layer was transferred onto both sides of an aluminum foil having a thickness of 30 μm as a heat conductive substrate to produce an adhesive sheet having a total thickness of 130 μm.
(Example 6)
95 parts of 2-ethylhexyl acrylate, 5 parts of acrylic acid, 10 parts of caprolactone-modified acrylate [“Aronix M-5300” (Tg = <− 50 ° C.) manufactured by Toagosei Co., Ltd.], 210 parts of ethyl acetate In this, solution polymerization treatment was performed with stirring at 60 to 80 ° C. in the presence of 0.4 part of 2,2-azobisisobutyronitrile and under nitrogen substitution, and the viscosity was about 120 poise and the polymerization rate was 99.2. A copolymer solution having a weight percentage of 30% and a solid content of 30% was obtained. To this solution, 3 parts of a polyfunctional isocyanate-based crosslinking agent and 40 parts of boron nitride (BN) were added to 100 parts by weight of the copolymer and mixed well to prepare a heat conductive pressure sensitive adhesive.
Next, a polyester film surface-treated with a release agent is used as a release liner, and the above heat conductive pressure-sensitive adhesive is applied thereto, dried in a hot air dryer at 40 ° C. for 5 minutes, and further dried at 130 ° C. for 5 minutes. A layer of 50 μm thick thermally conductive pressure sensitive adhesive was formed.
(Example 7)
Isooctyl acrylate 66 parts, butyl acrylate 20 parts, acryloyl morpholine 4 parts, 2-acryloyloxyethyl succinic acid [“Aronix M-5400” (Tg = <− 50 ° C.) manufactured by Toagosei Co., Ltd.]] 10 And a prepolymer consisting of 0.1 part of 2,2-dimethoxy-2-phenylacetophenone (photopolymerization initiator) and partially polymerized by exposure to ultraviolet light in a nitrogen atmosphere, and a viscosity of about 4,000 centipoise An applicable syrup was obtained. To 100 parts by weight of this syrup, 0.2 parts of trimethylolpropane triacrylate (cross-linking agent) and alumina (Al2 OThree ) 100 parts was added and mixed well to prepare a photopolymerizable composition.
Next, the photopolymerizable composition is made of Al.2 OThree Is applied to one side of a polyimide film (thickness 25 μm) containing about 17% by volume of light, and the light intensity is 5 mW / cm in a nitrogen gas atmosphere.2 900mj / cm with high pressure mercury lamp2 After being subjected to photopolymerization treatment by irradiating with UV rays, it was dried in a hot air dryer at 130 ° C. for 5 minutes to produce an adhesive sheet (total thickness 75 μm) having a thickness of 50 μm thick heat conductive pressure sensitive adhesive. did.
(Example 8)
The photopolymerizable composition is made of Al2 OThree An adhesive sheet (total thickness: 125 μm) was prepared in the same manner as in Example 7 except that it was applied on both sides of a polyimide film (thickness: 25 μm).
(Comparative Example 1)
A premix consisting of 67 parts isooctyl acrylate, 30 parts butyl acrylate, 3 parts acrylic acid, and 0.1
Next, the polyester film surface-treated with a release agent is used as a release liner, and the above-mentioned photopolymerizable composition is applied thereto, and the light intensity is 5 mW / cm in a nitrogen gas atmosphere.2 900mj / cm with high pressure mercury lamp2 After being subjected to photopolymerization treatment by irradiating the ultraviolet rays, a drying treatment was performed at 130 ° C. for 5 minutes in a hot air dryer to form a heat conductive pressure sensitive adhesive layer having a thickness of 50 μm. This layer was transferred onto both sides of an aluminum foil having a thickness of 30 μm as a heat conductive substrate to produce an adhesive sheet having a total thickness of 130 μm.
(Comparative Example 2)
An adhesive sheet was prepared in the same manner as in Example 2 except that 65 parts of isooctyl acrylate, 20 parts of butyl acrylate and 15 parts of acrylic acid were used as the monomer mixture.
(Comparative Example 3)
A premix consisting of 77 parts of butyl acrylate, 20 parts of isobornyl acrylate, 3 parts of acrylic acid and 0.1 part of 2,2-dimethoxy-2-phenylacetophenone (photopolymerization initiator) was irradiated with ultraviolet light in a nitrogen atmosphere. And partially polymerized to obtain a coatable syrup having a viscosity of about 4,000 centipoise. To 100 parts of this syrup, 0.2 part of trimethylolpropane triacrylate (crosslinking agent) and 40 parts of boron nitride were added and mixed well to prepare a photopolymerizable composition.
Next, the polyester film surface-treated with a release agent is used as a release liner, and the above-mentioned photopolymerizable composition is applied thereto, and the light intensity is 5 mW / cm in a nitrogen gas atmosphere.2 900mj / cm with high pressure mercury lamp2 After being subjected to photopolymerization treatment by irradiating the ultraviolet rays, a drying treatment was performed at 130 ° C. for 5 minutes in a hot air dryer to form a heat conductive pressure sensitive adhesive layer having a thickness of 50 μm. This layer was transferred onto both sides of an aluminum foil having a thickness of 30 μm as a heat conductive substrate to produce an adhesive sheet having a total thickness of 130 μm.
(Comparative Example 4)
Prepolymers consisting of 95 parts of butyl acrylate, 5 parts of acrylic acid and 0.1 part of 2,2-dimethoxy-2-phenylacetophenone (photopolymerization initiator) are exposed to ultraviolet rays in a nitrogen atmosphere and partially polymerized. An applicable syrup having a viscosity of about 4,000 centipoise was obtained. To 100 parts of this syrup, 0.2 parts of trimethylolpropane triacrylate (crosslinking agent) and 400 parts of boron nitride were added and mixed well to prepare a photopolymerizable composition.
Next, the polyester film surface-treated with a release agent is used as a release liner, and the above-mentioned photopolymerizable composition is applied thereto, and the light intensity is 5 mW / cm in a nitrogen gas atmosphere.2 900mj / cm with high pressure mercury lamp2 After being subjected to photopolymerization treatment by irradiating the ultraviolet rays, a drying treatment was performed at 130 ° C. for 5 minutes in a hot air dryer to form a heat conductive pressure sensitive adhesive layer having a thickness of 50 μm. This layer was transferred onto both sides of an aluminum foil having a thickness of 30 μm as a heat conductive substrate to produce an adhesive sheet having a total thickness of 130 μm.
About each adhesive sheet produced by the above Examples 1-8 and Comparative Examples 1-4, the adhesive force test and the thermal resistance test were done by the following method. These results were as shown in Table 1 below.
<Adhesion test>
A polyester film having a thickness of 25 μm is attached to one side of the adhesive sheet to produce a test tape having a width of 20 mm and a length of 100 mm. This was affixed to a polished stainless steel plate with a 2 kg roller, and after aging for 30 minutes at 23 ° C. and 65% relative humidity, using a tensile tester at 23 ° C. and 65% relative humidity. The film was peeled 180 ° at a pulling speed of 300 mm / min, and the adhesive strength was measured.
In addition, about the adhesive sheet of Example 7, it measured without sticking a polyester film.
<Thermal resistance test>
Using a bonding sheet, the transistor in the TO-220 package was immersed in water and kept at a constant temperature, and the pressure was 1 kg / cm.2 After fixing with a jig such as an adhesive or a clip, a certain amount of output is supplied to the transistor, and the temperature difference (T2−T1) between the transistor temperature (T2) and the surface temperature (T1) below the adhesive sheet. It was measured. From this temperature difference, the thermal resistance was measured as follows.
Thermal resistance (℃ ・ cm2 / W) = (T2−T1) × A / P
A: Area of transistor (cm2 )
P: Power consumption of transistor (W)
The transistor temperature (T2) was measured by a thermocouple spot-welded to the metal base portion of the transistor package. Further, the surface temperature (T1) on the lower side of the adhesive sheet was measured by making a minute hole in the heat sink and pushing a thermocouple. At that time, the thermocouple was held as close as possible so as not to affect the bonding area of the adhesive sheet. Furthermore, the thermal resistance measured by the above method means that the smaller the value, the better the thermal conductivity.
As is clear from the results in Table 1 above, each of the adhesive sheets of Examples 1 to 8 of the present invention has a large adhesive strength of 600 gf / 20 mm width or more with respect to a high-polarity stainless steel plate and a thermal resistance of 5.0. ℃ ・ cm2 It can be seen that it is very low in adhesion and thermal conductivity.
Industrial applicability
As described above, the present invention destroys an electronic component by adding a heat conductive filler to an acrylic copolymer having a homopolymer as a copolymer component of a polar monomer having a glass transition point of 0 ° C. or less. To provide a heat-conductive pressure-sensitive adhesive and its adhesive sheets that can bond and fix electronic components and heat dissipation members with good heat conductivity even if they are crimped at a low pressure without any problems. Can do.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52450198AJP4086322B2 (en) | 1996-11-29 | 1997-11-19 | Thermally conductive pressure sensitive adhesive and its adhesive sheets |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31943896 | 1996-11-29 | ||
PCT/JP1997/004217WO1998023700A1 (en) | 1996-11-29 | 1997-11-19 | Thermally conductive pressure-sensitive adhesive and adhesive sheet containing the same |
JP52450198AJP4086322B2 (en) | 1996-11-29 | 1997-11-19 | Thermally conductive pressure sensitive adhesive and its adhesive sheets |
Publication Number | Publication Date |
---|---|
JP4086322B2true JP4086322B2 (en) | 2008-05-14 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52450198AExpired - Fee RelatedJP4086322B2 (en) | 1996-11-29 | 1997-11-19 | Thermally conductive pressure sensitive adhesive and its adhesive sheets |
Country | Link |
---|---|
JP (1) | JP4086322B2 (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012046710A1 (en)* | 2010-10-07 | 2012-04-12 | 株式会社日本触媒 | Heat-conductive adhesive agent |
WO2014010932A1 (en)* | 2012-07-10 | 2014-01-16 | (주)엘지하우시스 | Flame retardant adhesive agent composition having improved gas bubble stability, and method for preparing same |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012046710A1 (en)* | 2010-10-07 | 2012-04-12 | 株式会社日本触媒 | Heat-conductive adhesive agent |
WO2014010932A1 (en)* | 2012-07-10 | 2014-01-16 | (주)엘지하우시스 | Flame retardant adhesive agent composition having improved gas bubble stability, and method for preparing same |
US10301513B2 (en) | 2012-07-10 | 2019-05-28 | Lg Chem, Ltd. | Flame retardant adhesive agent composition having improved gas bubble stability, and method for preparing same |
Publication | Publication Date | Title |
---|---|---|
EP0942059B1 (en) | Thermally conductive pressure-sensitive adhesive and adhesive sheet containing the same | |
TW473534B (en) | Pressure-sensitive adhesive excellent in heat-resistance and heat conductivity, adhesive sheet comprising the same, and method of fixing electronic parts and heat-radiating member using the same | |
CA2273890C (en) | Thermally conductive pressure-sensitive adhesive, adhesive sheet containing the same, and method for fixing electronic part to heat-radiating member with the same | |
JP4086946B2 (en) | Thermally conductive pressure-sensitive adhesive sheets and methods for fixing electronic components and heat dissipation members using the same | |
JP4610168B2 (en) | Heat resistant masking tape | |
KR20130084608A (en) | Thermally conductive adhesive sheet | |
JP2001279196A (en) | Substrate-free, thermally conductive pressure-sensitive adhesive tape or sheet and method for manufacturing the same | |
JPH11181368A (en) | Heat-conductive pressure-sensitive adhesive sheets and method for fixing electronic part to heat-radiating member by using the same | |
JP3810515B2 (en) | Peelable thermally conductive pressure sensitive adhesive and its adhesive sheets | |
JP3909955B2 (en) | Thermally conductive pressure-sensitive adhesive sheets | |
JP6241643B2 (en) | Adhesive sheet and electronic device | |
TW397772B (en) | Heat-conductive and pressure-sensitive adhesive sheets and method for fixing electronic parts to heat-radiating members using the same | |
JPH10292158A (en) | Production of heat-conductive pressure-sensitive adhesive sheets | |
JP4086322B2 (en) | Thermally conductive pressure sensitive adhesive and its adhesive sheets | |
JPH11292998A (en) | Heat-conductive sheet | |
JPH10330692A (en) | Thermoconductive and pressure sensitive adhesive, and adhesive sheets by using the same | |
JP2003313518A (en) | Heat-resistant adhesive tape | |
JPH09183953A (en) | Heat-conductive adhesive sheet | |
KR100607372B1 (en) | Adhesive tape for electronic parts | |
WO2020130127A1 (en) | Double-faced adhesive tape for protection of terminal and production method for semiconductor device equipped with electromagnetic wave shielding film | |
KR100463891B1 (en) | Pressure-sensitive adhesive with excellent heat resistance and thermal conductivity, adhesive sheets thereof, and fixing methods for electronic components and heat-dissipating materials using the same | |
JPH0964256A (en) | Manufacture of electronic device, and its adhesive member |
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20060425 | |
A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20060615 | |
RD04 | Notification of resignation of power of attorney | Free format text:JAPANESE INTERMEDIATE CODE: A7424 Effective date:20060628 | |
A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20060801 | |
A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20060927 | |
A911 | Transfer to examiner for re-examination before appeal (zenchi) | Free format text:JAPANESE INTERMEDIATE CODE: A911 Effective date:20061026 | |
A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20061115 | |
A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20070111 | |
A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20070111 | |
RD04 | Notification of resignation of power of attorney | Free format text:JAPANESE INTERMEDIATE CODE: A7424 Effective date:20071130 | |
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20080213 | |
A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20080219 | |
FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20110228 Year of fee payment:3 | |
R150 | Certificate of patent or registration of utility model | Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20140228 Year of fee payment:6 | |
LAPS | Cancellation because of no payment of annual fees |