Movatterモバイル変換


[0]ホーム

URL:


JP4042943B2 - Solar cell control device and solar cell control method - Google Patents

Solar cell control device and solar cell control method
Download PDF

Info

Publication number
JP4042943B2
JP4042943B2JP26987299AJP26987299AJP4042943B2JP 4042943 B2JP4042943 B2JP 4042943B2JP 26987299 AJP26987299 AJP 26987299AJP 26987299 AJP26987299 AJP 26987299AJP 4042943 B2JP4042943 B2JP 4042943B2
Authority
JP
Japan
Prior art keywords
solar cell
voltage
current
operating point
optimum operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26987299A
Other languages
Japanese (ja)
Other versions
JP2001103675A (en
Inventor
賢治 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co LtdfiledCriticalYamaha Motor Co Ltd
Priority to JP26987299ApriorityCriticalpatent/JP4042943B2/en
Publication of JP2001103675ApublicationCriticalpatent/JP2001103675A/en
Application grantedgrantedCritical
Publication of JP4042943B2publicationCriticalpatent/JP4042943B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
この発明は、太陽電池の制御装置及び太陽電池の制御方法に関するものである。
【0002】
【従来の技術】
太陽電池は、電力供給用として種々の装置や住宅の冷暖房装置等に用いられている。この太陽電池の出力特性は、図4に電流−電圧特性A,B,Cとして表され、この特性は実稼働状態においては様々な要因(照度、気温、固体差、経年変化など)により変化する。
【0003】
つまり最大出力が得られる太陽電池電圧の特性が変化する。そのため実稼働状態において発電効率を高めるためには、その状況における最大電力を取り出せる太陽電池電圧を何らかの方法により求め、その電圧となるように制御する必要がある。
【0004】
従来、一般的に用いられている最適動作点の探索方法は、山登り法と呼ばれ、その方法は、太陽電池の出力電圧を出力電流により小刻みに変化させ、そのときの電力を計算しながら電力の最大点を探索するというものである。
【0005】
【発明が解決しようとする課題】
ところで、この山登り法では、最適動作点付近は、電流を変化させても電圧の変化量が微小なので、その積である電力の変化量も微小となる。そのため、デジタル制御の場合、精密に最適動作点を探索するためには、高い分解能を持ったA/D変換器が必要となり、また変化させる電流の刻み幅を狭くしなければならず、そのため最適動作点の探索に時間がかかる。
【0006】
この発明は、かかる点に鑑みてなされたもので、短時間で太陽電池の最適動作点を探索することが可能な太陽電池の制御装置及び太陽電池の制御方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。
【0008】
請求項1に記載の発明は、『太陽電池の開放電圧、短絡電流及び開放電圧より少し低い電圧に制御したときの電流を測定することで電流−電圧特性を近似的に把握する電流電圧特性把握手段と、
前記太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに前記太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、前記太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定する最適動作点決定手段と、
負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御する制御手段とを有することを特徴とする太陽電池の制御装置。』である。
【0009】
この請求項1に記載の発明によれば、電流−電圧特性を近似的に把握し、太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定し、負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御することができる。
【0010】
請求項2に記載の発明は、『前記太陽電池電流を制御する制御手段は、最適動作点電圧の推定値の移動平均結果を目標太陽電池電圧に用いることを特徴とする請求項1に記載の太陽電池の制御装置。』である。
【0011】
この請求項2に記載の発明によれば、最適動作点電圧の推定値の移動平均結果を目標太陽電池電圧に用いることで、日射量が瞬間的に変動しても影響を受けにくい。
【0012】
請求項3に記載の発明は、『太陽電池の開放電圧、短絡電流及び開放電圧より少し低い電圧に制御したときの電流を測定することで電流−電圧特性を近似的に把握し、
前記太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに前記太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、前記太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定し、
負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御することを特徴とする太陽電池の制御方法。』である。
【0013】
この請求項3に記載の発明によれば、電流−電圧特性を近似的に把握し、太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定し、負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御することができる。
【0014】
請求項4に記載の発明は、『前記最適動作点電圧の推定値の移動平均結果を目標太陽電池電圧に用いることを特徴とする請求項3に記載の太陽電池の制御方法。』である。
【0015】
この請求項4に記載の発明によれば、最適動作点電圧の推定値の移動平均結果を目標太陽電池電圧に用いることで、日射量が瞬間的に変動しても影響を受けにくい。
【0016】
【発明の実施の形態】
以下、この発明の太陽電池の制御装置及び太陽電池の制御方法を図面に基づいて説明する。図1は太陽電池の制御装置の回路図、図2は最適動作点の算出を説明する図である。
【0017】
負荷1には、バッテリ2と、太陽電池3が並列に接続され、バッテリ2と太陽電池3の電力により負荷1が駆動される。太陽電池3の正側の出力ライン4には、ダイオードD1とインダクタンス20が接続され、ダイオードD1により電流の逆流防止が行われる。また、正側の出力ライン4と負側の出力ライン5には、コンデンサC1が接続され、コンデンサC1は太陽電池3に並列になっている。
【0018】
太陽電池3の正側の出力ライン4には、電界効果トランジスタFET1が接続され、また正側の出力ライン4と負側の出力ライン5の間には、電界効果トランジスタFET2が接続され、電界効果トランジスタFET1のゲートは抵抗11を介して、電界効果トランジスタFET2のゲートは抵抗R12を介して太陽電池電圧制御回路11へ接続されている。太陽電池電圧制御回路11により電界効果トランジスタFET1及び電界効果トランジスタFET2を制御し、太陽電池電圧の制御を行なう。
【0019】
太陽電池3の電力を充電したり負荷に供給するときには、太陽電池電圧が目標電圧となるように電界効果トランジスタFET1及び電界効果トランジスタFET2を操作する。この電界効果トランジスタFET1及び電界効果トランジスタFET2を制御するときに生じる電圧変動は、コンデンサC1により、また電流変動はインダクタンス20により安定化するようになっている。
【0020】
また、太陽電池3の正側の出力ライン4と負側の出力ライン5との間には、分圧抵抗R1,R2が太陽電池3と並列に接続され、これらの分圧抵抗R1,R2により分圧された太陽電池電圧が、電圧バッファとしてのオペアンプOP1を介してCPU10及び太陽電池電圧制御回路11に入力されている。
【0021】
太陽電池3の負側の出力ライン5には、抵抗R3が接続され、この抵抗R3の太陽電池3側には抵抗R4を介してオペアンプOP2の非反転入力端子が接続され、負荷1側には抵抗5を介してオペアンプOP2の反転入力端子が接続され、オペアンプOP2の出力端子がCPU10に接続されている。オペアンプOP2の出力が反転入力端子に抵抗R6を介して負帰還され、太陽電池電流に比例した電圧が増幅されてCPU10に入力される。
【0022】
CPU10から目標電圧がデジタル信号として出力され、D/A変換回路12によりアナログ信号に変換されて太陽電池電圧制御回路11へ入力される。
【0023】
太陽電池3の正側の出力ライン4と負側の出力ライン5との間には、分圧抵抗R7,R8がバッテリ2と並列に接続され、この分圧抵抗R7,R8の間に比較回路13の正側端子が接続され、比較回路13の負側端子が分圧抵抗R9,R10の間に接続されている。バッテリ2が満充電になると、比較回路13では、負側端子側の電圧より正側端子の電圧が大きくなり、過充電防止信号を出力し、この過充電防止信号は太陽電池電圧制御回路11に入力される。太陽電池電圧制御回路11では、電界効果トランジスタFET1及び電界効果トランジスタFET2を制御してバッテリ2が過充電されないように制御する。
【0024】
CPU10は、太陽電池の開放電圧、短絡電流及び開放電圧より少し低い電圧に制御したときの電流を測定することで電流−電圧特性を近似的に把握する電流電圧特性把握手段100と、太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定する最適動作点決定手段101と、負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御する制御手段102とを有する。
【0025】
このように電流−電圧特性を近似的に把握し、太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定し、負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御することができる。
【0026】
太陽電池の実際の特性は、図2の点線で示すようになり、最適動作点P1より僅かに低いところに真の最適動作点P2があり、その点P2と第1の特性直線L1と第2の特性直線L2との交点から求める最適動作点P1とはずれがあるが、どちらの特性グラフによってもその最適動作点電圧V1はほぼ同じとなる。このことから、目標太陽電池電圧がV1となるように、電界効果トランジスタFET1及び電界効果トランジスタFET2のオン・オフのデューティ比を変えることで太陽電池電流を制御すれば、ほぼ最大出力を得ることができる。
【0027】
次に、太陽電池の制御装置のソフトウェア動作を、図3に基づいて説明する。ステップa1において、前回の処理から1分経過しているか否かの判断を行ない、1分経過していると、目標太陽電池電圧を開放電圧より十分に高い値に設定し(ステップa2)、オペアンプOP1の出力から太陽電池開放電圧V0を測定する(ステップa3)。
【0028】
目標太陽電池電圧を最適動作点電圧V1より十分に低い値に設定し(ステップa4)、オペアンプOP2の出力から太陽電池電流I0を測定する(ステップa5)。
【0029】
次に、目標太陽電池電圧をV0−ΔVに設定し(ステップa6)、太陽電池電流I1を測定する(ステップa7)。ただし、ΔVは最適動作点電圧V1の電圧以上でV0以下の適当な値とする。
【0030】
開放電圧V0と、この開放電圧V0より少し低い電圧V0−ΔVに制御したときの電流I1より第1の特性直線L1を求める(ステップa8)。さらに、短絡電流I0より第2の特性直線L2を求める(ステップa9)。
【0031】
このように太陽電池の開放電圧V0、短絡電流I0及び開放電圧V0より少し低い電圧V0−ΔVに制御したときの電流I1を測定することで電流−電圧特性を近似的に把握し、開放電圧と、この開放電圧より少し低い電圧に制御したときの電流を示す第1の特性直線L1と短絡電流の特性を示す第2の特性直線L2との交点から最適動作点P1を決定し、これらの交点から最適動作点P1を示す交点電圧V1を推定する(ステップa10)。
【0032】
この最適動作点P1を示す太陽電池電圧V1の移動平均をとる(ステップa11)。例えば、1分ごとに1回の太陽電池電圧V1を求めて記憶し、この記憶された太陽電池電圧V1から常に過去3回分の平均を求め、この移動平均の値を目標太陽電池電圧に設定し(ステップa12)、ステップa1へ移行し同様な制御を繰り返し、負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御する。
【0033】
このように最適動作点P1を示す太陽電池電圧V1の移動平均結果を演算に用いることで、日射量が瞬間的に変動しても影響を受けにくい。
【0034】
この実施の形態では、太陽電池3の開放電圧V0、短絡電流I0及び開放電圧より少し低い電圧に制御したときの電流I1を測定するだけで、電流−電圧特性を近似的に把握することができる。これにより第1の特性直線L1と第2の特性直線L2との交点から最適動作点P1を短時間に決定し、負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御することができる。
【0035】
【発明の効果】
前記したように、請求項1に記載の発明の太陽電池の制御装置では、電流−電圧特性を近似的に把握し、太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定し、負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御することができる。
【0036】
請求項2に記載の発明の太陽電池の制御装置では、最適動作点電圧の推定値の移動平均結果を目標太陽電池電圧に用いることで、日射量が瞬間的に変動しても影響を受けにくい。
【0037】
請求項3に記載の発明の太陽電池の制御方法では、電流−電圧特性を近似的に把握し、太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定し、負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御することができる。
【0038】
請求項4に記載の発明の太陽電池の制御方法では、最適動作点電圧の推定値の移動平均結果を目標太陽電池電圧に用いることで、日射量が瞬間的に変動しても影響を受けにくい。
【図面の簡単な説明】
【図1】太陽電池の制御装置の回路図である。
【図2】最適動作点の算出を説明する図である。
【図3】太陽電池の制御装置のソフトウェア動作フローチャートである。
【図4】太陽電池の電流−電圧特性を示す図である。
【符号の説明】
1 負荷
2 バッテリ
3 太陽電池
10 CPU
100 電流電圧特性把握手段
101 最適動作点決定手段
102 制御手段
L1 第1の特性直線
L2 第2の特性直線
P1 最適動作点
P2 真の最適動作点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell control device and a solar cell control method.
[0002]
[Prior art]
Solar cells are used in various devices, residential air conditioning units, and the like for power supply. The output characteristics of this solar cell are represented as current-voltage characteristics A, B, and C in FIG. 4, and these characteristics change due to various factors (illuminance, temperature, individual differences, aging, etc.) in actual operation. .
[0003]
That is, the characteristics of the solar cell voltage at which the maximum output is obtained change. Therefore, in order to increase the power generation efficiency in the actual operation state, it is necessary to obtain a solar cell voltage at which the maximum power in that situation can be obtained by some method and to control the voltage so as to be the same.
[0004]
Conventionally, the search method for the optimum operating point that is generally used is called the hill-climbing method, which changes the output voltage of the solar cell in small increments according to the output current and calculates the power at that time while calculating the power. It searches for the maximum point of.
[0005]
[Problems to be solved by the invention]
By the way, in this hill-climbing method, since the amount of change in voltage is minute even when the current is changed near the optimum operating point, the amount of change in power that is the product is also minute. Therefore, in the case of digital control, an A / D converter with high resolution is required to search for the optimal operating point precisely, and the step size of the current to be changed must be narrowed. It takes time to search for the operating point.
[0006]
This invention is made in view of this point, and it aims at providing the control apparatus and solar cell control method of a solar cell which can search the optimal operating point of a solar cell in a short time.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, the present invention is configured as follows.
[0008]
According to the first aspect of the present invention, the current-voltage characteristic grasping that approximates the current-voltage characteristic by measuring the current when the open-circuit voltage, the short-circuit current, and the open-circuit voltage of the solar battery are controlled to be slightly lower than the open-circuit voltage. Means,
When the terminal of the solar cell is opened, the open voltageappearing between the terminals isV0, and when the voltage between the terminals is controlledtodecrease by ΔV from V0, thecurrent flowing from the solar cell is I1, and (V0,0 ) And (V0−ΔV, I1), a straight line passing through the two points is obtained, the obtained first characteristic line andthe terminal of the solar cell are short-circuited, and the current flowing from the solar cell at that time is defined as I0, An optimum operating point determining means for determining an optimum operating point from the intersection with the second characteristic line that has aconstant current value I0 regardless of the following ;
And a control means for controlling the solar cell current so that the solar cell voltage becomes an optimum operating point voltage with a load connected. ].
[0009]
According to the first aspect of the present invention, the current-voltage characteristic is approximately grasped, and the open-circuit voltageappearing between the terminals when the terminals of thesolar cell are opened isV0, and the voltage between the terminals by ΔV from V0.the current flowing from the solar cell and I1 whenthecontrolledsodown,(V0,0) and (V0-ΔV, I1) obtains a straight line passing through the two points, the first characteristic linewhich the calculatedsolar With the terminal of the battery short-circuited, the current flowing from the solar battery at that time is set to I0, the optimum operating point is determined from the intersection with the second characteristic line thatbecomes a constant current value I0 regardless of the voltage, and the load is connected The solar cell current can be controlled so that the solar cell voltage becomes the optimum operating point voltage.
[0010]
According to a second aspect of the present invention, the control means for controlling the solar cell current uses a moving average result of an estimated value of the optimum operating point voltage as a target solar cell voltage. Control device for solar cells. ].
[0011]
According to the second aspect of the present invention, the moving average result of the estimated value of the optimum operating point voltage is used as the target solar cell voltage, so that it is hardly affected even if the amount of solar radiation fluctuates instantaneously.
[0012]
The invention according toclaim 3, “appropriately grasps the current-voltage characteristics by measuring the current when controlled to a voltage slightly lower than the open circuit voltage, short circuit current, and open circuit voltage of the solar cell,
When the terminal of the solar cell is opened, the open voltageappearing between the terminals isV0, and when the voltage between the terminals is controlledtodecrease by ΔV from V0, thecurrent flowing from the solar cell is I1, and (V0,0 ) And (V0−ΔV, I1), a straight line passing through the two points is obtained, the obtained first characteristic line andthe terminal of the solar cell are short-circuited, and the current flowing from the solar cell at that time is defined as I0, Regardless of the point of intersection with the second characteristic line, which has aconstant current value I0, the optimum operating point is determined.
A solar cell control method, wherein a solar cell current is controlled so that a solar cell voltage becomes an optimum operating point voltage in a state where a load is connected. ].
[0013]
According to the third aspect of the present invention, the current-voltage characteristic is approximately grasped, and the open-circuit voltageappearing between the terminals when the terminals of thesolar cell are opened isV0, and the inter-terminal voltage by ΔV from V0.the current flowing from the solar cell and I1 whenthecontrolledsodown,(V0,0) and (V0-ΔV, I1) obtains a straight line passing through the two points, the first characteristic linewhich the calculatedsolar With the terminal of the battery short-circuited, the current flowing from the solar battery at that time is set to I0, the optimum operating point is determined from the intersection with the second characteristic line thatbecomes a constant current value I0 regardless of the voltage, and the load is connected The solar cell current can be controlled so that the solar cell voltage becomes the optimum operating point voltage.
[0014]
According to a fourth aspect of the present invention, “the moving average result of the estimated value of the optimum operating point voltage is used as a target solar cell voltage. ].
[0015]
According to the fourth aspect of the invention, by using the moving average result of the estimated value of the optimum operating point voltage as the target solar cell voltage, even if the solar radiation amount fluctuates instantaneously, it is hardly affected.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a solar cell control device and a solar cell control method according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a solar cell control device, and FIG. 2 is a diagram for explaining the calculation of an optimum operating point.
[0017]
A battery 2 and asolar cell 3 are connected in parallel to the load 1, and the load 1 is driven by the electric power of the battery 2 and thesolar cell 3. A diode D1 and aninductance 20 are connected to the output line 4 on the positive side of thesolar cell 3, and current backflow prevention is performed by the diode D1. Further, a capacitor C1 is connected to the positive output line 4 and thenegative output line 5, and the capacitor C1 is in parallel with thesolar cell 3.
[0018]
A field effect transistor FET 1 is connected to the positive output line 4 of thesolar cell 3, and a field effect transistor FET 2 is connected between the positive output line 4 and thenegative output line 5. The gate of the transistor FET1 is connected to the solar cellvoltage control circuit 11 via theresistor 11, and the gate of the field effect transistor FET2 is connected to the solar cellvoltage control circuit 11 via the resistor R12. The solar cellvoltage control circuit 11 controls the field effect transistor FET1 and the field effect transistor FET2 to control the solar cell voltage.
[0019]
When the electric power of thesolar cell 3 is charged or supplied to the load, the field effect transistor FET1 and the field effect transistor FET2 are operated so that the solar cell voltage becomes the target voltage. The voltage fluctuation generated when controlling the field effect transistor FET1 and the field effect transistor FET2 is stabilized by the capacitor C1, and the current fluctuation is stabilized by theinductance 20.
[0020]
Further, voltage dividing resistors R1 and R2 are connected in parallel with thesolar cell 3 between the positive output line 4 and thenegative output line 5 of thesolar cell 3, and these voltage dividing resistors R1 and R2 The divided solar cell voltage is input to theCPU 10 and the solar cellvoltage control circuit 11 through an operational amplifier OP1 as a voltage buffer.
[0021]
The resistor R3 is connected to thenegative output line 5 of thesolar cell 3, the non-inverting input terminal of the operational amplifier OP2 is connected to thesolar cell 3 side of the resistor R3 via the resistor R4, and the load 1 side is connected to the load 1 side. An inverting input terminal of the operational amplifier OP2 is connected through theresistor 5, and an output terminal of the operational amplifier OP2 is connected to theCPU 10. The output of the operational amplifier OP2 is negatively fed back to the inverting input terminal via the resistor R6, and a voltage proportional to the solar cell current is amplified and input to theCPU 10.
[0022]
The target voltage is output as a digital signal from theCPU 10, converted into an analog signal by the D /A conversion circuit 12, and input to the solar cellvoltage control circuit 11.
[0023]
Voltage dividing resistors R7 and R8 are connected in parallel with the battery 2 between the positive output line 4 and thenegative output line 5 of thesolar cell 3, and a comparison circuit is provided between the voltage dividing resistors R7 and R8. 13 positive terminals are connected, and the negative terminal of thecomparison circuit 13 is connected between the voltage dividing resistors R9 and R10. When the battery 2 is fully charged, thecomparison circuit 13 causes the voltage at the positive terminal to be larger than the voltage at the negative terminal side, and outputs an overcharge prevention signal. This overcharge prevention signal is sent to the solar cellvoltage control circuit 11. Entered. The solar cellvoltage control circuit 11 controls the field effect transistor FET1 and the field effect transistor FET2 so that the battery 2 is not overcharged.
[0024]
CPU10 has an open circuit voltage of the solar cell, a current by measuring the current when controlling the voltage slightly lower than the short-circuit current and open circuit voltage - the current-voltage characteristic grasping means 100 for approximately grasp the voltage characteristicsof the solar cell The open circuit voltage thatappears between the terminals when the terminals are opened isV0, and thecurrent that flows from the solar cell when theterminal voltage is controlledtodecrease by ΔV from V0is I1, and (V0, 0) and (V0− A straight line passing through two points of ΔV, I1) is obtained, the obtained first characteristic line andthe terminal of thesolar cell are short-circuited, and the current flowing from the solar cell at that time is defined as I0, and a constant current value I0 regardless of the voltage and the second optimum operating point determination means 101 for determining the optimal operating point from the intersection of the characteristic line, braking the solar cell voltage in a state of connecting the load to control the solar cell current so that the optimum operating point voltage And it means 102.
[0025]
Thus, when the current-voltage characteristics are approximately grasped, the open voltageappearing between the terminals when the terminals of thesolar cell are opened isV0, andwhen the controlis performed so that the voltage between the terminals decreases from V0 by ΔV, The current flowing from the battery is I1, and a straight line passing through two points (V0, 0) and (V0−ΔV, I1) is obtained, and the obtained first characteristic line and thesolar cell terminal are short-circuited. The current flowing from the solar cell is set to I0, the optimum operating point is determined from the intersection with the second characteristic line thatbecomes a constant current value I0 regardless of the voltage, and the solar cell voltage becomes the optimum operating point voltage with the load connected. Thus, the solar cell current can be controlled.
[0026]
The actual characteristics of the solar cell are as shown by the dotted line in FIG. 2. The true optimum operating point P2 is located slightly below the optimum operating point P1, and the point P2, the first characteristic line L1, and the second Although there is a deviation from the optimum operating point P1 obtained from the intersection with the characteristic line L2, the optimum operating point voltage V1 is substantially the same in both characteristic graphs. From this, if the solar cell current is controlled by changing the on / off duty ratio of the field effect transistor FET1 and the field effect transistor FET2 so that the target solar cell voltage becomes V1, a substantially maximum output can be obtained. it can.
[0027]
Next, the software operation of the solar cell control device will be described with reference to FIG. In step a1, it is determined whether or not 1 minute has passed since the previous processing. If 1 minute has passed, the target solar cell voltage is set to a value sufficiently higher than the open circuit voltage (step a2), and the operational amplifier The solar cell open circuit voltage V0 is measured from the output of OP1 (step a3).
[0028]
The target solar cell voltage is set to a value sufficiently lower than the optimum operating point voltage V1 (step a4), and the solar cell current I0 is measured from the output of the operational amplifier OP2 (step a5).
[0029]
Next, the target solar cell voltage is set to V0−ΔV (step a6), and the solar cell current I1 is measured (step a7). However, ΔV is an appropriate value not less than the optimum operating point voltage V1 and not more than V0.
[0030]
A first characteristic line L1 is obtained from the open voltage V0 and the current I1 when the voltage is controlled to a voltage V0−ΔV slightly lower than the open voltage V0 (step a8). Further, a second characteristic line L2 is obtained from the short-circuit current I0 (step a9).
[0031]
Thus, the current-voltage characteristics are approximately grasped by measuring the open-circuit voltage V0, the short-circuit current I0, and the current I1 when the voltage is controlled to a voltage V0-ΔV slightly lower than the open-circuit voltage V0. The optimum operating point P1 is determined from the intersection of the first characteristic line L1 indicating the current when controlled to a voltage slightly lower than the open circuit voltage and the second characteristic line L2 indicating the characteristic of the short-circuit current, and these intersections are determined. To estimate the intersection voltage V1 indicating the optimum operating point P1 (step a10).
[0032]
A moving average of the solar cell voltage V1 indicating the optimum operating point P1 is taken (step a11). For example, one solar cell voltage V1 is obtained and stored every minute, the average of the past three times is always obtained from the stored solar cell voltage V1, and the value of this moving average is set as the target solar cell voltage. (Step a12), the process proceeds to Step a1 and the same control is repeated, and the solar cell current is controlled so that the solar cell voltage becomes the optimum operating point voltage with the load connected.
[0033]
Thus, by using the moving average result of the solar cell voltage V1 indicating the optimum operating point P1 for calculation, even if the amount of solar radiation fluctuates instantaneously, it is not easily affected.
[0034]
In this embodiment, the current-voltage characteristics can be grasped approximately only by measuring the open-circuit voltage V0, the short-circuit current I0, and the current I1 when thesolar cell 3 is controlled to a voltage slightly lower than the open-circuit voltage. . Thus, the optimum operating point P1 is determined in a short time from the intersection of the first characteristic line L1 and the second characteristic line L2, and the solar cell voltage is set to the optimum operating point voltage with the load connected. The current can be controlled.
[0035]
【The invention's effect】
As described above, in the solar cell control device according to the first aspect of the present invention, the current-voltage characteristics are approximately grasped, and the open-circuit voltageappearing between the terminals when the terminals of thesolar cell are opened isV0, Thecurrent flowing from the solar cell when thevoltage between the terminals is controlledtodecrease by ΔV from V0 isdefined as I1, and a straight line passing through two points (V0, 0) and (V0−ΔV, I1) is obtained. The optimum operating point is determined from the intersection of the first characteristic line and the second characteristic line wherethe terminal of thesolar cell is short-circuited, the current flowing from the solar cell at that time is I0, and the constant current value is I0 regardless of the voltage. Then, the solar cell current can be controlled so that the solar cell voltage becomes the optimum operating point voltage with the load connected.
[0036]
In the solar cell control device according to the second aspect of the present invention, the moving average result of the estimated value of the optimum operating point voltage is used as the target solar cell voltage, so that the solar cell control device is hardly affected even if the solar radiation amount fluctuates instantaneously. .
[0037]
In the solar cell control method according to the third aspect of the present invention, the current-voltage characteristic is approximately grasped, and the open-circuit voltageappearing between the terminals when the terminals of thesolar cell are opened is set toV0, and ΔV from that V0. Thecurrent flowing from the solar cell when thevoltage between terminals is controlledtobeI1, and a straight line passing through two points (V0, 0) and (V0−ΔV, I1) is obtained, and the obtained first characteristic line Then,the terminal of thesolar cell is short-circuited, the current flowing from the solar cell at that time is set to I0, the optimum operating point is determined from the intersection with the second characteristic line thatbecomes a constant current value I0 regardless of the voltage, and the load is connected In this state, the solar cell current can be controlled so that the solar cell voltage becomes the optimum operating point voltage.
[0038]
In the solar cell control method according to the fourth aspect of the present invention, the moving average result of the estimated value of the optimum operating point voltage is used as the target solar cell voltage, so that the solar cell control method is hardly affected even if the solar radiation amount fluctuates instantaneously. .
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a control device for a solar cell.
FIG. 2 is a diagram for explaining calculation of an optimum operating point.
FIG. 3 is a software operation flowchart of the solar cell control device;
FIG. 4 is a diagram showing current-voltage characteristics of a solar cell.
[Explanation of symbols]
1 Load 2Battery 3Solar Cell 10 CPU
100 current voltage characteristic grasping means 101 optimum operating point determining means 102 control means L1 first characteristic straight line L2 second characteristic straight line P1 optimum operating point P2 true optimum operating point

Claims (4)

Translated fromJapanese
太陽電池の開放電圧、短絡電流及び開放電圧より少し低い電圧に制御したときの電流を測定することで電流−電圧特性を近似的に把握する電流電圧特性把握手段と、
前記太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに前記太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、前記太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定する最適動作点決定手段と、
負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御する制御手段とを有することを特徴とする太陽電池の制御装置。
Current-voltage characteristic grasping means for approximately grasping the current-voltage characteristic by measuring the current when controlled to a voltage slightly lower than the open-circuit voltage, short-circuit current, and open-circuit voltage of the solar cell;
When the terminal of the solar cell is opened, the open voltageappearing between the terminals isV0, and when the voltage between the terminals is controlledtodecrease by ΔV from V0, thecurrent flowing from the solar cell is I1, and (V0,0 ) And (V0−ΔV, I1), a straight line passing through the two points is obtained, the obtained first characteristic line andthe terminal of the solar cell are short-circuited, and the current flowing from the solar cell at that time is defined as I0, An optimum operating point determining means for determining an optimum operating point from the intersection with the second characteristic line that has aconstant current value I0 regardless of the following ;
And a control means for controlling the solar cell current so that the solar cell voltage becomes an optimum operating point voltage with a load connected.
前記太陽電池電流を制御する制御手段は、最適動作点電圧の推定値の移動平均結果を目標太陽電池電圧に用いることを特徴とする請求項1に記載の太陽電池の制御装置。  2. The solar cell control device according to claim 1, wherein the control means for controlling the solar cell current uses a moving average result of an estimated value of the optimum operating point voltage as a target solar cell voltage. 太陽電池の開放電圧、短絡電流及び開放電圧より少し低い電圧に制御したときの電流を測定することで電流−電圧特性を近似的に把握し、
前記太陽電池の端子を開放したときに端子間に現れる開放電圧をV0とし、そのV0からΔVだけ端子間電圧が下がるように制御したときに前記太陽電池から流れる電流をI1とし、(V0,0)と(V0−ΔV, I1)の2点を通る直線を求め、この求めた第1の特性直線と、前記太陽電池の端子を短絡し、そのとき太陽電池から流れる電流をI0とし、電圧によらず一定電流値I0となる第2の特性直線との交点から最適動作点を決定し、
負荷を接続した状態で太陽電池電圧が最適動作点電圧になるように太陽電池電流を制御することを特徴とする太陽電池の制御方法。
Approximate the current-voltage characteristics by measuring the open-circuit voltage, short-circuit current, and current when controlled to a voltage slightly lower than the open-circuit voltage,
When the terminal of the solar cell is opened, the open voltageappearing between the terminals isV0, and when the voltage between the terminals is controlledtodecrease by ΔV from V0, thecurrent flowing from the solar cell is I1, and (V0,0 ) And (V0−ΔV, I1), a straight line passing through the two points is obtained, the obtained first characteristic line andthe terminal of the solar cell are short-circuited, and the current flowing from the solar cell at that time is defined as I0, Regardless of the point of intersection with the second characteristic line, which has aconstant current value I0, the optimum operating point is determined.
A solar cell control method, wherein a solar cell current is controlled so that a solar cell voltage becomes an optimum operating point voltage in a state where a load is connected.
前記最適動作点電圧の推定値の移動平均結果を目標太陽電池電圧に用いることを特徴とする請求項3に記載の太陽電池の制御方法。  4. The solar cell control method according to claim 3, wherein a moving average result of the estimated value of the optimum operating point voltage is used as a target solar cell voltage.
JP26987299A1999-07-231999-09-24 Solar cell control device and solar cell control methodExpired - Fee RelatedJP4042943B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP26987299AJP4042943B2 (en)1999-07-231999-09-24 Solar cell control device and solar cell control method

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
JP11-2086031999-07-23
JP208603991999-07-23
JP26987299AJP4042943B2 (en)1999-07-231999-09-24 Solar cell control device and solar cell control method

Publications (2)

Publication NumberPublication Date
JP2001103675A JP2001103675A (en)2001-04-13
JP4042943B2true JP4042943B2 (en)2008-02-06

Family

ID=26516925

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP26987299AExpired - Fee RelatedJP4042943B2 (en)1999-07-231999-09-24 Solar cell control device and solar cell control method

Country Status (1)

CountryLink
JP (1)JP4042943B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
MX2008012512A (en)*2006-03-312008-12-16Antoine CapelCircuit and method for monitoring the point of maximum power for solar energy sources and solar generator incorporating said circuit.
CN104617875A (en)*2010-08-272015-05-13学校法人几德学园Solar power generation system, control device used for solar power generation system, and control method and program for the same
JP5432937B2 (en)*2011-02-232014-03-05株式会社日立パワーソリューションズ Solar cell characteristic acquisition circuit and solar cell control device
CN113363348A (en)*2021-01-112021-09-07宣城睿晖宣晟企业管理中心合伙企业(有限合伙)Configuration method and device of battery pack and electronic equipment

Also Published As

Publication numberPublication date
JP2001103675A (en)2001-04-13

Similar Documents

PublicationPublication DateTitle
JP3279071B2 (en) Battery pack charging device
US6429621B1 (en)Solar power charging system
JP5516286B2 (en) Current voltage detection circuit and current control circuit
US10594149B2 (en)Battery management control method
JP5605143B2 (en) Current control circuit
CN114942345B (en)Current detection circuit and method, and charger
US8339108B2 (en)Charging systems that control power dissipation in a charging path
US7400120B2 (en)Constant voltage control device
CN1177228A (en)Circuit for detecting overcharging and overdischarging
CN114731055B (en) Power supply system and control method thereof
JP4042943B2 (en) Solar cell control device and solar cell control method
US6275007B1 (en)Charging controller
US8570001B2 (en)Device and method for charging and controlling the charge of a battery
IT9067810A1 (en) VOLTAGE REGULATOR CIRCUIT FOR A MOTOR VEHICLE BATTERY RECHARGE SYSTEM
NO20024073L (en) Battery charger and charging method
JP2765844B2 (en) Voltage regulator for generator
JP3278487B2 (en) Rechargeable power supply
JP3403309B2 (en) Charging device
JP3598939B2 (en) Inverter generator
JPH07107621A (en)Charger for electric automobile
JPS62293969A (en)Single-phase rectifying power unit
JPH09121463A (en)Charging device
JPH08149712A (en)Charger and charging method
JP2003284334A (en)Reference voltage generating circuit and battery charging circuit employing it
JPS62155733A (en) Charger temperature compensation circuit

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20060809

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20070914

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20070919

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20071019

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20071109

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20071109

R150Certificate of patent or registration of utility model

Free format text:JAPANESE INTERMEDIATE CODE: R150

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20101122

Year of fee payment:3

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp