Movatterモバイル変換


[0]ホーム

URL:


JP3952184B2 - Thermally conductive sheet - Google Patents

Thermally conductive sheet
Download PDF

Info

Publication number
JP3952184B2
JP3952184B2JP2002297017AJP2002297017AJP3952184B2JP 3952184 B2JP3952184 B2JP 3952184B2JP 2002297017 AJP2002297017 AJP 2002297017AJP 2002297017 AJP2002297017 AJP 2002297017AJP 3952184 B2JP3952184 B2JP 3952184B2
Authority
JP
Japan
Prior art keywords
heat
thermally conductive
heat conductive
sheet
conductive silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297017A
Other languages
Japanese (ja)
Other versions
JP2004130646A (en
Inventor
昭生 中野
毅 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co LtdfiledCriticalShin Etsu Chemical Co Ltd
Priority to JP2002297017ApriorityCriticalpatent/JP3952184B2/en
Publication of JP2004130646ApublicationCriticalpatent/JP2004130646A/en
Application grantedgrantedCritical
Publication of JP3952184B2publicationCriticalpatent/JP3952184B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
本発明は一般の電源、電子機器等に用いられる熱伝導性シートおよびパーソナルコンピューター(特にはノートPC)、DVDドライブ等の電子機器のLSI、CPU等の集積回路素子の放熱に用いる熱伝導性シートに最適である。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、CPU、パワートランジスタ、サイリスタ等の発熱性部品は熱の発生により特性が低下するので、設置の際、ヒートシンクを取り付け熱を放散したり、機器の金属製のシャーシに熱を逃がす対策が取られている。このとき、電気絶縁性と密着性を向上させるため発熱性部品とヒートシンクの間にシリコーンゴムに熱伝導性充填剤を配合した放熱絶縁性シートが用いられる。
【0003】
放熱絶縁性材料として、シリコーンゴム等の合成ゴム100重量部に酸化ベリリウム、酸化アルミニウム、水和酸化アルミニウム、酸化マグネシウム、酸化亜鉛から選ばれる少なくとも1種以上の金属酸化物を100〜800重量部配合した絶縁性組成物が開示されている(特許文献1参照)。
【0004】
また、絶縁性を必要としない場所に用いられる放熱材料として、付加硬化型シリコーンゴムにシリカおよび銀、金、ケイ素等の熱伝導性粉末を60〜500重量部を配合した組成物が開示されている(特許文献2参照)。
【0005】
しかし、これらの放熱絶縁シートは非常にゴム硬度の硬いものであり、強い力で締め付けても完全に密着せず、接触熱抵抗が大きくなる欠点がある。
パーソナルコンピューター、DVDドライブ等の電子機器の高集積化が進み、装置内のLSI、CPU等の集積回路素子の発熱量が増加したため、従来の冷却方法では不充分な場合がある。特に、携帯用のノート型のパーソナルコンピューターの場合、機器内部の空間が狭いので、大きなヒートシンクや冷却ファンを取り付けることができない。これらの機器ではプリント基板上に集積回路素子が搭載されており、基板の材質に熱伝導性の悪いガラス補強エポキシ樹脂やポリイミド樹脂が用いられるので、従来のように放熱絶縁シートを介して基板に熱を逃がすことができない。
【0006】
そこで、集積回路素子の近傍に自然冷却タイプあるいは強制冷却タイプの放熱部品を設置し、素子で発生した熱を放熱部品に伝える方式が用いられる。この方式で、素子と放熱部品を直接接触させると表面の凹凸のため熱の伝わりが悪くなり、さらに放熱絶縁シートを介して取り付けても放熱絶縁シートの柔軟性がやや劣るため、熱膨張により素子と基板との間に応力がかかり破損する恐れがある。また、各回路素子ごとに放熱部品を取り付けようとすると余分なスペースが必要となり機器の小型化が難しくなるので、いくつかの素子をひとつの放熱部品に組み合わせて冷却する方式がとられる。特にノート型のパーソナルコンピューターで用いられているCPUは高さが他の素子に比べて低く、発熱量が大きいため冷却方式を充分考慮する必要がある。
【0007】
そこで、素子ごとに高さが異なることに対して種々の隙間を埋められる低硬度の高熱伝導性材が必要になる。このような課題に対して、熱伝導性に優れ、柔軟性があり、種々の隙間に対応できる熱伝導性シートが提案されている。また、年々駆動周波数の高周波化にともないCPUの性能は向上し発熱量が増大するため、より高熱伝導性の材料が求められている。
【0008】
そこで、シリコーン樹脂に金属酸化物等の熱伝導性材料を混入したものを成形したシートで、取扱いに必要な強度を持たせたシリコーン樹脂層の上に柔らかく変形しやすいシリコーン層が積層されているシートが開示されている(特許文献3参照)。
また、熱伝導性充填剤を含有し、アスカーC硬度が5〜50であるシリコーンゴム層と直径0.3mm以上の孔を有する多孔性補強材層を組み合わせた熱伝導性複合シートが開示されている(特許文献4参照)。
【0009】
さらに、可撓性の三次元網状体またはフォーム体の骨格格子表面を熱伝導性シリコーンゴムで被覆したシートが開示されている(特許文献5参照)。
さらに、補強性を有したシートあるいはクロスを内蔵し、少なくとも一方の面が粘着性を有してアスカーC硬度が5〜50である厚さ0.4mm以下の熱伝導性複合シリコーンシートが開示されている(特許文献6参照)。
さらに、付加反応型液状シリコーンゴムと熱伝導性絶縁性セラミック粉末を含有し、その硬化物のアスカーC硬度が25以下で熱抵抗が3.0℃/W以下である放熱スペーサーが開示されている(特許文献7参照)。
【0010】
しかし、CPU等の素子の耐圧性は低く強い力で圧着できないので、いくらシートを低硬度化しても硬化物である限り被着体に密着せず接触熱抵抗が残存してしまう。シートの熱伝導率を上げることによりシート単体の熱抵抗は低減できるが、最終的にシートと被着体との接触熱抵抗の大きさが問題となる。
【0011】
一方、熱伝導性シリコーングリースは流動性があり被着体の間で圧着すると接触面がほぼ埋まり、接触熱抵抗を大幅に低減することができる。
そこで、シリコーンオイルをベースとし、酸化亜鉛粉や酸化アルミニウム粉を増稠剤として使用した熱伝導性グリースが開示されている(特許文献8及び特許文献9参照)。また、熱伝導性の向上するため増稠剤として窒化アルミニウムを使用したものが開示されている(特許文献10参照)。
【0012】
しかし、これらの放熱グリースは使用する際、塗布するのに非常に手間がかかる。ディスペンサー等の吐出機を用いて一定量のグリースを吐出することは可能であるが設備投資に費用がかかる問題がある。また、リワークの際グリースを除去するのに手間がかかり、アルコール等の溶剤を用いて洗浄する必要がある。反対に低硬度熱伝導性シートはこのような手間がかからない代わりに、接触熱抵抗の問題がある。
【0013】
また、熱伝導性無機充填剤を含有した不揮発性シリコーン流体を表面に設けてなるシリコーンゴム製熱良伝導性電気絶縁シートが開示されており、これはシリコーンゴム製の熱伝導性電気絶縁シートの表面に接触熱抵抗を低減する目的でシリコーンオイル、シリコーングリースもしくはゴム状物質に熱伝導性付与のため無機充填剤を添加したシリコーン流体を塗布したものである(特許文献11参照)。本シートは作業性を維持しつつ、接触熱抵抗を低減することができるが、シリコーン流体ときれいに剥離するセパレータが必要となる。通常のフッ素系、シリコーン系のセパレータではセパレータ側にシリコーン流体が移行して厚さがばらつく恐れがある。
【0014】
また、難燃性、熱伝導性および電気絶縁性を有する粘土状熱硬化接着型のシリコーン組成物シートをICパッケージと放熱装置の間に圧接してからICパッケージの発熱によりシリコーン組成物シートを硬化させるICパッケージの放熱装置が開示されている(特許文献12参照)。しかし、シリコーン組成物シートは柔らかく粘着があり変形しやすいので作業性があまり良くない欠点がある。
【0015】
さらに、上下両表面部がゴム状に硬化させた薄膜補強層であり、その間に未加硫のコンパウンド層をはさみ込んだ低硬度放熱シートが開示されている(特許文献13参照)。本シートは取扱い性は改良されているが、両表面に硬化シートがあるので接触熱抵抗が大きくなる問題がある。
【0016】
【特許文献1】
特開昭47−32400号公報
【特許文献2】
特開昭56−100849号公報
【特許文献3】
特開平2−196453号公報
【特許文献4】
特開平7−266356号公報
【特許文献5】
特開平8−238707号公報
【特許文献6】
特開平9−1738号公報
【特許文献7】
特開平9−296114号公報
【特許文献8】
特公昭52−33272号公報
【特許文献9】
特公昭59−52195号公報
【特許文献10】
特開昭52−125506号公報
【特許文献11】
実公昭64−1711号公報
【特許文献12】
特許2732792号公報
【特許文献13】
特開2002−33427号公報
【0017】
【課題を解決するための手段及び発明の実施の形態】
本発明は、
(1)熱伝導性シリコーンゴムシートと未硬化の熱伝導性シリコーン組成物を積層したものであり、未硬化の熱伝導性シリコーン組成物が
(A) 平均重合度100〜12000であるオルガノポリシロキサン 100重量部
(B) 平均粒径50μm以下の酸化アルミニウム粉 800〜3000重量部
からなり、前記(A)及び(B)成分を加熱・混練することにより得られるパテ状のグリースであることを特徴とする熱伝導性シートを提供する。
【0018】
以下、本発明につき更に詳しく説明する。
【0019】
本発明の構成の内、未硬化の熱伝導性シリコーン組成物として、(A)成分の平均重合度100〜12000であるオルガノポリシロキサンは次の平均組成式(I)
SiO(4−n)/2 ‥‥ (I) (nは1.95〜2.05の正数)
で示されるものである。平均組成式中Rは置換または非置換の一価炭化水素基を表し、具体的にはメチル基、エチル基、プロピル基等のアルキル基、ビニル基、アリル基等のアルケニル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基等のアリール基あるいはこれらの水素原子が部分的に塩素原子、フッ素原子などで置換されたハロゲン化炭化水素基等が例示されるが、一般的にはオルガノポロシロキサンの主鎖がジメチルシロキサン単位からなるものあるいは、このオルガノポリシロキサンの主鎖にビニル基、フェニル基、トリフルオロプロピル基などを導入したものが好ましい。また、分子鎖末端がトリオルガノシリル基または水酸基で封鎖されたものとすればよいが、このトリオルガノシリル基としては、トリメチルシリル基、ジメチルビニルシリル基、トリビニルシリル基などが例示される。
【0020】
(A)成分のオルガノポリシロキサンの平均重合度は100〜12000、好ましくは150〜10000の範囲であり、性状はオイル状からガム状のものである。平均重合度が100未満では粘度が低すぎ、シリコーン組成物の粘着性が強くなりセパレータから剥がれなくなる。平均重合度が12000を超えると酸化アルミニウム粉の高充填が難しくなり、さらに配合後の流動性が悪くなる。また、平均重合度が異なるオルガノポリシロキサンを2種類以上組み合わせて用いてもよい。
【0021】
(B)成分の酸化アルミニウム粉の配合量は、800〜3000重量部の範囲であり、好ましくは1000〜2500重量部の範囲である。配合量800重量部未満では組成物の熱伝導率が2W/mK未満となり、一方3000重量部を超えると組成物の配合が難しくなる。
【0022】
酸化アルミニウム粉は一般に六方晶または六方菱形面格子の結晶構造を有するα−Alで、外観は白色結晶であり、見掛けは平均粒径2〜80μm程度の粒子であるが各粒子は0.2〜20μm程度の一次結晶アルミナから構成されている。通常熱伝導性充填剤として使用されているものでよいが、その平均粒径が50μm以下であることが好ましい。平均粒径が50μmを超えると、熱伝導性シートとして使用する際に圧着してもシリコーン組成物を薄く延ばすことができなくなる。
【0023】
また、酸化アルミニウム粉の形状は丸みを帯びた形状のものであることが好ましい。形状が丸みを帯びているものほど高充填しても粘度および可塑度の上昇を抑えることができる。特には800重量部以上配合する場合には、球状酸化アルミニウム粉を主成分とする必要がある。このような球状酸化アルミニウム粉の製造方法としては、特開昭52−15498号公報や特開平2−199004号公報に記載されている方法で製造することができる。具体的には球状アルミナASシリーズ(商品名 昭和電工株式会社製)、高純度球状アルミナAOシリーズ(商品名 株式会社アドマテックス製)などが挙げられる。また、粒径の大きい酸化アルミニウム粉と粒径の小さい酸化アルミニウム粉を最密充填理論分布曲線に従う比率で組み合わせることにより充填効率が向上して、低粘度化および高熱伝導化が可能になる。
【0024】
さらに、一般式(II)で表される片末端3官能の加水分解性基含有メチルポリシロキサンを併用すると、組成物を可塑化する効果が高くなる。

Figure 0003952184
(ただし、式中式中のR1は炭素原子数1〜4のアルコキシ基またはアシロキシ基、mは5〜100の整数)
この配合量は(A)成分のオルガノポリシロキサンの内0.1〜80重量%の範囲を、好ましくは0.1〜50重量%の範囲を置き換える量である。配合量が0.1重量%より少ないと組成物の可塑化する効果が小さくなる。80重量%を超えると効果が飽和し、加水分解性基含有メチルポリシロキサンがブリードする恐れがある。
【0025】
未硬化の熱伝導性シリコーン組成物のJIS K 2220に準じて測定した不混和ちょう度が180以下、好ましくは150以下のパテ状である。不混和ちょう度が180を超えると柔らかく粘着性が強くなり、セパレータとの剥離性とリワーク性が悪くなる。また、軽く触れた程度の低圧力で簡単に変形するので、取扱いが難しくなる。
【0026】
その他添加成分として、本発明の効果を損なわない程度の酸化アルミニウム粉以外の熱伝導性充填剤、着色剤、酸化鉄、酸化セリウム等の耐熱性向上剤、フッ素変性シリコーンオイル、フェニル基含有シリコーンオイル等の離型性付与剤等を添加しても良い。
【0027】
未硬化の熱伝導性シリコーン組成物層の厚さは0.05〜3mmの範囲が好ましい。0.05mm未満の厚さでは圧着面への密着性が不充分となり接触熱抵抗が大きくなる。3mmを超えると熱伝導性がやや悪くなる。
【0028】
本発明のもう一つの構成である熱伝導性シリコーンゴムシートは、平均組成式(I)で示されるオルガノポリシロキサンに酸化アルミニウム粉、窒化ホウ素粉、窒化アルミニウム粉、酸化亜鉛粉、炭化ケイ素粉、石英粉、水酸化アルミニウム粉等の熱伝導性充填剤を配合し硬化させたシートを用いる。
【0029】
熱伝導性充填剤の配合量は充填剤の種類によって異なるが、熱伝導率が2W/mK以上になる配合量にする必要がある。具体的にはオルガポリシロキサン成分100重量部に対して、150〜2500重量部の範囲が好ましい。
【0030】
硬化方法としては、通常のシリコーンゴムに使用される公知のものでよく、これにはパーオキサイドのラジカル反応による方法、アルケニル基含有オルガポリシロキサンとケイ素原子に結合した水素原子を1分子中に少なくとも2個以上含有するオルガノハイドロジェンポリシロキサンの白金触媒による付加反応等が例示される。
【0031】
その他、必要に応じて補強性シリカ充填剤、炭酸カルシウム、二酸化チタン等の充填剤、酸化鉄、酸化セリウム等の耐熱性向上剤、着色剤、白金化合物等の難燃性付与剤などを添加してもよい。
【0032】
熱伝導性シリコーンゴムシートとして強度を向上する目的でガラスクロス等で補強したものが知られているが、本発明においては補強のないゴム単層のシートの方が好ましい。この理由としては、補強材が入っていると表面に微細な凹凸ができ接触熱抵抗が大きくなる。また、補強材によりシートの伸びが抑制されるので、圧着面へのシートの追従性が悪くなる。
【0033】
熱伝導性シリコーンゴムシートの厚さは0.05〜1mmの範囲が好ましい。0.05mm未満では強度が不足して取扱い時にシートが切れる恐れがある。1mmを超えると圧縮しにくくなるとともに圧着面への追従性が悪くなり接触熱抵抗が大きくなる。
【0034】
本発明の熱伝導性シートの成形方法としては、最初に、熱伝導性シリコーンゴムシートを成形する。この場合、硬化剤までを配合した材料をカレンダー成形、押出し成形、コーティング成形等によりシート状に成形してから加熱硬化させる。上記成形方法において、コーティング成形を採用する場合には、材料を有機溶剤に溶解し粘度調整してから製造する方が好ましい。また、補強のないゴム単層品のシートでは伸びやすく次の加工が難しくなるので、PETやポリイミドのフィルム上にシートを成形することが好ましい。次に、この硬化シート上にモールド成形、カレンダー成形、コーティング成形等により未硬化の熱伝導性シリコーン組成物層を成形し積層する。最後に未硬化の熱伝導性シリコーン組成物層の保護のため、PE、PP、PET等のセパレータフィルムを貼りつける。この際、セパレータの離型性を向上のため、セパレータの表面をフッ素樹脂処理する方が好ましい。
【0035】
熱伝導性シリコーンゴムシートと未硬化の熱伝導性シリコーン組成物層の合計の厚さは0.1〜4mmの範囲、好ましくは0.2〜3mmの範囲である。0.1mm未満の厚さでは圧着面の微細な凹凸を埋めることができなくなり接触熱抵抗が大きくなる。4mmを超えると熱伝導性がやや悪くなる。
【0038】
【実施例】
[実施例1〜3及び比較例1、2]
【0039】
ジメチルビニルシロキシ基で両末端封止したジメチルシロキサン単位からなる平均重合度8000のオルガノポリシロキサン(A)100重量部、熱伝導性充填剤として平均粒径10μmの球状酸化アルミニウム粉アドマファインAO−41R(商品名、アドマテックス(株)製) 1400重量部、酸化亜鉛粉亜鉛華1号(商品名、三井金属鉱業(株)製) 300重量部、および次の構造式で示されるα,ω-ジヒドロキシジメチルポリシロキサン8重量部をニーダーで混練りし、170℃で2時間の熱処理を行った。
【0040】
Figure 0003952184
【0041】
冷却後、この組成物100重量部、有機過酸化物C−24(商品名、信越化学工業(株)製) 0.9重量部およびトルエン30重量部を撹拌溶解機で混合溶解した。この溶解液をナイフコーター方式のコーティング装置で厚さ100μmのPETフィルム上に塗布し、温度80℃の加熱炉を通してトルエンを揮発させてから温度150℃の加熱炉を10分間通して組成物を硬化させて厚さ0.1mmの熱伝導性シリコーンゴムシートXを作製した。
【0042】
この熱伝導性シリコーンゴムシートXの熱伝導率をASTM E1530保護熱流計法で測定したところ4.6W/mKであった。
【0043】
次に、平均重合度850のジメチルビニルシロキシ基で両末端を封止したジメチルシロキサン単位からなるオルガノポリシロキサン(B)70重量部、平均重合度180のジメチルビニルシロキシ基で両末端を封止したジメチルシロキサン単位からなるオルガノポリシロキサン(C) 30重量部、平均粒径16μmの球状酸化アルミニウム粉AS−30(商品名、昭和電工(株)製) および平均粒径3μmの酸化アルミニウム粉AL−45−H(商品名、昭和電工(株)製) を表1に示した量で添加し、プラネタリミキサーを用いて室温で30分間混練りした後、温度100℃で加熱しながら30分間混練りした。これらの未硬化の熱伝導性シリコーン組成物を冷却後、不混和ちょう度と熱伝導率を測定した。
【0044】
PET上に成形した熱伝導性シリコーンゴムシートXの上に未硬化の熱伝導性シリコーン組成物を一定量のせ、厚さ0.4mmの金属製の枠を設置し、さらにその上にフッ素樹脂処理したPETフィルムをあててから冷間でプレス成形を行い、厚さ0.5mmの熱伝導性シートを作製した。フッ素樹脂処理したPETフィルムと未硬化の熱伝導性シリコーン組成物層の離型性を確認してから、これらの熱伝導性シートの熱抵抗を次の方法で測定した。
【0045】
(熱抵抗測定方法)
モデルヒーターとヒートシンクの間に熱伝導性シートのサンプルを設置(このとき、未硬化側をヒートシンクに設置)し、1kgf/cmの荷重で圧着する。次にモデルヒータに28Wの電力を印加し、モデルヒーターの温度T1とヒートシンクの温度T2を熱電対で測定し、次式からサンプルの熱抵抗Rを算出する。
【0046】
R=(T1−T2)/28
モデルヒーター:トランジスタTO−3型のアルミニウム製ケースの中にヒーターを埋め込んだもの、設置面積7cm
ヒートシンク:フラット型60F230×70mm(LEX製)
また、リワーク性として熱抵抗測定後のサンプルがヒートシンクからきれいに剥離できるか否かを確認した。
【0047】
表1
Figure 0003952184
比較例2の組成物は、シリコーン分と酸化アルミニウム粉がまとまらずパテ状にならないため物性測定は行うことができなかった。
【0048】
[実施例4〜6]
平均重合度8000のオルガノポリシロキサン(A)45重量部 、平均重合度270のトリメチルシロキシ基で両末端封止したジメチルシロキサン単位からなるオルガノポリシロキサン(D)40重量部、次の構造式で表される加水分解性基含有メチルポリシロキサン(E) 15重量部、
Figure 0003952184
平均粒径10μmの球状酸化アルミニウム粉アドマファインAO−41R(商品名、アドマテックス(株)製) 1500重量部および平均粒径0.7μmの球状酸化アルミニウム粉末アドマファインAO−502(商品名、アドマテックス(株)製) 400重量部をニーダーで混練りし、170℃で2時間の熱処理を行った。
【0049】
この組成物を用いて、実施例1〜3と同様な方法でPETフィルム上に厚さ0.1mmの熱伝導性シリコーンゴムシートYを作製した。この熱伝導性シリコーンゴムシートYの熱伝導率は8.8W/mKであった。
【0050】
オルガノポリシロキサン(A)〜(C)、加水分解性基含有メチルポリシロキサン(E)、球状酸化アルミニウム粉アドマファインAO−41R(商品名、アドマテックス(株)製) および球状酸化アルミニウム粉アドマファインAO−502(商品名、アドマテックス(株)製)を表2に示した量で添加し、プラネタリミキサーを用いて室温で30分間混練りした後、温度100℃で加熱しながら30分間混練りした。これらの未硬化の熱伝導性シリコーン組成物を冷却後、不混和ちょう度と熱伝導率を測定した。
【0051】
熱伝導性シリコーンゴムシートYの上に実施例4〜6の未硬化の熱伝導性シリコーン組成物を同様な方法で積層し、厚さ0.5mmの熱伝導性シートを作製した。フッ素樹脂処理したPETフィルムと未硬化の熱伝導性シリコーン組成物層の離型性を確認してから、これらの熱伝導性シートの熱抵抗を測定した。
【0052】
[実施例7]
また、熱伝導性シリコーンゴムシートとして厚さ0.2mmでガラスクロス補強した熱伝導率5.0W/mKのTC−20BG(商品名、信越化学工業(株)製)を用い、実施例6の未硬化の熱伝導性シリコーン組成物と積層化して、厚さ0.5mmの熱伝導性シートを作製した。
【0053】
[比較例3]
比較のため、熱伝導性シリコーンゴムシートYの上に実施例6の未硬化の熱伝導性シリコーン組成物を一定量のせ、厚さ0.3mmの金属製の枠を設置し、さらにその上に熱伝導性シリコーンゴムシートYをあててから冷間でプレス成形を行い、厚さ0.5mmの熱伝導性シートを作製した。
【0054】
表2
Figure 0003952184
【0055】
【発明の効果】
本発明の熱伝導性シートをパーソナルコンピューター(特にはノートPC)、DVDドライブ等の電子機器のLSI、CPU等の集積回路素子の放熱に用いた場合の効果としては、使用時に圧着すると未硬化の熱伝導性シリコーン組成物が流動し被着体表面と密着するので、接触熱抵抗を低減できる。
また、本シートは片面を熱伝導性シリコーンゴムシートで補強しているので通常の低硬度熱伝導性シリコーンゴムシートと同様に取り扱えるため、作業性に優れているし、グリースに比べ使用個所からの除去が容易であり、リワーク性に優れている。
さらに、硬化シートに比べ熱膨張により発生する応力が小さいので、取り付けられた素子を破壊する恐れがないので、非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat conductive sheet used for general power supplies, electronic devices, etc., and a heat conductive sheet used for heat dissipation of integrated circuit elements such as LSIs, CPUs, etc. of electronic devices such as personal computers (particularly notebook PCs) and DVD drives Ideal for.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, heat-generating parts such as CPUs, power transistors, and thyristors have degraded characteristics due to the generation of heat. Therefore, when installing, take measures to dissipate the heat by attaching a heat sink or to the metal chassis of the equipment. It has been. At this time, in order to improve electrical insulation and adhesion, a heat radiation insulating sheet in which a heat conductive filler is blended with silicone rubber is used between the heat generating component and the heat sink.
[0003]
100 to 800 parts by weight of at least one metal oxide selected from beryllium oxide, aluminum oxide, hydrated aluminum oxide, magnesium oxide, and zinc oxide in 100 parts by weight of synthetic rubber such as silicone rubber as a heat insulating material An insulating composition is disclosed (see Patent Document 1).
[0004]
Also disclosed is a composition in which 60 to 500 parts by weight of a heat conductive powder such as silica, silver, gold, silicon, etc. is blended with an addition-curable silicone rubber as a heat dissipation material used in a place that does not require insulation. (See Patent Document 2).
[0005]
However, these heat radiation insulating sheets are very hard in rubber hardness, and do not completely adhere to each other even when tightened with a strong force, and there is a drawback that the contact thermal resistance is increased.
As electronic devices such as personal computers and DVD drives have been highly integrated, the amount of heat generated by integrated circuit elements such as LSIs and CPUs in the apparatus has increased, so conventional cooling methods may be insufficient. In particular, in the case of a portable notebook personal computer, a large heat sink or cooling fan cannot be attached because the space inside the device is narrow. In these devices, integrated circuit elements are mounted on a printed circuit board, and glass-reinforced epoxy resin or polyimide resin with poor thermal conductivity is used as the substrate material. I can't let the heat escape.
[0006]
Therefore, a system is used in which a natural cooling type or forced cooling type heat dissipating part is installed in the vicinity of the integrated circuit element and the heat generated in the element is transmitted to the heat dissipating part. In this method, if the element and the heat dissipation component are in direct contact, the heat transfer will be poor due to the unevenness of the surface, and the heat dissipation insulation sheet will be slightly less flexible even if it is attached via a heat dissipation insulation sheet. There is a risk of damage due to stress between the substrate and the substrate. Further, if it is attempted to attach a heat radiating component to each circuit element, an extra space is required and it is difficult to reduce the size of the device. Therefore, a cooling method is adopted in which several elements are combined into one heat radiating component. In particular, a CPU used in a notebook personal computer has a lower height than other elements and generates a large amount of heat, so that it is necessary to sufficiently consider a cooling method.
[0007]
Therefore, a low-hardness and high-heat conductive material that can fill various gaps is required for each element having a different height. In order to solve such a problem, a heat conductive sheet has been proposed which has excellent heat conductivity, flexibility and can cope with various gaps. Further, as the drive frequency becomes higher year by year, the performance of the CPU is improved and the amount of heat generation is increased. Therefore, a material having higher thermal conductivity is demanded.
[0008]
Therefore, a sheet in which a heat conductive material such as a metal oxide is mixed into a silicone resin is formed, and a soft and easily deformable silicone layer is laminated on a silicone resin layer having a strength necessary for handling. A sheet is disclosed (see Patent Document 3).
Also disclosed is a thermally conductive composite sheet comprising a silicone rubber layer containing a thermally conductive filler and having an Asker C hardness of 5 to 50 and a porous reinforcing material layer having pores having a diameter of 0.3 mm or more. (See Patent Document 4).
[0009]
Furthermore, a sheet is disclosed in which the surface of a skeleton lattice of a flexible three-dimensional network or foam is covered with a heat conductive silicone rubber (see Patent Document 5).
Further disclosed is a thermally conductive composite silicone sheet having a thickness of 0.4 mm or less having a reinforcing sheet or cloth and having at least one surface adhesive and having an Asker C hardness of 5 to 50. (See Patent Document 6).
Furthermore, a heat dissipation spacer is disclosed which contains an addition reaction type liquid silicone rubber and a heat conductive insulating ceramic powder, and has a cured product having an Asker C hardness of 25 or less and a thermal resistance of 3.0 ° C./W or less. (See Patent Document 7).
[0010]
However, since the pressure resistance of an element such as a CPU is low and cannot be pressure-bonded with a strong force, no matter how hard the sheet is made, as long as it is a cured product, it does not adhere to the adherend and remains in contact thermal resistance. By increasing the thermal conductivity of the sheet, the thermal resistance of the single sheet can be reduced, but finally the magnitude of the contact thermal resistance between the sheet and the adherend becomes a problem.
[0011]
On the other hand, the heat conductive silicone grease has fluidity, and when it is pressure-bonded between the adherends, the contact surface is almost filled, and the contact heat resistance can be greatly reduced.
Therefore, a thermally conductive grease based on silicone oil and using zinc oxide powder or aluminum oxide powder as a thickener has been disclosed (see Patent Document 8 and Patent Document 9). Moreover, what uses aluminum nitride as a thickener is disclosed in order to improve thermal conductivity (refer patent document 10).
[0012]
However, when using these heat dissipating greases, it takes much time to apply them. Although it is possible to discharge a certain amount of grease using a dispenser such as a dispenser, there is a problem that the equipment investment is expensive. Further, it takes time to remove the grease during reworking, and it is necessary to clean it with a solvent such as alcohol. On the other hand, the low-hardness heat conductive sheet has a problem of contact thermal resistance in place of such trouble.
[0013]
Also disclosed is a silicone rubber heat-conductive electrically insulating sheet made of a silicone rubber comprising a non-volatile silicone fluid containing a heat-conductive inorganic filler on the surface, which is a silicone rubber heat-conductive electrically insulating sheet. In order to reduce contact thermal resistance, a silicone fluid to which an inorganic filler is added to impart thermal conductivity to a silicone oil, silicone grease or rubber-like substance is applied to the surface (see Patent Document 11). Although this sheet can reduce the contact thermal resistance while maintaining workability, a separator that cleanly separates from the silicone fluid is required. In a normal fluorine-based or silicone-based separator, the silicone fluid may move to the separator side and the thickness may vary.
[0014]
Also, the silicone composition sheet is cured by the heat generated from the IC package after the clay-like thermosetting adhesive silicone composition sheet having flame retardancy, thermal conductivity and electrical insulation is pressed between the IC package and the heat dissipation device. An IC package heat dissipation device is disclosed (see Patent Document 12). However, since the silicone composition sheet is soft, sticky and easily deformed, there is a drawback that workability is not so good.
[0015]
Furthermore, a low-hardness heat dissipation sheet is disclosed in which both upper and lower surface portions are thin-film reinforcing layers cured in a rubber shape, and an unvulcanized compound layer is sandwiched therebetween (see Patent Document 13). Although this sheet has improved handleability, there is a problem that the contact thermal resistance is increased because there are cured sheets on both surfaces.
[0016]
[Patent Document 1]
JP 47-32400 A [Patent Document 2]
JP-A-56-100849 [Patent Document 3]
Japanese Patent Laid-Open No. 2-196453 [Patent Document 4]
JP-A-7-266356 [Patent Document 5]
JP-A-8-238707 [Patent Document 6]
JP-A-9-1738 [Patent Document 7]
JP-A-9-296114 [Patent Document 8]
Japanese Patent Publication No. 52-33272 [Patent Document 9]
Japanese Patent Publication No.59-52195 [Patent Document 10]
JP 52-125506 A [Patent Document 11]
Japanese Utility Model Publication No. 64-1711 [Patent Document 12]
Japanese Patent No. 2732792 [Patent Document 13]
Japanese Patent Laid-Open No. 2002-33427
Means for Solving the Problem and Embodiment of the Invention
The present invention
(1) An organopolysiloxane in which a thermally conductive silicone rubber sheet and an uncured thermally conductive silicone composition are laminated, and the uncured thermally conductive silicone composition is (A) an average degree of polymerization of 100 to 12000. 100 parts by weight of (B)Ri Do an average particle diameter of 50μm or less of aluminum oxide powder 800 to 3,000 parts byweight, thesaid components (a) and (B) is a putty-like grease obtained by heating and kneading A heat conductive sheet is provided.
[0018]
Hereinafter, the present invention will be described in more detail.
[0019]
Among the constitutions of the present invention, as an uncured thermally conductive silicone composition, an organopolysiloxane having an average degree of polymerization of component (A) of 100 to 12000 is represented by the following average composition formula (I)
R2n SiO(4-n) / 2 (I) (n is a positive number from 1.95 to 2.05)
It is shown by. In the average composition formula, R2 represents a substituted or unsubstituted monovalent hydrocarbon group, specifically an alkyl group such as a methyl group, an ethyl group or a propyl group, an alkenyl group such as a vinyl group or an allyl group, a cyclopentyl group, Examples thereof include cycloalkyl groups such as cyclohexyl groups, aryl groups such as phenyl groups and tolyl groups, and halogenated hydrocarbon groups in which these hydrogen atoms are partially substituted with chlorine atoms, fluorine atoms, etc. Preferably, the main chain of the organopolosiloxane is composed of dimethylsiloxane units, or the main chain of the organopolysiloxane is introduced with a vinyl group, a phenyl group, a trifluoropropyl group, or the like. Further, the molecular chain terminal may be blocked with a triorganosilyl group or a hydroxyl group. Examples of the triorganosilyl group include a trimethylsilyl group, a dimethylvinylsilyl group, and a trivinylsilyl group.
[0020]
The average degree of polymerization of the organopolysiloxane of component (A) is in the range of 100 to 12,000, preferably 150 to 10,000, and the properties are from oil to gum. When the average degree of polymerization is less than 100, the viscosity is too low, the adhesiveness of the silicone composition becomes strong, and the separator cannot be peeled off. If the average degree of polymerization exceeds 12,000, high filling with aluminum oxide powder becomes difficult, and the fluidity after blending becomes worse. Two or more types of organopolysiloxanes having different average degrees of polymerization may be used in combination.
[0021]
(B) The compounding quantity of the aluminum oxide powder of a component is the range of 800-3000 weight part, Preferably it is the range of 1000-2500 weight part. If the blending amount is less than 800 parts by weight, the thermal conductivity of the composition is less than 2 W / mK, while if it exceeds 3000 parts by weight, it is difficult to blend the composition.
[0022]
The aluminum oxide powder is generally α-Al2 O3 having a hexagonal or hexagonal rhombohedral lattice structure, and is white in appearance. The appearance is particles having an average particle diameter of about 2 to 80 μm, but each particle is 0 It is composed of primary crystal alumina of about 2 to 20 μm. Although what is normally used as a heat conductive filler may be sufficient, it is preferable that the average particle diameter is 50 micrometers or less. When the average particle diameter exceeds 50 μm, the silicone composition cannot be thinly extended even if it is pressure-bonded when used as a heat conductive sheet.
[0023]
The shape of the aluminum oxide powder is preferably a rounded shape. As the shape is rounder, the increase in viscosity and plasticity can be suppressed even if the filling is high. In particular, when blending 800 parts by weight or more, it is necessary to use spherical aluminum oxide powder as a main component. As a method for producing such a spherical aluminum oxide powder, it can be produced by the methods described in JP-A Nos. 52-15498 and 2-199004. Specific examples include spherical alumina AS series (trade name, manufactured by Showa Denko KK) and high purity spherical alumina AO series (trade name, manufactured by Admatechs Co., Ltd.). Further, by combining the aluminum oxide powder having a large particle size and the aluminum oxide powder having a small particle size in a ratio according to the close-packed theoretical distribution curve, the filling efficiency is improved, and low viscosity and high thermal conductivity can be achieved.
[0024]
Furthermore, when the one-terminal trifunctional hydrolyzable group-containing methyl polysiloxane represented by the general formula (II) is used in combination, the effect of plasticizing the composition is enhanced.
Figure 0003952184
(In the formula, R1 is an alkoxy group having 1 to 4 carbon atoms or an acyloxy group, and m is an integer of 5 to 100)
This blending amount replaces the range of 0.1 to 80% by weight, preferably 0.1 to 50% by weight, of the organopolysiloxane of component (A). If the blending amount is less than 0.1% by weight, the effect of plasticizing the composition becomes small. If it exceeds 80% by weight, the effect is saturated and the hydrolyzable group-containing methylpolysiloxane may bleed.
[0025]
The uncured thermally conductive silicone composition has a putty shape having an immiscibility penetration measured in accordance with JIS K 2220 of 180 or less, preferably 150 or less. If the immiscibility is over 180, the adhesiveness becomes soft and strong, and the releasability from the separator and the reworkability deteriorate. Moreover, since it deform | transforms easily with the low pressure of the grade which touched lightly, handling becomes difficult.
[0026]
Other additive components include heat conductive fillers other than aluminum oxide powder to the extent that the effects of the present invention are not impaired, colorants, heat resistance improvers such as iron oxide and cerium oxide, fluorine-modified silicone oil, phenyl group-containing silicone oil A releasability-imparting agent such as may be added.
[0027]
The thickness of the uncured thermally conductive silicone composition layer is preferably in the range of 0.05 to 3 mm. If the thickness is less than 0.05 mm, the adhesion to the crimping surface is insufficient and the contact thermal resistance increases. If it exceeds 3 mm, the thermal conductivity is slightly deteriorated.
[0028]
The thermally conductive silicone rubber sheet which is another constitution of the present invention is an organopolysiloxane represented by the average composition formula (I), aluminum oxide powder, boron nitride powder, aluminum nitride powder, zinc oxide powder, silicon carbide powder, A sheet obtained by blending and curing a thermally conductive filler such as quartz powder or aluminum hydroxide powder is used.
[0029]
Although the compounding quantity of a heat conductive filler changes with kinds of filler, it is necessary to set it as the compounding quantity from which a heat conductivity is 2 W / mK or more. Specifically, the range of 150 to 2500 parts by weight is preferable with respect to 100 parts by weight of the organopolysiloxane component.
[0030]
The curing method may be a known one used for ordinary silicone rubbers, including a method based on a radical reaction of peroxide, at least a hydrogen atom bonded to an alkenyl group-containing organpolysiloxane and a silicon atom in one molecule. An addition reaction of a platinum catalyst with two or more organohydrogenpolysiloxanes is exemplified.
[0031]
In addition, reinforcing silica fillers, fillers such as calcium carbonate and titanium dioxide, heat resistance improvers such as iron oxide and cerium oxide, colorants, flame retardants such as platinum compounds, etc. may be added as necessary. May be.
[0032]
As a heat conductive silicone rubber sheet, a sheet reinforced with glass cloth or the like is known for the purpose of improving strength, but in the present invention, a rubber single layer sheet without reinforcement is preferred. The reason for this is that if the reinforcing material is contained, fine irregularities are formed on the surface, and the contact thermal resistance increases. Moreover, since the elongation of the sheet is suppressed by the reinforcing material, the followability of the sheet to the crimping surface is deteriorated.
[0033]
The thickness of the thermally conductive silicone rubber sheet is preferably in the range of 0.05 to 1 mm. If it is less than 0.05 mm, the strength is insufficient and the sheet may be cut during handling. If it exceeds 1 mm, it becomes difficult to compress and the followability to the pressure-bonding surface is deteriorated, and the contact thermal resistance is increased.
[0034]
As a method for forming the heat conductive sheet of the present invention, first, a heat conductive silicone rubber sheet is formed. In this case, a material blended up to the curing agent is formed into a sheet shape by calendar molding, extrusion molding, coating molding or the like, and then cured by heating. In the above molding method, when employing coating molding, it is preferable to manufacture the material after dissolving the material in an organic solvent and adjusting the viscosity. Moreover, since the sheet | seat of a rubber | gum single-layer product without reinforcement becomes easy to extend and the next process becomes difficult, it is preferable to shape | mold a sheet | seat on the film of PET or a polyimide. Next, an uncured thermally conductive silicone composition layer is molded and laminated on the cured sheet by molding, calendering, coating molding, or the like. Finally, in order to protect the uncured thermally conductive silicone composition layer, a separator film of PE, PP, PET or the like is attached. At this time, in order to improve the releasability of the separator, it is preferable to treat the surface of the separator with a fluororesin.
[0035]
The total thickness of the thermally conductive silicone rubber sheet and the uncured thermally conductive silicone composition layer is in the range of 0.1 to 4 mm, preferably in the range of 0.2 to 3 mm. If the thickness is less than 0.1 mm, the fine unevenness of the pressure-bonding surface cannot be filled, and the contact thermal resistance increases. If it exceeds 4 mm, the thermal conductivity is slightly deteriorated.
[0038]
【Example】
[Examples 1 to 3 and Comparative Examples 1 and 2]
[0039]
100 parts by weight of an organopolysiloxane (A) having an average degree of polymerization of 8000 consisting of dimethylsiloxane units sealed at both ends with dimethylvinylsiloxy groups, and spherical aluminum oxide powder Admafine AO-41R having an average particle size of 10 μm as a heat conductive filler (Trade name, manufactured by Admatechs Co., Ltd.) 1400 parts by weight, zinc oxide powder zinc flower No. 1 (trade name, manufactured by Mitsui Mining & Smelting Co., Ltd.) 300 parts by weight, and α, ω − represented by the following structural formula 8 parts by weight of dihydroxydimethylpolysiloxane was kneaded with a kneader and heat-treated at 170 ° C. for 2 hours.
[0040]
Figure 0003952184
[0041]
After cooling, 100 parts by weight of this composition, 0.9 part by weight of organic peroxide C-24 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and 30 parts by weight of toluene were mixed and dissolved with a stirring dissolver. This solution is applied onto a 100 μm thick PET film with a knife coater type coating device, and toluene is volatilized through a heating furnace at a temperature of 80 ° C. and then passed through a heating furnace at a temperature of 150 ° C. for 10 minutes to cure the composition. Thus, a thermally conductive silicone rubber sheet X having a thickness of 0.1 mm was produced.
[0042]
It was 4.6 W / mK when the heat conductivity of this heat conductive silicone rubber sheet X was measured by the ASTM E1530 protection heat flow meter method.
[0043]
Next, 70 parts by weight of an organopolysiloxane (B) composed of dimethylsiloxane units sealed at both ends with dimethylvinylsiloxy groups having an average degree of polymerization of 850, and both ends are sealed with dimethylvinylsiloxy groups having an average degree of polymerization of 180 30 parts by weight of an organopolysiloxane (C) composed of dimethylsiloxane units, spherical aluminum oxide powder AS-30 (trade name, manufactured by Showa Denko KK) having an average particle diameter of 16 μm and aluminum oxide powder AL-45 having an average particle diameter of 3 μm -H (trade name, manufactured by Showa Denko KK) was added in the amount shown in Table 1, kneaded for 30 minutes at room temperature using a planetary mixer, and then kneaded for 30 minutes while heating at 100 ° C. . After these uncured thermally conductive silicone compositions were cooled, the immiscible penetration and thermal conductivity were measured.
[0044]
A certain amount of uncured thermally conductive silicone composition is placed on thermally conductive silicone rubber sheet X molded on PET, a metal frame with a thickness of 0.4 mm is placed, and fluororesin treatment is further applied thereon. The applied PET film was applied and then cold-pressed to produce a heat conductive sheet having a thickness of 0.5 mm. After confirming the releasability of the fluororesin-treated PET film and the uncured thermally conductive silicone composition layer, the thermal resistance of these thermally conductive sheets was measured by the following method.
[0045]
(Thermal resistance measurement method)
A sample of a heat conductive sheet is placed between the model heater and the heat sink (at this time, the uncured side is placed on the heat sink), and crimped with a load of 1 kgf / cm2 . Next, power of 28 W is applied to the model heater, the temperature T1 of the model heater and the temperature T2 of the heat sink are measured with a thermocouple, and the thermal resistance R of the sample is calculated from the following equation.
[0046]
R = (T1-T2) / 28
Model heater: Transistor TO-3 type aluminum case embedded with heater, installation area 7cm2
Heat sink: Flat type 60F230 × 70mm (manufactured by LEX)
Further, as reworkability, it was confirmed whether or not the sample after the measurement of the thermal resistance could be peeled cleanly from the heat sink.
[0047]
Table 1
Figure 0003952184
The composition of Comparative Example 2 could not be measured for physical properties because the silicone component and aluminum oxide powder were not collected and putty-like.
[0048]
[Examples 4 to 6]
45 parts by weight of an organopolysiloxane (A) having an average degree of polymerization of 8000, 40 parts by weight of an organopolysiloxane (D) composed of dimethylsiloxane units having both ends blocked with trimethylsiloxy groups having an average degree of polymerization of 270, represented by the following structural formula Hydrolyzable group-containing methyl polysiloxane (E) 15 parts by weight,
Figure 0003952184
Spherical aluminum oxide powder Admafine AO-41R with a mean particle size of 10 μm (trade name, manufactured by Admatechs Co., Ltd.) 1500 parts by weight and spherical aluminum oxide powder Admafine AO-502 with a mean particle size of 0.7 μm 400 parts by weight of Mattex Co., Ltd. were kneaded with a kneader and heat treated at 170 ° C. for 2 hours.
[0049]
Using this composition, a thermally conductive silicone rubber sheet Y having a thickness of 0.1 mm was produced on a PET film in the same manner as in Examples 1 to 3. This heat conductive silicone rubber sheet Y had a thermal conductivity of 8.8 W / mK.
[0050]
Organopolysiloxane (A) to (C), hydrolyzable group-containing methylpolysiloxane (E), spherical aluminum oxide powder Admafine AO-41R (trade name, manufactured by Admatex Co., Ltd.) and spherical aluminum oxide powder Admafine AO-502 (trade name, manufactured by Admatex Co., Ltd.) was added in the amount shown in Table 2, kneaded for 30 minutes at room temperature using a planetary mixer, and then kneaded for 30 minutes while heating at 100 ° C. did. After these uncured thermally conductive silicone compositions were cooled, the immiscible penetration and thermal conductivity were measured.
[0051]
The uncured thermally conductive silicone compositions of Examples 4 to 6 were laminated on the thermally conductive silicone rubber sheet Y by the same method to produce a thermally conductive sheet having a thickness of 0.5 mm. After confirming the releasability of the fluororesin-treated PET film and the uncured thermally conductive silicone composition layer, the thermal resistance of these thermally conductive sheets was measured.
[0052]
[Example 7]
Moreover, TC-20BG (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) having a thermal conductivity of 5.0 W / mK and glass cloth reinforced with a thickness of 0.2 mm was used as the thermally conductive silicone rubber sheet. It laminated | stacked with the uncured heat conductive silicone composition, and produced the heat conductive sheet of thickness 0.5mm.
[0053]
[Comparative Example 3]
For comparison, a certain amount of the uncured thermally conductive silicone composition of Example 6 is placed on the thermally conductive silicone rubber sheet Y, a metal frame having a thickness of 0.3 mm is installed, and further thereon. After applying the heat conductive silicone rubber sheet Y, cold pressing was performed to prepare a heat conductive sheet having a thickness of 0.5 mm.
[0054]
Table 2
Figure 0003952184
[0055]
【The invention's effect】
As an effect when the heat conductive sheet of the present invention is used for heat radiation of integrated circuit elements such as personal computers (especially notebook PCs), electronic devices such as DVD drives, LSIs, CPUs, etc. Since the heat conductive silicone composition flows and adheres to the adherend surface, the contact thermal resistance can be reduced.
In addition, since this sheet is reinforced with a heat conductive silicone rubber sheet on one side, it can be handled in the same way as a normal low-hardness heat conductive silicone rubber sheet. Easy removal and excellent reworkability.
Furthermore, since the stress generated by thermal expansion is smaller than that of the cured sheet, there is no fear of destroying the attached element, which is very useful.

Claims (8)

Translated fromJapanese
熱伝導性シリコーンゴムシートと未硬化の熱伝導性シリコーン組成物を積層したものであり、未硬化の熱伝導性シリコーン組成物が
(A)平均重合度100〜12000であるオルガノポリシロキサン 100重量部
(B)平均粒径50μm以下の酸化アルミニウム粉 800〜3000重量部
からなり、前記(A)及び(B)成分を加熱・混練することにより得られるパテ状のグリースであることを特徴とする熱伝導性シート。
100 parts by weight of an organopolysiloxane in which a thermally conductive silicone rubber sheet and an uncured thermally conductive silicone composition are laminated, and the uncured thermally conductive silicone composition (A) has an average degree of polymerization of 100 to 12000. (B)Ri Do an average particle diameter of 50μm or less of aluminum oxide powder 800 to 3,000 parts byweight, characterized in thatsaid (a) and component (B) is a putty-like grease obtained by heating and kneading Thermally conductive sheet.
熱伝導性シリコーンゴムシートが、下記平均組成式(I)
2nSiO(4-n)/2 ‥‥(I)
(式中、R2は置換または非置換の一価炭化水素基を表し、nは1.95〜2.05の正数である。)
で示されるオルガノポリシロキサン100重量部に対し、熱伝導性充填剤を150〜2500重量部配合した組成物を硬化したものである請求項1記載の熱伝導性シート。
The thermally conductive silicone rubber sheet has the following average composition formula (I)
R2n SiO(4-n) / 2 (I)
(In the formula, R2 represents a substituted or unsubstituted monovalent hydrocarbon group, and n is a positive number of 1.95 to 2.05.)
The heat conductive sheet according to claim 1, wherein a composition obtained by blending 150 to 2500 parts by weight of a heat conductive filler with respect to 100 parts by weight of the organopolysiloxane represented by the formula (1) is cured.
酸化アルミニウム粉が丸みを帯びた形状の粉を主成分とすることを特徴とする請求項1又は2記載の熱伝導性シート。  The heat conductive sheet according to claim 1 or 2, wherein the aluminum oxide powder is mainly composed of a rounded powder. 熱伝導性シリコーンゴムシートがゴム単層の構造であり、その熱伝導率が2W/mK以上であることを特徴とする請求項1乃至3のいずれか1項記載の熱伝導性シート。  The heat conductive sheet according to any one of claims 1 to 3, wherein the heat conductive silicone rubber sheet has a structure of a single rubber layer, and has a heat conductivity of 2 W / mK or more. 未硬化の熱伝導性シリコーン組成物の熱伝導率が2W/mK以上であることを特徴とする請求項1乃至4のいずれか1項記載の熱伝導性シート。  The heat conductivity of the uncured heat conductive silicone composition is 2 W / mK or more, The heat conductive sheet of any one of Claims 1 thru | or 4 characterized by the above-mentioned. 未硬化の熱伝導性シリコーン組成物が、一般式
Figure 0003952184
(式中のR1は炭素原子数1〜4のアルコキシ基またはアシロキシ基、mは5〜100の整数)
で表される片末端3官能の加水分解性メチルポリシロキサンを含有することを特徴とする請求項1乃至5のいずれか1項記載の熱伝導性シート。The uncured thermally conductive silicone composition has the general formula
Figure 0003952184
(Wherein R1 is an alkoxy group having 1 to 4 carbon atoms or an acyloxy group, and m is an integer of 5 to 100)
The thermally conductive sheet according to any one of claims 1 to 5, which comprises a hydrolyzable methylpolysiloxane having one end trifunctionality represented by: 未硬化の熱伝導性シリコーン組成物の不混和ちょう度が180以下のパテ状であることを特徴とする請求項1乃至6のいずれか1項記載の熱伝導性シート。  The heat conductive sheet according to any one of claims 1 to 6, wherein the uncured heat conductive silicone composition has a putty shape having an immiscibility of 180 or less. 熱伝導性シリコーンゴムシートの厚さが0.05〜1mmであり、未硬化の熱伝導性シリコーン組成物層の厚さが0.05〜3mmであって、さらに、合計の厚さが0.1〜4mmであることを特徴とする請求項1乃至7のいずれか1項記載の熱伝導性シート。  The thickness of the thermally conductive silicone rubber sheet is 0.05 to 1 mm, the thickness of the uncured thermally conductive silicone composition layer is 0.05 to 3 mm, and the total thickness is 0.00. The heat conductive sheet according to claim 1, wherein the heat conductive sheet is 1 to 4 mm.
JP2002297017A2002-10-102002-10-10 Thermally conductive sheetExpired - Fee RelatedJP3952184B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2002297017AJP3952184B2 (en)2002-10-102002-10-10 Thermally conductive sheet

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2002297017AJP3952184B2 (en)2002-10-102002-10-10 Thermally conductive sheet

Publications (2)

Publication NumberPublication Date
JP2004130646A JP2004130646A (en)2004-04-30
JP3952184B2true JP3952184B2 (en)2007-08-01

Family

ID=32286824

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2002297017AExpired - Fee RelatedJP3952184B2 (en)2002-10-102002-10-10 Thermally conductive sheet

Country Status (1)

CountryLink
JP (1)JP3952184B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8383005B2 (en)2010-11-122013-02-26Shin-Etsu Chemical Co., Ltd.Thermally conductive silicone grease composition
CN103129201A (en)*2011-12-022013-06-05信越聚合物株式会社Transfer sheet for transfer and manufacturing method thereof
KR20150110580A (en)2013-01-222015-10-02신에쓰 가가꾸 고교 가부시끼가이샤Heat conductive silicone composition, heat conductive layer, and semiconductor device
JPWO2013168291A1 (en)*2012-05-112015-12-24信越化学工業株式会社 Thermally conductive silicone grease composition
KR20160012137A (en)2013-05-242016-02-02신에쓰 가가꾸 고교 가부시끼가이샤Thermally conductive silicone composition
KR20160028965A (en)2014-09-042016-03-14신에쓰 가가꾸 고교 가부시끼가이샤Silicone composition
KR20160058801A (en)2013-09-202016-05-25신에쓰 가가꾸 고교 가부시끼가이샤Silicone composition and method for producing thermally conductive silicone composition
US9481851B2 (en)2012-04-242016-11-01Shin-Etsu Chemical Co., Ltd.Thermally-curable heat-conductive silicone grease composition
KR20170117323A (en)2016-04-132017-10-23신에쓰 가가꾸 고교 가부시끼가이샤Heat-conductive fluorinated adhesive composition and electric/electronic part
WO2018079215A1 (en)2016-10-312018-05-03東レ・ダウコーニング株式会社One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
US10017677B2 (en)2015-10-282018-07-10Shin-Etsu Chemical Co., Ltd.Heat-conductive fluorinated curable composition, cured product thereof, and electric/electronic part
US10174237B2 (en)2015-03-022019-01-08Shin-Etsu Chemical Co., Ltd.Thermal conductive silicone composition
KR20190032518A (en)2016-08-032019-03-27신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition
KR20190077005A (en)2016-10-262019-07-02신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition
WO2019138991A1 (en)2018-01-152019-07-18信越化学工業株式会社Silicone composition
WO2020075411A1 (en)2018-10-122020-04-16信越化学工業株式会社Addition curing silicone composition and method for manufacturing same
WO2020179325A1 (en)2019-03-042020-09-10信越化学工業株式会社Non-curable thermally conductive silicone composition
WO2020202800A1 (en)2019-04-012020-10-08信越化学工業株式会社Heat-conducting silicone composition, method for manufacturing same, and semiconductor device
US10832709B2 (en)2019-01-302020-11-10Kabushiki Kaisha ToshibaDisk device
KR20200135992A (en)2018-03-232020-12-04신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition
WO2021059936A1 (en)2019-09-272021-04-01信越化学工業株式会社Thermally conductive silicone composition, production method thereof, and semiconductor device
US11041072B2 (en)2014-11-252021-06-22Shin-Etsu Chemical Co., Ltd.One-pack addition curable silicone composition, method for storing same, and method for curing same
WO2021131212A1 (en)2019-12-232021-07-01信越化学工業株式会社Heat-conductive silicone composition
WO2021235259A1 (en)2020-05-222021-11-25信越化学工業株式会社Thermally conductive silicone composition, production method for same, and semiconductor device
WO2021235214A1 (en)2020-05-222021-11-25信越化学工業株式会社Highly thermally-conductive silicone composition
WO2022255331A1 (en)2021-06-032022-12-08信越化学工業株式会社Thermally conductive silicone composition and cured object obtained therefrom
WO2023171353A1 (en)2022-03-082023-09-14信越化学工業株式会社Two-component thermally-conductive addition-curable silicone composition and cured product thereof
WO2023171352A1 (en)2022-03-082023-09-14信越化学工業株式会社Thermally-conductive addition-curable silicone composition and cured product thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPWO2008065718A1 (en)*2006-11-292010-03-04富士通株式会社 Thermally conductive sheet and electronic device
US11450589B2 (en)2018-05-082022-09-20Fuji Polymer Industries Co., Ltd.Heat-conductive sheet, mounting method using same and bonding method using same
JP7075323B2 (en)*2018-09-252022-05-25三菱電線工業株式会社 Thermally conductive putty composition, and thermally conductive sheet and battery module using it
KR102326676B1 (en)*2018-10-122021-11-15주식회사 엘지화학Method of manufacturing silicon heat-radiadting pad and heat-radiating member comprising silicon heat-radiating pad
JP2022099587A (en)*2020-12-232022-07-05信越化学工業株式会社Thermally conductive sheet and semiconductor device
JP7644726B2 (en)2022-01-312025-03-12信越化学工業株式会社 Thermally conductive addition-curable silicone composition and its cured product

Cited By (53)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8383005B2 (en)2010-11-122013-02-26Shin-Etsu Chemical Co., Ltd.Thermally conductive silicone grease composition
CN103129201A (en)*2011-12-022013-06-05信越聚合物株式会社Transfer sheet for transfer and manufacturing method thereof
CN103129201B (en)*2011-12-022015-02-18信越聚合物株式会社Transfer sheet for transfer and manufacturing method thereof
US9481851B2 (en)2012-04-242016-11-01Shin-Etsu Chemical Co., Ltd.Thermally-curable heat-conductive silicone grease composition
JPWO2013168291A1 (en)*2012-05-112015-12-24信越化学工業株式会社 Thermally conductive silicone grease composition
US9321950B2 (en)2012-05-112016-04-26Shin-Etsu Chemical Co., Ltd.Thermally conductive silicone grease composition
KR20150110580A (en)2013-01-222015-10-02신에쓰 가가꾸 고교 가부시끼가이샤Heat conductive silicone composition, heat conductive layer, and semiconductor device
US9698077B2 (en)2013-01-222017-07-04Shin-Etsu Chemical Co., Ltd.Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
KR20160012137A (en)2013-05-242016-02-02신에쓰 가가꾸 고교 가부시끼가이샤Thermally conductive silicone composition
US10023741B2 (en)2013-05-242018-07-17Shin-Etsu Chemical Co., Ltd.Heat-conductive silicone composition
KR20160058801A (en)2013-09-202016-05-25신에쓰 가가꾸 고교 가부시끼가이샤Silicone composition and method for producing thermally conductive silicone composition
US9969919B2 (en)2013-09-202018-05-15Shin-Etsu Chemical Co., Ltd.Silicone composition and method for manufacturing heat-conductive silicone composition
US10202529B2 (en)2013-09-202019-02-12Shin-Etsu Chemical Co., Ltd.Silicone composition and method for manufacturing heat-conductive silicone composition
KR20160028965A (en)2014-09-042016-03-14신에쓰 가가꾸 고교 가부시끼가이샤Silicone composition
US9394470B2 (en)2014-09-042016-07-19Shin-Etsu Chemical Co., Ltd.Silicone composition
US11041072B2 (en)2014-11-252021-06-22Shin-Etsu Chemical Co., Ltd.One-pack addition curable silicone composition, method for storing same, and method for curing same
US10174237B2 (en)2015-03-022019-01-08Shin-Etsu Chemical Co., Ltd.Thermal conductive silicone composition
US10017677B2 (en)2015-10-282018-07-10Shin-Etsu Chemical Co., Ltd.Heat-conductive fluorinated curable composition, cured product thereof, and electric/electronic part
KR20170117323A (en)2016-04-132017-10-23신에쓰 가가꾸 고교 가부시끼가이샤Heat-conductive fluorinated adhesive composition and electric/electronic part
US11214651B2 (en)2016-08-032022-01-04Shin-Etsu Chemical Co., Ltd.Thermally conductive silicone composition
KR20190032518A (en)2016-08-032019-03-27신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition
KR20190077005A (en)2016-10-262019-07-02신에쓰 가가꾸 고교 가부시끼가이샤 Thermoconductive silicone composition
US10844196B2 (en)2016-10-262020-11-24Shin-Etsu Chemical Co., Ltd.Thermally-conductive silicone composition
KR20190075081A (en)2016-10-312019-06-28다우 도레이 캄파니 리미티드 1-cure type thermally conductive silicone grease composition and electronic / electric component
US11319412B2 (en)2016-10-312022-05-03Dow Toray Co., Ltd.Thermally conductive silicone compound
WO2018079215A1 (en)2016-10-312018-05-03東レ・ダウコーニング株式会社One-pack curable type thermally conductive silicone grease composition and electronic/electrical component
WO2019138991A1 (en)2018-01-152019-07-18信越化学工業株式会社Silicone composition
US11591470B2 (en)2018-01-152023-02-28Shin-Etsu Chemical Co., Ltd.Silicone composition
US11773264B2 (en)2018-03-232023-10-03Shin-Etsu Chemical Co., Ltd.Silicone composition
KR20200135992A (en)2018-03-232020-12-04신에쓰 가가꾸 고교 가부시끼가이샤 Silicone composition
WO2020075411A1 (en)2018-10-122020-04-16信越化学工業株式会社Addition curing silicone composition and method for manufacturing same
KR20210076046A (en)2018-10-122021-06-23신에쓰 가가꾸 고교 가부시끼가이샤 Addition curable silicone composition and method for preparing same
US10832709B2 (en)2019-01-302020-11-10Kabushiki Kaisha ToshibaDisk device
WO2020179325A1 (en)2019-03-042020-09-10信越化学工業株式会社Non-curable thermally conductive silicone composition
US11912869B2 (en)2019-03-042024-02-27Shin-Etsu Chemical Co., Ltd.Non-curable thermal-conductive silicone composition
KR20210135235A (en)2019-03-042021-11-12신에쓰 가가꾸 고교 가부시끼가이샤 Non-Curable Thermally Conductive Silicone Composition
US12180368B2 (en)2019-04-012024-12-31Shin-Etsu Chemical Co., Ltd.Thermal-conductive silicone composition, production method therefor, and semiconductor device
KR20210148140A (en)2019-04-012021-12-07신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition, manufacturing method thereof, and semiconductor device
WO2020202800A1 (en)2019-04-012020-10-08信越化学工業株式会社Heat-conducting silicone composition, method for manufacturing same, and semiconductor device
WO2021059936A1 (en)2019-09-272021-04-01信越化学工業株式会社Thermally conductive silicone composition, production method thereof, and semiconductor device
KR20220074901A (en)2019-09-272022-06-03신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition, manufacturing method thereof, and semiconductor device
US12104113B2 (en)2019-09-272024-10-01Shin-Etsu Chemical Co., Ltd.Thermally conductive silicone composition, production method thereof, and semiconductor device
US12391860B2 (en)2019-12-232025-08-19Shin-Etsu Chemical Co., Ltd.Thermal-conductive silicone composition
WO2021131212A1 (en)2019-12-232021-07-01信越化学工業株式会社Heat-conductive silicone composition
KR20220121805A (en)2019-12-232022-09-01신에쓰 가가꾸 고교 가부시끼가이샤 Thermally Conductive Silicone Composition
KR20230015340A (en)2020-05-222023-01-31신에쓰 가가꾸 고교 가부시끼가이샤 High thermal conductivity silicone composition
KR20230015374A (en)2020-05-222023-01-31신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition, method for producing the same, and semiconductor device
WO2021235214A1 (en)2020-05-222021-11-25信越化学工業株式会社Highly thermally-conductive silicone composition
WO2021235259A1 (en)2020-05-222021-11-25信越化学工業株式会社Thermally conductive silicone composition, production method for same, and semiconductor device
KR20240015664A (en)2021-06-032024-02-05신에쓰 가가꾸 고교 가부시끼가이샤 Thermal conductive silicone composition and cured product thereof
WO2022255331A1 (en)2021-06-032022-12-08信越化学工業株式会社Thermally conductive silicone composition and cured object obtained therefrom
WO2023171352A1 (en)2022-03-082023-09-14信越化学工業株式会社Thermally-conductive addition-curable silicone composition and cured product thereof
WO2023171353A1 (en)2022-03-082023-09-14信越化学工業株式会社Two-component thermally-conductive addition-curable silicone composition and cured product thereof

Also Published As

Publication numberPublication date
JP2004130646A (en)2004-04-30

Similar Documents

PublicationPublication DateTitle
JP3952184B2 (en) Thermally conductive sheet
JP3543663B2 (en) Thermal conductive silicone rubber composition and method for producing the same
JP5015436B2 (en) Thermally conductive silicone elastomer, thermal conductive medium and thermally conductive silicone elastomer composition
JP3444199B2 (en) Thermal conductive silicone rubber composition and method for producing the same
JP5084987B2 (en) Heat dissipation from circuit boards with bare silicon chips
JP6136952B2 (en) Thermally conductive composite silicone rubber sheet
JP3029556B2 (en) Thermal conductive composite silicone rubber sheet
JP6202475B2 (en) Thermally conductive composite silicone rubber sheet
JP4144998B2 (en) Material for heat dissipation
JP6032359B2 (en) Thermally conductive composite sheet and heat dissipation structure
TWI822954B (en) Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material
CN101544089A (en)Heat-conductive laminated material and manufacturing method thereof
CN1871305A (en)Thin bond-line silicone adhesive composition and method for preparing the same.
JP2020128463A (en) Thermally conductive silicone rubber sheet having thermally conductive adhesive layer
JP2020002236A (en)Heat-conductive silicone composition, heat-conductive silicone sheet, and method of manufacturing the same
JP2018193491A (en) Thermally conductive silicone rubber composite sheet
JP3521781B2 (en) Heat dissipation member
JP2006089675A (en)Thermally-conductive silicone elastomer and thermally-conductive silicone elastomer composition
EP1928970B1 (en)Thermoconductive silicone elastomer, thermoconductive silicone elastomer composition and thermoconductive medium
JP6558301B2 (en) Thermally conductive composite sheet
JP7270792B2 (en) Thermally conductive silicone rubber sheet with thermally conductive adhesive layer
JP2016219732A (en) Thermally conductive composite silicone rubber sheet
EP4349915A1 (en)Heat-conductive silicone composition
JP2001294840A (en) Heat dissipation construction method and heat dissipation structure
JP2005035264A (en) Thermally conductive silicone molded body and method for producing the same

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20041112

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20060808

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20060905

A521Written amendment

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20061031

RD03Notification of appointment of power of attorney

Free format text:JAPANESE INTERMEDIATE CODE: A7423

Effective date:20061031

A521Written amendment

Free format text:JAPANESE INTERMEDIATE CODE: A821

Effective date:20061031

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20070110

A521Written amendment

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20070308

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20070404

A521Written amendment

Free format text:JAPANESE INTERMEDIATE CODE: A821

Effective date:20070308

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20070417

R150Certificate of patent or registration of utility model

Free format text:JAPANESE INTERMEDIATE CODE: R150

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20130511

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20160511

Year of fee payment:9

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp