









































【0001】
本出願は、発明者Deemらによる標題“Methods and Devices for use in Performing Pulmonary Procedures”の、2000年3月4日付け出願、出願番号09/519,735の一部継続出願であり、その全開示は引用により本明細書に組込む。
【0002】
本発明の分野
本発明は、肺処置(pulmonary procedure)の実行に使用するための方法およびデバイス、およびより特に肺の種々の疾患を処置するための手順に一般的に関連する。
【0003】
背景技術
気腫および慢性閉塞性肺疾患(COPD)のような肺疾患は、呼吸サイクルの呼息相の間における一方または両方の肺による空気を完全に排出する能力を低くする。当該疾患肺組織は、健康な肺組織よりも弾力性がなく、それは、完全な空気の呼息を妨げる一要因である。呼吸の間、肺の疾患部分は、当該組織に弾力性がないため、完全には反跳(recoil)しない。その結果、当該疾患(例えば、気腫)肺疾患は、比較的低い駆動力が働き、その結果、疾患肺は、排出できる空気の体積が健康な肺よりも少ない。空気の体積が少なくなれば、すべての空気が排出される前に気管を閉じ得る気管にかかる力は少なくなり、他の要因が完全な排出を妨げる。
【0004】
当該問題が、肺胞(酸素−二酸化炭素置換が生じる空気嚢)へと続く非常に細い気管を取り巻く疾患性の、弾力性の少ない組織により、更に増す。この組織は、健康な組織よりも低い活動状態であり、典型的には、呼息サイクルの終わりまで細い気管を開いて維持できない。これは空気を肺の中に閉じ込め、既に効率が悪くなっている呼吸サイクルを悪化させる。この閉じ込められた空気により、当該組織は、過拡張し、もはや効率的な酸素−二酸化炭素置換が生じ得ない。これらの細い気管に吸引を適用することにより(肺の疾患部分の空気を抜くための文献において提唱する手順)は、周囲の疾患組織により気管をつぶすことになり、それにより流体除去が妨害される。
【0005】
加えて、過拡張肺組織は、健康な肺組織よりも胸膜の空間が占められている。殆どの場合、一部の肺が疾患である一方、残りの部分は健康であり、それゆえ、まだ効率的な酸素置換を行うことができる。より大きな胸膜の空間を占めることにより、過拡張肺組織は、健康な、機能する肺組織に適応して利用できる空間の量を減少する。結果として、過拡張肺組織は、機能が低下し、近接の健康組織の機能に逆に影響するため、非効率な呼吸の原因となる。
【0006】
肺減少外科手術(lung reduction surgery)は、気腫のような肺疾患を処置する通常の方法である。肺の疾患部分は、外科的に取除かれ、機能する健康な肺の部分に適応して利用できるより大きな胸膜の空間となる。当該肺は、胸骨正中切開術または小側方開胸術(small lateral thoracotomy)により典型的にアクセスされる。肺の一部、典型的には各肺の上葉は、胸壁から分離され、次いで、切れ目に近接する肺組織を強化するため、また空気または血液の漏れを防ぐため、例えばウシ心膜で内張りされたステープラーにより一部切除される。次いで胸を閉じ、チューブを挿入し、胸膜腔から空気および液体を取除く。通常の外科手術的アプローチは比較的外傷性および侵襲性などとなり、殆どの外科手術的手順は、すべての患者にとって実効可能なオプションではない。
【0007】
より最近、提唱された処置には、疾患肺組織を切断、萎縮または融解(fuse)するためRFまたはレーザーエネルギーを用いるデバイスの使用が含まれる。他の肺体積減少デバイス(lung volume reduction device)は、肺組織を巻いて永続的に圧縮状態に維持されている、収縮させたより低いプロフィールとするために使用する機械構造を利用するものである。使用する手順のタイプに関する限り、観血療法的(open surgical)、最小の侵襲的、および気管支内的アプローチがすべて提唱されている。他の提唱されたデバイス(公開番号WO 98/48706に開示)は、肺中に位置して、空気流をブロックし、肺の一部を隔離するものである。当該公報は、閉塞デバイスが気管支内デリバリーデバイスを通して導入され、空気流に対する完全なシールを提供するために、弾力的に変形可能である。
【0008】
新規でよりよい処置の探求により、現存の肺処置(pulmonary procedure)に関連した欠点が明白になっている。従って、肺処置(pulmonary procedure)を実行するため、特に気腫のような肺疾患を処置するための改善方法およびデバイスが本分野に必要とされている。
【0009】
本発明の要約
ある実施態様では、本発明は、患者の肺を処置する方法を提供する。当該方法は、患者の肺中の中空構造を選択するステップを含み、この場合、当該中空構造は、少なくとも第一および第二の方向に流動を構成する経路を決定し、第一の方向の経路内に流動させ得る一方、第二の方向への流動をコントロールする。
【0010】
他の実施態様では、本発明は、患者の肺を処置する方法を提供する。この方法は、第一の方向へ流動し得、第二の方向への流動を制限するバルブを提供するステップ、および呼息方向に相当する第一の方向および吸息方向に相当する第二の方向で、患者の肺中の望ましい位置におけるバルブを位置付けるステップを含む。
【0011】
他の実施態様では、本発明は、少なくとも一方向の流動を制限するフローコントロールエレメントを提供するステップ、実質的に吸息方向に相当する一方向で、患者の肺中の位置においてフローコントロールエレメントを位置付けるステップ、および一定期間後にフローコントロールエレメントを取除くステップを含む。
【0012】
他の実施態様では、本発明は、患者の肺を処置する方法を提供し、当該方法は、患者の肺中の中空を選択するステップ、この場合、少なくとも第一および第二の方向に流動を構成するための経路を決定し、吸引し第一方向の経路を通して液体を引き抜くステップ、および第二方向の経路を通る流動を実質的に防止するステップを含む。
【0013】
他の実施態様では、本発明は、患者の肺を処置するシステムを提供する。当該システムは、患者の肺中に位置する中空構造中に位置するように大きさを決め、形成する、フローコントロールエレメントを含み、この場合、当該フローコントロールエレメントは、第一方向に流動し得るが、第二方向の流動を実質的に妨げるバルブメンバーを含む。デリバリーデバイスは、中空構造中または中空構造に近接してガイドし位置付けるように大きさを決め、形成され、そしてフローコントロールエレメントは、デリバリーデバイス上に除去可能なようにマウントされる。このバルブは、ポペット、ボール、ダックビル、ハイムリック、フラップまたはリーフレットバルブであり得る。
【0014】
他の実施態様では、患者の肺を処置するシステムを提供する。当該システムは、患者の肺中の中空構造のおおよその大きさを決定する測定デバイス、および患者の肺中に位置する中空構造中に位置するように大きさを決定し、形成するフローコントロールエレメントを含み、この場合、フローコントロールエレメントは、第一方向に流動し得るが、第二方向への流動を実質的に妨げる。
【0015】
他の実施態様では、本発明は、患者の肺を処置するシステムを提供する。このシステムは、患者の肺中に位置する中空構造中に位置するように大きさを決定し、形成するフローコントロールエレメントを含み、この場合、フローコントロールエレメントは第一の方向に流動し得るが第二の方向への流動を実質的に妨げ、そして中空構造からフローコントロールエレメントを取除きその後中空構造中のフローコントロールエレメントを位置付けるための除去デバイスを含む。
【0016】
他の実施態様では、ブロッキングエレメントは、デリバリーエレメントに結合する。当該ブロッキングエレメントは、患者の肺中の位置へ前進する。膨張可能メンバーは膨張し肺通路を閉塞し、次いで空気は、肺から引き抜かれる。当該ブロッキングエレメントは解放され、肺の隔離部分中への空気の流れをブロックする。当該ブロッキングエレメントはまたバルブであり得る。当該膨張可能メンバーは、デリバリーエレメントによりまたは分離エレメントにより行われ得る。
【0017】
また他の実施態様では、デバイスは、ブロッキングエレメントのインプランテーション後にブロッキングエレメントを通って前進する。次いで、デリバリーまたは流体または液体の排出のような手順は、当該デバイスで行い得る。次いで、当該デバイスをブロッキングエレメントで取除き、再び、吸息方向に空気が通過するのを妨げる。当該ブロッキングエレメントはまた、呼息方向への流れを可能にするバルブであり得る。
【0018】
図面の簡単な説明
図1は、本発明の1つの実施態様により構成されたシステムを図示する立面図であり、当該システムは、患者において肺処置(pulmonary procedure)行うために使用される。
図2は、本発明のシステムに沿って図1で示した患者の肺を拡大した立面図である。
図3は、図2で示すシステムの一部を形成するフローコントロールエレメントの、断面の、拡大した立面図であり、この場合、当該フローコントロールエレメントは、第一の方向の流動が可能であるが、第二の方向の流動をブロックする。
図4は、第一の方向の流動が可能であるが、第二の方向の流動をブロックする別のフローコントロールエレメントの、断面の、拡大した立面図である。
図5は、もう1つ他のフローコントロールエレメントの、断面の、拡大した立面図である。
図6は、また、もう1つ他のフローコントロールエレメントの、断面の、拡大した立面図である。
図7は、本発明の他の態様により構成された導入器の透視図である。
図8は、図7に示す導入器の一部の拡大した透視図である。
図9は、患者の肺中の選択された位置へフローコントロールエレメントを運ぶための、本発明の他の実施態様により構成されるデリバリーデバイスの透視図である。
図10は、中空構造の大きさを、当該構造中にフローコントロールエレメントを配置する前に決定するための、本発明の他の実施態様により構成される測定デバイスの透視図である。および
図11は、中空構造中に既に位置するフローコントロールエレメントを除去するための、本発明の他の実施態様により構成された除去デバイスの透視図である。
図12は、他のフローコントロールエレメントの側面図である。
図13は、図12のフローコントロールエレメントの他の側面図である。
図14は、図12のフローコントロールエレメントの断面図である。
図15は、図12のフローコントロールエレメントの他の断面図である。
図16は、テーパー形を有するように変えた図12のフローコントロールエレメントの等角図である。
図17は、他のフローコントロールエレメントを示す。
図18は、図17のフローコントロールエレメントの端面図である。
図19は、他のフローコントロールエレメントを示す。
図20は、また他のフローコントロールエレメントを示す。
図21は、他のフローコントロールエレメントの側面図である。
図22は、ラインA−Aに沿った図21の断面図である。
図23は、図21の縦の断面図である。
図24は、図21のフローコントロールエレメントの他の実施態様である。
図25は、ラインB−Bに沿った図24の断面図である。
図26は、閉じ位置のフラップバルブを伴う他のフローコントロールエレメントを示す。
図27は、開き位置の図26のフラップバルブを示す。
図28は、閉じ位置のスリットバルブを示す。
図29は、開き位置のスリットバルブを示す。
図30は、ブリストルを伴うフローコントロールエレメントを示す。
図31は、ボールバルブの断面図である。
図32は、ポペットバルブの断面図である。
図33は、リーフレットバルブを示す。
図34は、図33のリーフレットバルブの断面図である。
図35は、他のフラップバルブを示す。
図36は、図35のフラップバルブの断面図である。
図37は、また他のフラップバルブを示す。
図38は、図36のフラップバルブの断面図である。
図39は、肺処置(pulmonary procedure)を行うためのシステムを示す。
図40は、図39のシステムの遠位末端(distal end)の断面図である。
図41は、本発明のフローコントロールエレメントを通る肺の隔離部分へのアクセスを示している。
図42は、デバイス周辺をシールするバルブと共に図12−15のフローコントロールエレメントを通過するデバイスを示す。
【0019】
好ましい実施態様の詳細な説明
本発明は、肺処置(pulmonary procedure)を行うため、例えば、気腫およびCOPDのような種々の肺疾患を処置するための方法およびデバイスを提供する。本発明のある好ましい実施態様は、第一の方向の流動が可能であるが第二の方向の流動をコントロールするフローコントロールエレメントを提供する。本明細書で使用する場合、流体は、気体、液体、または気体および液体の混合物を意味する。加えて、本明細書で使用する場合、流動がコントロールされているとは、流れが幾つかの手法で変わること、すなわち、その流れが第二の方向に妨げられないことはないことを意味する。流動が第二の方向へコントロールされる特定の手法は、フローコントロールエレメントの構成に依存する。フローコントロールエレメントは、例えば、完全にブロックし、実質的にブロックし、制限し、バルブまたは他の適当な構造体により第二の方向の流動を計量または調節し得る。
【0020】
一方の肺の中の気管支のような患者の体内の中空構造中に位置するとき、フローコントロールエレメントを、呼息方向への流れを可能にするが吸息方向の流動は阻止するように方向付ける。フローコントロールエレメントは、フローコントロールエレメントに対し遠位の隔離肺部分をすぼませるか減圧するため、呼息の間に開くバルブメンバーを有する。これは、組織の更なる過拡張を妨げる減圧状態に疾患組織を維持する。本発明はまた、短時間または長時間にわたる肺疾患のゆっくりとした減圧術を可能とする。
【0021】
そのため、本発明は、患者の肺の1以上の部分中へ流体が引き抜かれるのを防止するため使用され得る。本発明の他の態様により、肺の一部は、緩やかな吸引(フローコントロールエレメントを介する)を過拡張組織に適用することにより、疾患組織が取り囲む細い気管の壁をつぶすことなく、引き抜かれ得る。当該吸引により、空気、液体、粘液などを、疾患組織の空気を抜くため肺部分の外へ引き抜く。本発明のこれらおよび他の態様は、独立して、または互いに組合せて実施され得る。
【0022】
図1は、患者Pの肺Lの肺処置(pulmonary procedure)を行うための、本発明の1つの実施態様により構成されたシステム10を示す概略図である。適当なシステム、方法、または本明細書で特に記載したものの外側のデバイスは本発明の実施に使用され得ることに最初に注意すべきである。そのため、当該システム10は、単なる例示であり、14で図示されるステアリング機構を有する気管支鏡12、シャフト16および気管支鏡の1以上のウォーキングチャンネルへのアクセスを提供するポート18を含む。
【0023】
図1は、本発明により構成されたデリバリーデバイス20を示す。当該デリバリーデバイス20は、フローコントロールエレメント22を運ぶため、気管支鏡12内に位置するように示されている。当該気管支鏡12は、患者の気管Tを通過し、右気管支24中へガイドする。次いで、当該デリバリーデバイス20は、フローコントロールエレメント22の位置をコントロールするステアリング機構14を介し気管支鏡12について操作する。図1および7−9の引用に関し、デリバリーデバイス20は、気管支鏡ウォーキングチャンネル26(図8)の範囲内で動くことができ、中空構造、この場合は、細気管支28中の望ましい位置中へガイドする。説明の目的のため、細気管支28は、疾患肺部分を示す肺Lの上葉Uを有する(feed)する。デリバリーデバイス20は、サイドポート18を通って、ウォーキングチャンネル26中へ位置し、デリバリーデバイス20の遠位端30をウォーキングチャンネルの外で動かし、当該フローコントロールエレメント22を、細気管支28中の位置に固定する。
【0024】
図2は、導入器12およびデリバリーデバイス20を取除いた後の図1を示す患者の肺Lの拡大図であり、この場合、フローコントロールエレメント22は細気管支28中に放置される。図3により詳細に示すフローコントロールエレメント22は、リング34により支えられているバルブメンバー32を伴うバルブ形である。図2は、肺の下葉LLをフィードする細気管支28A中に位置する第二のフローコントロールエレメント22Aをまた示していることに注意すべきである。当該フローコントロールエレメント22Aは、バルブメンバー32Aおよび支持リング34Aを含み、下葉LLの過拡張組織中への流体の吸入を減少または妨げる。任意の数のフローコントロールエレメントが所定の手順で使用され得ると理解される。
【0025】
フローコントロールエレメント22を詳細に示す図3について言及すると、バルブメンバー32は、ダックビル型バルブであり、開口部36を決定する2つのフラップを有する。当該バルブメンバー32は、閉じた開口部36と共に、図3で流れを妨げる方向に示している。当該バルブメンバー32は、第一の方向(Aの矢印の方向)に流動し得るが、第二の方向(Bの矢印の方向)への流動をコントロールするように形成する。この実施態様では、Bの矢印の方向の流動は、バルブメンバー32により完全にブロックされることによりコントロールされる。流動が可能であり、そしてコントロールされる、第一および第二の方向はそれぞれ、例えば図のように、互いに逆であるか、または実質的に逆であるのが好ましい。しかし、本発明は、第一および第二の方向が異なるが互いに逆ではないように実施することも可能である。
【0026】
上記したように、フローコントロールエレメント22のバルブメンバー32は、第二方向のその流れを完全にブロックすることにより流動をコントロールする。そのため、当該バルブメンバー32は、一方向バルブ(one-way valve)として有効に機能する。本発明の他の実施態様は、その流れを完全にブロックすることなく第二の方向の流動をコントロールするフローコントロールエレメントを利用する。
【0027】
図4は、少なくとも一方向の流動を制限するがブロックはしない、本発明の他の実施態様により構成された典型的なフローコントロールエレメント38を示す。当該フローコントロールエレメント38は、リング42により支えられているバルブメンバー40を含む。当該バルブメンバー40は、好ましくは、バルブメンバー32のものに類似する構成を有するダックビル型バルブであるが、但し、流れをコントロールする方向(流れ得る方向とは逆)であるとき、流れ開口部46を維持するようにフラップ44が形成され、固定され、方向付けられるか、または構成される点で異なる。開口部46は、フローコントロールエレメント38を通して望ましい流れ特性を達成するように大きさや形状が決定される。
【0028】
フローコントロールエレメント38が、流れが可能な方向(示さず)にあるとき、当該フラップ44は広がって離れており、疾患肺部分の外側で流動が本質的に妨げられ得ない。当該フローコントロールエレメント38が、図4に示すように流れをコントロールする方向にあるとき、当該フラップは、事前決定量の流体が肺部分中へ吸入され得る開口部46を決定するために同時に動く。これは、流れをコントロールする方向にあるとき、肺中への流動をブロックするフローコントロールエレメント22とは対照的である。もちろん、図4は、所定方向の流動を制限する単なる1つの方法を示していると認識される。流れのコントロールが得られるこの特定手法は、本発明により、例えば、フローコントロールエレメントにおける流れ開口部の数、大きさ、形または位置を変えることにより、変わり得る。
【0029】
本発明の他の態様によると、フローコントロールエレメントは、細気管支のような中空構造内で気体または液体の可動を目的とするポンピング動作を提供するように構成され得る。例えば、吸息および/または呼息の間に肺がゆがむとき、機構的ポンピング動作は、肺の隔離領域を更にすぼませるため気体または液体を動かすように使用し得る。図5は、本実施態様により構成された典型的なフローコントロールエレメント50を示し、リング56により連続して支えられている一対のバルブメンバー52、54を含む。当該バルブメンバー52、54は、それぞれ、バルブ開口部を決定する一対のフラップを含む(図5では、バルブメンバーは、閉じた状態で示しており、それは流動をブロッキングする方向である)。チャンバー58は、バルブメンバー52、54の間で決定され、フローコントロールエレメント50を通して流れる流体においてポンピング効果を生ずる。当該チャンバーは、細気管支(またはそれが入っている他の中空構造)の動きと共につぶれ、そして拡張し、疾患肺組織から流体をポンプする。
【0030】
当該バルブメンバー54は、ベローズ60と結合し、ポンピング動作を促進し、および/またはバルブメンバーを開くのに必要量の力をコントロールする。チャンバー58を決定する壁62は、リング56に固定され、そのためチャンバー58はリング56の内部全体を占める。当該フローコントロールエレメント50は、種々の構成を有し得、この場合、チャンバー58は、壁62内に位置するエアーポケットにより決定される。これは、チャンバー58内の流体回収を妨げ得る。加えて、動力駆動ポンプは、肺の外の流体を引き抜くように使用され得、例えば、空気および粘液を引き抜くポンピング力を生ずる、小型バッテリー動力電気ポンプ、または物理的または化学的特性、例えば空気温度の変化、付加気体または液体の存在、pHの変化などを使用するポンプである。
【0031】
図6は、更にまた他のフローコントロールエレメント70を示し、開口部を決定する一対のフラップを含むバルブメンバー72、およびバルブメンバー72を支えるリング74を含む。当該バルブメンバー72は、第一の方向に流動が可能であるが第二の方向への流れを妨げるダックビル型バルブである。この実施態様の当該リング74は、支え78を有するステント76を含み、中空ボディー構造体(示さず)中のフローコントロールエレメント70の固定を向上させる。当該バルブメンバー72は、例えばステント、縫合、ファスナー、アドヒーシブなど任意の適当な手段によりステント76に接合され得る。当該ステント76は、容易な伝達と展開を可能ならしめるように収縮方向と拡張方向(図6)との間で可動的である。すなわち、ステント76を含むフローコントロールエレメント70はつぶれ得、比較的小さい空間、例えば気管支鏡のウォーキングチャンネルを介するデリバリーのためのさやの中に維持され得る(典型的な気管支鏡は、約6または7mmの直径を有し、一方、ウォーキングチャンネルは約2または3mmの直径を有する)。つぶれ得るフローコントロールエレメントはまた、患者の胸郭中で形成される小さな開口部を介するフローコントロールエレメントの導入に有用となり得る。
【0032】
図7および8は、図1と関連して上記した気管支鏡12およびフローコントロールエレメントデリバリーデバイス20の詳細を示す。気管支鏡12は、フローコントロールエレメント22の展開の間の、気管および肺の種々の経路を視覚化するために使用する。当該気管支鏡12は、カメラ/レコーダー、吸引/洗浄システム、または他の補助的手段を備えることが出来る。当該ステアリング機構14は、気管支鏡シャフト16の遠位チップ(distal tip)を、望ましい角度範囲を、例えば0°から180°を超えて動かし得るケーブルを含み得る。図8は、ウォーキングチャンネル26(サイド部分18と連絡する)、1以上のファイバーオプティックライトガイド81、および接眼レンズ80にイメージを伝えるためのレンズ82を含む気管支鏡12の遠位部分30を示す。
【0033】
図9は、ハンドル84、アクチュエーター86、サポートシャフト87およびさや88を含むデリバリーデバイス20を示す。説明の目的のため、デリバリーデバイス20は、図6のフローコントロールエレメント70の送達と関連して記載されるが、それが他のフローコントロールエレメントを運ぶために使用し得ると理解し得る。当該フローコントロールエレメント70および特にステント76は、低プロファイル方向(low profile orientation)に対しつぶされ、次いでシャフト87上にマウントされる。当該さや88は、それがフローコントロールエレメント70をつぶして維持するためステントボディー76(および望ましいならばバルブメンバー72)を覆うまで、図9に示される位置から遠くに移動する。(当該さやの位置は、明らかなため省略する)次いで、当該シャフト87およびさや88は、気管支鏡12のサイド部分18およびウォーキングチャンネル26の中を通過し、肺中の望ましい位置へガイドする。当該アクチュエーター86は、当該ステント76を拡張し得るフローコントロールエレメント70からさや88を取り除くために使用する。ステント76は、好ましくは、自己拡張物質(self-expanding material)、例えばニチノールを形成する。フローコントロールエレメント70がすぐさま拡張し、さや88の収縮で組織を引き合う。また、当該ステントは、使用において拡張するバルーンまたはヒートアクチベーションのような機構に依存し得る。
【0034】
本発明のフローコントロールエレメントは、種々のデリバリーデバイスまたはシステムにより、図1および2に示す細気管支28のような肺システム中の望ましい位置へガイドされ、その位置に位置付けられる。例えば、ガイドワイア-ベースシステム、イントロデューサーシース、カニューレまたはカテーテルなどは、最小限の侵襲性の手法において処置エレメントを運ぶために使用し得る。フローコントロールエレメントを導入するため気管支鏡を使用する上記方法は、気管支鏡上に導入用さやを設けることにより修飾され得る。当該さやは、例えば、種々のサイズのフローコントロールエレメントを置くため、患者の体から気管支鏡を取り除く必要がある場合に、接近しやすくする。
【0035】
本発明は、標的ルーメン、すなわち、フローコントロールエレメントが置かれる中空構造のおおよそのサイズを最初に決定することにより、行われる。図10は、患者の体中の中空構造、例えば、肺中の細気管支のサイズを決定する典型的デバイスを幾分概略した。デバイス90は、ハウジング92、シャフト94、ポジショニングエレメント96および測定エレメント98を含む。測定エレメント98は、細気管支(示さず)の内表面のような中空構造の壁と接触するように動かされるチップ100を有する。デバイス90を調整して、測定エレメント98のチップ100を細気管支の壁に接触させると、インディケーター102は、細気管支のおおよそのサイズを示す。電気的カップリング104は、デバイス90を動力を供給する。
【0036】
ポジショニングエレメント96は任意であり、正確な測定を得るため、細気管内の測定エレメント98の位置を固定するのに使用し得る。当該エレメント96は、空気で膨らむバルーンであるが、他のエレメントは、細気管支内でシャフト96を中心に置き、保持するため使用し得る。測定エレメント98が真実の読みとりを与えるよう細気管支壁に対する接触を保証するため、適当な手段をとることができる。測定エレメント98は、チップ100が組織と接触していることをビジュアルインディケーターが示すまで、遠位的に動き得る(図10の右のほうまで)。さらに、電気抵抗の変化は、測定エレメント98と組織との接触を確実とするように使用し得る。デバイス90は、中空ボディー構造のサイズを決定するために使用し得る種々の手段の単なる典型である。
【0037】
使用において、測定デバイス90のシャフト94は、気管支鏡ウォーキングチャンネル26を通過し、当該部位へ運ばれる。次いで、当該デバイス90は、上記のように操作し、細気管支のおおよそのサイズを決定する。中空構造のサイズを測定する精度は、行う手順およびユーザーの好みに依存する。細気管支のサイズを決定した後、デバイス90をウォーキングチャンネル26から取り除き、そしてデリバリーデバイス20を、気管支鏡中のフローコントロールエレメントを展開するため当該チャンネル中へ挿入する。
【0038】
いくつかの例では、フローコントロールエレメントが展開される中空構造から当該フローコントロールエレメントを取り除くことが必要となり得、または取り除くことが望ましいかもしれない。実施例のように、フローコントロールエレメントを所定時間、静置することにより疾患肺組織において利益ある結果を生じる場合があり得る。疾患組織がつぶれ、減圧する時間により、当該組織は、一時的に不活性となる結果として幾らかの弾力性を回復し得る。当該組織が、その弾力性を幾分または完全に回復した後、フローコントロールエレメントは取り除いたほうがよく、当該組織は機能が効率的となる。しかし、当該フローコントロールエレメントは、好ましくは、当該組織が回復するチャンスを十分に持っている以前に、取り除かない。
【0039】
従って、本発明はまた、患者の体内の細気管支のような中空構造からフローコントロールエレメントを取り除くための方法およびデバイスを提供する。図11は、ハンドル112、アクチュエーター114、シャフト116および1以上の除去構成部分118を含むデバイス110を示す。当該構成部分118は、好ましくは、組織周囲からエレメントを取り除くため、フローコントロールエレメントをつかむように形成されたチップ120を有する。当該デバイス110の当該シャフト116は、患者の気管(示さず)を通過し、事前に展開したフローコントロールエレメントへガイドされ、例えば、当該シャフト116は、デリバリーデバイス20と同じ手法で気管支鏡のウォーキングチャンネルを通して導入され得る。除去構成部分118は、好ましくは、シャフト116内でつぶされ、その一方、当該シャフトは、当該サイトへガイドされる。次いで、当該構成部分118は伸張し、細気管支の壁と接触する。当該チップ120は、つかむため、そして細気管支からのフローコントロールエレメントを取り除くため使用する。
【0040】
本発明のフローコントロールエレメントは、呼吸の間、適所で維持されるため、細気管支28のような中空構造中の位置に固定される。フローコントロールエレメントの外側は、例えば、図3および4の番号48により示されるような適所の当該エレメントを固定化するためにその外側に全部または一部に沿って形成され得る。当該固定構造48は、アドヒーシブ、組織増殖−誘導性物質、ファスナー、ステープル、クリップ、縫合、ステント、バルーン、Dacron(商標)スリーブ、焼固性の表面、エッチングした表面、粗い表面、とげのある表面または他に処理した表面などを含み得る。
【0041】
患者の肺系における、本発明により構成されたフローコントロールエレメント配置は、幾つかの利点を達成する。解説したフローコントロールエレメント22関し、図1および2に示すように細気管支28中で展開すると、当該エレメントは、呼息が可能であるが、吸息を妨げる。そのため、当該フローコントロールエレメント22は、疾患肺部分中へ流体が加えられる吸息を制限または妨げる。これは、過拡張組織の更なる拡張を妨げ、健康な肺組織のためのより広い胸膜空間を維持することになるので、利点となる。フローコントロールエレメント22はまた、肺から出ていき、それにより当該組織がつぶれるかまたは減圧している患者により任意の空気(もし存在するならば、同様に任意の液体)を自然に排出し得る。当該液体は、好ましくは、肺からは妨げられず流れ得るが、すぼむのをコントロールするため代わりに計測するか制御し得る。
【0042】
図12−16について言及すると、他のフローコントロールエレメント22を示している。当該フローコントロールエレメント22は、吸入方向の空気をブロックするブロッキングエレメント122としての役割をする。当該ブロッキングエレメント122はまた、呼息方向への流れを可能にするが、吸息の方向への流れは阻止するバルブ124を有し得る。当該バルブ124は、本明細書で記載した任意のバルブのような任意の適当なバルブであり得る。例えば、図13および16は、閉じ位置で互いに引き合う第一リップ126および第二リップ128を有するバルブ124を示す。本明細書で使用するときのバルブなる用語はまた、一方向には流れ得るが他の方向には流れが妨げられるチェックバルブを言い得る。本明細書に記載のバルブは種々態様の本発明で使用されるが、本発明の他の態様は、両方向の流れをブロックすることにより実施され得る。例えば、当該デバイスおよび肺の隔離部分へアクセスするための方法は、両方向への空気の流れをブロックするデバイスと共に使用し得る。最終的に、呼息方向の流れは、単にバルブを使用するよりもむしろ、本明細書に記載のような他の手法で制御され得る。
【0043】
当該フローコントロールエレメント22は、拡張可能支持構造体130を有する。当該支持構造体130は、金属であり、好ましくは、ニチノールのような超弾性物質である。当該支持構造体130は、ステントのような小さな金属チューブを形成する本分野に一般的に知られるように、カッティング、エッチングまたは他に開口部132を形成するためチューブから物質を取り除くことにより形成する。もちろん、当該支持構造体130は、任意の他の適当な手法により、および他の適当な物質により作成され得る。実施例のように、当該支持構造体130は、6つのダイアモンド型開口部132を有するようにレーザーカットするニチノールチューブであり得る。
【0044】
当該フローコントロールエレメント22は、当該支持構造体に結合するボディー134を有する。当該ボディーは、好ましくは、シリコンまたはウレタンにモールドされるが、任意の他の適当な物質であり得る。当該バルブ124は、ボディー134にマウントされ、下記のようにボディー134と共に統合的に形成され得る。ボディー134は、任意の適当な手法で支持構造体130に結合され得る。例えば、当該ボディー134は、支持構造体130中に位置付けられ得、末端136は当該支持構造体130の末端138上を裏返され得る。当該裏返された末端136は、アドヒーシブ、アドヒーシブリベット、ヒートベルドまたは任意の他の適当な方法により接合部140において支持構造体130中の開口部132を介し、ボディー134の残りに結合する。当該接合部140による支持構造体130とのボディー134の結合の利点は、支持構造体130およびボディー134が、つぶれ、独立して幾分拡張し得ることであり、これは接合部140が開口部132において自由に動くためである。
【0045】
当該フローコントロールエレメント22はまた、肺通路の壁と共にシールを形成するシーリング部分142を有し得る。当該シーリング部分142は、別々にボディー134に結合し得るか(図14)、またはボディー134およびバルブ124と共に統合的に形成され得る(図15)。フローコントロールエレメント22の利点は、ボディー134およびバルブ124のようなエレメント22の実質的部分が統合的に形成されることである。図15の実施態様では、バルブ124、ボディー134、バルブボディー134およびシーリング部分142がすべて統合的に形成される。当該シーリング部分142は、バルブ124辺りに伸張するが、バルブ124に直接結合することなく、そのため、当該バルブ124は、当該シーリング部分142において、または当該シーリング部分142により力が作用しない。当該シーリング部分142は、バルブ124辺りに位置するチューブ144から伸張する。
【0046】
シーリング部分142は、ボディー134周囲にリング146を形成する。当該リング146は、肺通路の壁のシーリングを改善する弾力性エラストマー物質により製造される。当該リング146は、ストレート、テーパー化、アングル化のような任意の適当な形を有するか、またはリング146を角度つけて曲げる円錐型(frustoconical)表面143を有し得る。当該シーリング部分142は、好ましくは、少なくとも2つのシーリング部分142を有し、好ましくは3つ、それらは、それぞれ、種々のサイズの通路をシールする種々の直径を有する。この手法は、当該デバイスは、所定のサイズ範囲内で使用され得る。当該リング142はまた、呼息の空気を通過し得るように偏向するように設計し得る。例えば、咳をする間、もちろん、当該バルブ124は空気が逃げ得るように開くが、しかし、バルブ124上の圧力は、また、シーリング部分142が開き肺の隔離部分を更に排出し得るならば、減少し得る。以下に解説するように、種々の他の構造体もまた、隔離領域を排出し得る肺通路の壁と共同するバルブを提供するため使用し得る。
【0047】
当該ボディー134は、デバイスを固定するのを助け支持構造体130の剥き出し部分135を提供する支持構造体130に結合する。剥き出し部分なる用語は、ボディー134により被覆されていない支持構造体130の一部をいう。もちろん、剥き出し部分135は、ボディー134により被覆されない限り、他の物質で被覆され得る。当該支持構造体130の剥き出し部分135は、支持構造体130を固定する固定化エレメント148を形成し得る。当該固定化エレメント148は、好ましくは、固定化を改善するv−型である。もちろん、固定化エレメント148はまた、バーブ(barb)などであり得る。図16について言及すると、フローコントロールエレメント22はまた、アングル化され、テーパーされ、またはフレアされ得、それにより、一端151は他149より大きくなる。もちろん、シリンダーまたは両端においてフレアしたチューブのような任意の他の形は、本発明の多くの態様から出発することなく使用され得る。
【0048】
図17および18について言及すると、他のフローコントロールエレメント22を示しており、この場合、同じまたは同様の参照番号は、同じまたは同様の構造体を指す。当該エレメント22は、閉じ位置で互いに引き合う第一および第二リップ152、154を有するバルブ150を有する。当該第一リップ152は、好ましくは、第二リップ154よりも堅く、それため、第一リップ152は閉じて第二リップ154にバイアスがかかる。当該第一リップ152は、同じ物質、第一リップに対し堅い物質のより厚い層を用いることにより、または第一リップ152にスチフナー156を単に接着するか結合することにより、のように任意の手法で第二リップ154よりも堅く製造され得る。当該第一および第二リップ152、154は、好ましくは、第一リップ152を形成する一サイドに結合するスチフナー156と共に、物質のチューブにより形成される。第一および第二リップ152、154はまた、好ましくは図18のようにカーブする。当該エレメント22は、好ましくは、モールドされたシリコンまたはウレタンにより製造されるが、任意の他の適当な物資も使用し得る。当該バルブ150はまた、リップ152、154を更に支える側面の端に補強エレメント155を有する。もちろん、当該バルブ150は、当該エレメント155またはスチフナー156のいずれかを有し得る。シーリング部分142は明瞭に示していないが、当該シーリング部分142はまた提供され得る。
【0049】
図19について言及すると、他のフローコントロールエレメント22を示しており、この場合、同じまたは同様の参照番号は同じまたは同様の構造体を示す。当該フローコントロールエレメント22は、バルブ124および多数のシーリング部分142を有する。当該バルブ124、シーリング部分142およびボディー134は、モールドされたシリコンまたはウレタンのような弾力性のある物質で統合的に形成される。もちろん、種々の他の構造体は、本発明の範囲から出発することなくフローコントロールエレメント22を用い使用し得る。当該フローコントロールエレメント22はまた、らせんコイル160のような補強エレメント158を有する。
【0050】
図20について言及すると、また他のフローコントロールエレメント22を示しており、この場合、同じまたは同様の参照番号は同じまたは同様の構造体を示す。当該フローコントロールエレメント22は、らせん形を有するシーリング部分142を有する。デバイスをインプラントする1つの方法では、当該エレメント22は回転し、そのため、シーリング部分142のらせん形は当該エレメント22を固定する壁と引き合う。
【0051】
本発明の任意のフローコントロールエレメントはまた、デバイスをシールおよび/または固定する、アドヒーシブのようなシーラント162と共に用いられ得る。図20について言及すると、当該シーラント162は、シーリング部分142との間のデバイスの外側で位置する。当該シーラント162は、好ましくは、導入前のデバイスの外側表面に適用され得る粘性物質である。当該シーラント162は、デバイスの固定をまた助けるアドヒーシブであり得る。当該シーラント162の使用は、本明細書に記載した任意のデバイスと共に使用され得る。
【0052】
図21−23について言及すると、また他のフローコントロールエレメント22を示しており、この場合、同じまたは同様の参照番号は、同じまたは同様の構造体を指す。当該フローコントロールエレメント22は、バルブ166を固定化する支持構造体164を有する。当該構造体は、バルブ166の各サイドで固定化エレメント168、好ましくは2つ有している。当該固定化エレメント168は、好ましくは、デバイスを固定化するため壁を貫通する。当該固定化エレメント168は、互いに結合する2つのワイヤーにより形成される。もちろん、任意の他の適当な構造体は、ステント様構造体またはバーブを有する拡張可能リングのような構造体164として使用され得る。
【0053】
当該バルブ164は、隔離領域を排出する肺通路の壁と共同する。当該バルブ164は、一般的に円錐形であるが、しかし、任意の他の形も使用し得る。当該バルブ164は、本発明の範囲から出発することなく、多数の種々の配置で肺壁を引き寄せ得、そのため、以下の好ましい実施態様は、本発明を制限するものではない。当該バルブ164は、弾力性があり、当該バルブと当該通路の壁との間を呼息の空気が通過し得る。図22について言及すると、バルブ164は、壁Wに接合する末端近くになるにつれ薄くなり、そのため、当該バルブ164の当該末端は、より可撓性である。
【0054】
図24および25について言及すると、また他のデバイスを示しており、この場合、同じまたは同様の参照番号は、同じまたは同様の構造体を指す。当該デバイスは、肺通路の壁と共に各セクション172がシールを形成する多数のセクション172と共にバルブ170を有する。当該セクション172は、弾力性構造体を提供するワイヤ174により分離されている。当該デバイスは、肺通路の壁でバルブ構造体173を形成する任意の多数のセクション172で形成され得る。
【0055】
図26および27について言及すると、また他のフローコントロールエレメント22を示しており、同じまたは同様の参照番号は、同じまたは同様の構造体を指す。当該エレメント22は呼息の空気を通過し得るため開くフラップバルブ174を有する。当該バルブ174はまた、一般的に円錐形である。本明細書で使用する「一般的に円錐形」なる用語は、当該円錐が、壁がわずかにカーブしたり、多数のセクション、またはシーム、フラップまたは折り目などを有していても、なお概ねコーン形である程度に変形していてもよいことを意味する。
【0056】
図28および29について言及すると、また他のバルブは、呼息の空気を通過し得るために開くスリットまたはシームを有するように示されている。当該スリットまたはシーム178はまた、方向付けられ得、そして本発明の範囲から出発することなくスリットバルブのように配置され得る。
【0057】
図30について言及すると、また他のフローコントロールエレメント22が示されており、この場合、同じまたは同様の参照番号は、同じまたは同様の構造体を指す。当該デバイスは、バルブ124を有するが、任意の他の適当なバルブを有し得る。当該デバイスは、可撓性ブリストル180、好ましくは10、20または更には30を超えるブリストル180を有し、それは、肺通路中のデバイスを固定化する。当該ブリストル180は、好ましくは、呼息方向の力に耐えられるように角度がつけられ、そのため、咳の間に生ずる力のような圧力は、当該デバイスを押しのけることが出来ない。当該ブリストル180をシーラント162と共に使用し、気密性シールを提供し得る。
【0058】
図31について言及すると、また他のフローコントロールエレメント22を示しており、ボールバルブ183を形成する閉じ位置に対しバイアスがかかる、ボール184のようなシーリングエレメント182を含む。当該シーリングエレメント182は、スプリング186でバイアスがかけられているが、任意の他のバイアスエレメントを使用し得る。当該デバイスは、シーリング部分142と共にボディー188を有する。当該ボディー188は、シーリングエレメント182が開くとき空気が通過し得る開口部190を有する。図32について言及すると、また他のデバイスを示しており、それはポペットバルブ187を形成する図31のボール184以外にブロッキングエレメント185を有している。
【0059】
図33および34について言及すると、また他のフローコントロールエレメント22を示している。当該デバイスは、閉じ位置で互いに引き合う少なくとも3つのリーフレット188を有するバルブ186を有する。図35および36について言及すると、また他のデバイスを示しており、フラップバルブ190を有している。当該フラップバルブ190は、呼息の空気が通過し得るように偏向する(deflect)。当該フラップ190は、好ましくは、エラストマー物質により製造される。当該フラップ190は、ボディー196の開口末端194を通って広がるサポートストラット192に結合する。ボディー196は、ボディー196辺りに広がるリブにより好ましくは形成されるシーリング部分142を有する。図37および38について言及すると、他のフラップバルブ198を示している。当該フラップバルブ198はヒンジ199でボディーに結合している。
【0060】
図39および図40について言及すると、肺の位置にデバイスを展開するための他のシステム200を示す。当該システム200は、もちろん、本明細書に記載の任意のデバイスまたは任意の他の適当なデバイスを運ぶのに有用である。当該システム200は、第一ルーメン204および第二ルーメン206を有するデリバリーエレメント202を含む。デリバリーエレメント202はまた、バルーン210のような拡張可能メンバー208を有し、それは、流体または気体212のソースでバルーン210を膨らませるための第二のルーメン206に結合される。当該デバイスは、デリバリーエレメント202の末端に負荷され、プッシャー214は、デリバリーエレメント202の外側に、図12−16のデバイスのようなデバイスを動かせるために使用し得る。当該第一ルーメン204は、当該デバイスを含むカプセル215を形成する拡大した末端を有する。当該エレメント202はまた、ガイドワイヤ217または通常の手法で前進する。
【0061】
デリバリーエレメント202はまた、空気、およびまた流体を、必要ならば、肺の隔離部分から取り除くために使用され得る。当該拡張可能メンバー208は、肺の部分を隔離するため拡張し、吸引は肺をすぼませるため適用される。当該隔離部分の肺は、デリバリーエレメント202内に含まれるデバイスですぼみ得るか、またはデバイスの送達後すぼみ得る。本発明のバルブを用いる利点は、空気が、バルブを展開した後でさえ、バルブを通して引き抜かれ得ることである。図40について言及すると、当該バルブ124はまた、つぶれた位置のときですら方向を維持し得る。そのため、肺の当該隔離部分はまた、当該デバイスが第一ルーメン中に含まれるとき吸引され得る。デリバリーエレメント202の第二ルーメン206は、デリバリーエレメント202の外壁とは実質的に独立しており、そのため、当該デバイスの堅さは、統合的に形成されたマルチルーメンデバイスと比べると、低い。当該第二ルーメン206は、第一ルーメン204を通る分離チューブ209により形成される。本発明の他の態様では、デリバリーエレメント202は、デバイスの最小の配置サイズの80−120%、より好ましくは90−110%である外側直径を有する。
【0062】
図39、41および42について言及すると、肺の隔離部分は、後の医療処置のためデバイスのインプランテーション後にアクセスされ得る。例えば、当該バルブは、気体または液体を伝達、および/または排出するためデリバリーデバイス202、または同様のデバイスで貫通され得る。当該デバイスは、運ばれ、そして必要ならば肺から排出される、抗生物質または抗界面活性剤(antisurfactant)のような流体211のソースと結合する。抗生物質ガスのような気体はまた、隔離領域の遠位部分へ到達するように気体213のソースから隔離領域まで運ばれ得る。最終的に、デバイス202は、隔離部分をすぼませるか、または粘液もしくは肺の隔離部分からの他の流体を排出させるためのバキュームソース215へ結合し得る。バルブ216は、流体211、気体213またはバキューム215の任意のソースに第一ルーメン204を選択的に結合させるために提供される。
【0063】
図42について言及すると、当該デバイス202は、バルブ124で緊密にシールされ、隔離部分は、当該手順の間、収縮した状態にあってもよい。また、当該デバイス202は、バルブ124の遠位または近傍の肺通路中の任意の特定位置で隔離が行われるよう、バルブ124のいずれかのサイドにおける肺通路を閉塞するため、バルーン210のような拡張可能エレメント208を有していてもよい。
【0064】
本発明の利点は、隔離部分が、バルブを貫通することなくバルブのインプランテーション後、すぼみ得ることである。当該デバイスは、バルブの近傍で位置し得、拡張可能エレメントは、肺経路を閉塞するため、拡張され得る。次いで、吸引はデバイスを通して適用され、それにより、低圧領域がバルブと閉塞メンバーとに間で生ずる。圧力差が十分大きくなると、当該バルブは開き、肺の隔離部分を排出し、すぼむ。このプロセスは、望ましい量のすぼみが達成されるまでか、または標的圧に到達するときまで、コントロールされた手法で続けられ得る。吸引が停止すると、当該バルブは閉じ肺部分を隔離する。
【0065】
バルブの展開後、デリバリーデバイスまたは他の適当なデバイスはまた、診断ツールとして使用され得る。例えば、バルーンは、一瞬ですぼみ得、そのため、バルーンとバルブとの間の隔離領域は、圧力が増加する。バルーンが再び膨らんだ後に圧力が減少するならば、それは、空気はバルブ辺りまたはバルブを通り、隔離部分中へ通過し得るため、当該バルブが適当にシールされていないことを示す。他の診断は、バルブと拡張可能メンバーとの間の空間を加圧し得る。次いで、当該圧力応答は、当該バルブが十分なシールを提供するかどうか決定するため、モニターし得る。
【0066】
本発明のデバイスおよびバルブは、肺の疾患領域の膨張を妨げ、一方でまた肺のこれらの部分を排出し得る能力を提供する。当該バルブは、好ましくは、バルブを通して、比較的小さな圧力差で開く。例えば、バルブは、好ましくは、わずか10インチの水、より好ましくはわずか5インチの水および最も好ましくはわずか1インチの水の圧力差で開く。本発明のバルブおよびバルブエレメントは比較的小さい圧力差で開き得るが、当該バルブおよびバルブエレメントはまた、より高い開口圧を有し得る。例えば、当該バルブはまた、咳のような高圧力のイベントの場合のみ開くように設計され得る。そのバルブの場合、開口部圧または圧力差は、少なくとも25インチ水であるが、またわずか120インチの水である。本発明の方法と一致して、咳をすると、肺の隔離部分を排出するための動力駆動力および呼息圧の増加を誘導し得る。
【0067】
本発明のフローコントロールエレメントは、患者自身の力の下、または所定時間の比較的緩やかな吸引の適用、いずれかにより、疾患組織を徐々にすぼみ得る。当該吸引は、断続的または継続的に、任意の適当な手段により適用され得る。例えば、吸引カテーテルは、細気管支中のフローコントロールエレメントを介し、遠位組織中へ通過し得る。フローコントロールエレメント、例えば、バルブメンバーは、好ましくは、流体が遠位的にバルブを通過して動くのを妨げるため、カテーテル周囲をシールし得る。
【0068】
従って、本発明は、上記したように気腫およびCOPDのような通常の肺疾患に存在する問題である、流体を導く細い気管の可撓性の壁を収縮させることなく肺胞から流体を排出し得るため、有利である。従って、本発明は、従来技術のアプローチよりも、疾患肺組織からより流体の除去を促進し、その効果は、健康な肺組織により利用可能となるより多くの空間にある。
【0069】
加えて、上記のように、選択された所定時間、例えば、1月間、疾患肺組織をすぼませる本発明の使用は、呼吸周期から一時的に取り除くことにより当該組織に生じる利益を有し得ることである。フローコントロールエレメントは、好ましくは、組織が壊死を起こす前に除去されるが、当該エレメントが取り除かれるとき当該組織はその可撓性、色彩のない(toneless)状態を回復しないぐらいにまで十分有意に長い時間放置される。他に述べると、肺組織中の流動をコントロールすることにより、または1以上の物質の送達と組み合わせて流動をコントロールすることにより、いずれかにより、疾患肺組織を修復(むしろ取り除くこと、または除去すること)するための手段のように本発明を使用することができる。
【0070】
例えば、本発明を使用し得る幾つかの可能な物質には、肺修復または組織弾力性の再確立(re-establishment)のための遺伝子治療または血管形成、生長因子、抗生長または空気および血流の再確立を妨げる抗血管形成因子(またはネクローシスまたはアポトーシスを誘引する物質)、感染を防止する抗生物質、ステロイドおよびコルチゾンを含む抗炎症製剤、急速な治療を促進する、例えば、フローコントロールエレメントを早期除去できる硬化症薬物または物質、維持流体を吸収するための薬剤、および疾患組織の隔離を増すためのシーリング物質が含まれる。
【0071】
処置される肺の部分は、適所のフローコントロールエレメントにより、繰り返しの天然の吸息および呼息を通じた時間、すぼみ得る。他にまたは加えて、バキュームソースは、上記の手法で疾患組織の外側の液体を引き抜くためフローコントロールエレメントに結合され得る。当該疾患部分のこの収縮は、単独または送達生物学的物質と関連して行われ得る。肺部分の吸引に使用される圧力は、好ましくは、細い気管の壁がつぶれるのを避けるため、低い。
【0072】
フローコントロールエレメントがバルブを含む実施態様では、種々の物質が形成され、種々の手法で構成され得る。例として、当該バルブは、任意の適当な物質または合成物質を形成するアニュラスまたはサポートリングを、シリコン、天然ラバー、ラテックス、ポリウレタン、ポリテトラフルオロエチレンで形成されるバルブメンバー、熱可塑性エラストマー、組織などと共に含み得る。当該バルブメンバーは、サポートリングと統合され得るか、または分離メンバーであり得、そこに適当な手段、例えば、縫合、アドヒーシブ、機械的ファスナーなどが結合する。フローコントロールエレメントがステントをバルブと共に含むならば、従来技術の結合方法が使用され得る。例えば、米国特許番号5,954,766参照。その内容は、引用により本明細書に組み込む。
【0073】
当該フローコントロールエレメントの特定の特性は、特定の適用に依存して変わり得る。例えば、種々の呼息圧を生ずる患者を処置し得るため、マルチプルフローコントロールエレメントに、開くための種々の呼息圧を必要とするバルブメンバーを提供することが望ましい。当該種々のフローコントロールエレメントは、キット中に提供され、必要とされる開口力、サイズ、物質などに基づき互いに区別され得る。当該キットは、これらの要因を示すカラーまたは他のコーディングシステムを含み得る。
【0074】
本発明のフローコントロールエレメントは、第一の方向へ流動可能なため、比較的低い開口力を必要とするように、好ましくは構成される。気腫患者は、典型的に、少量の低圧流体を排出する。本発明では、好ましくは、中空構造中のフローコントロールエレメントを介して逃れるような任意の流体がよい。その場合、フローコントロールエレメントは開くように設計され、患者により生ずる任意の陽圧に応答する第一の方向に流れ得る。幾分の圧力差が遠位肺組織と細気管支の近傍部分との間に生じる限り、他の方法に供し、フローコントロールエレメントは流体が当該組織を漏れ出し得るように開く。それにもかかわらず、フローコントロールエレメントを開くのに必要な特定の力は、目的の患者群と関連する呼息圧に応じて変化すると認識される。
【0075】
本発明の種々の好ましい実施態様の特徴は、独立してまたは互いに関連して使用し得ることである一方、解説した方法およびデバイスは、全体的または部分的に修飾または合わされ得ることであると認識される。当該発明のデバイスは、除去可能または分離可能な構成部分を含み得、使い捨てまたは再利用構成部分、または使い捨ておよび再利用構成部分の組合せを含み得る。同様に、本発明は、特に解説され1以上のステップおよび本明細書で記載したように修飾されるかまたは省略される1以上のステップで実施され得る。
【0076】
本発明はまた、図に示すように肺疾患を処置するため制限されることはないが、好ましく適用されると認識され得ることがまた認識される。本発明は、任意の肺または非肺手順に用いられ得、その場合、第一の方向に流動可能であり、第二の方向、中空構造内の種々の方向への流動をコントロールすることが望ましい。最終的に、最小的侵襲性、気管支内のアプローチが図中に示されているが、他のアプローチ、例えば、胸骨正中切開術を用いる観血療法性手順(open surgical procedure)、ミニ開胸術を用いる最小的侵襲性手順、または胸郭などの1以上の部分または開口部を用いより侵襲性ではない手順を使用し得る。
【0077】
本発明の好ましい実施態様は、完全開示のため、ならびに解説および明瞭化のため、詳細に記載している。添付の請求の範囲により決定される本発明の範囲には多くの変化および修飾を含むと容易に理解される。
【図面の簡単な説明】
【図1】  図1は、本発明の1つの実施態様により構成されたシステムを図示する立面図であり、当該システムは、患者において肺処置(pulmonary procedure)行うために使用される。
【図2】  図2は、本発明のシステムに沿って図1で示した患者の肺を拡大した立面図である。
【図3】  図3は、図2で示すシステムの一部を形成するフローコントロールエレメントの、断面の、拡大した立面図であり、この場合、当該フローコントロールエレメントは、第一の方向の流動が可能であるが、第二の方向の流動をブロックする。
【図4】  図4は、第一の方向の流動が可能であるが、第二の方向の流動をブロックする別のフローコントロールエレメントの、断面の、拡大した立面図である。
【図5】  図5は、もう1つ他のフローコントロールエレメントの、断面の、拡大した立面図である。
【図6】  図6は、また、もう1つ他のフローコントロールエレメントの、断面の、拡大した立面図である。
【図7】  図7は、本発明の他の態様により構成された導入器の透視図である。
【図8】  図8は、図7に示す導入器の一部の拡大した透視図である。
【図9】  図9は、患者の肺中の選択された位置へフローコントロールエレメントを運ぶための、本発明の他の実施態様により構成されるデリバリーデバイスの透視図である。
【図10】  図10は、中空構造の大きさを、当該構造中にフローコントロールエレメントを配置する前に決定するための、本発明の他の実施態様により構成される測定デバイスの透視図である。
【図11】  図11は、中空構造中に既に位置するフローコントロールエレメントを除去するための、本発明の他の実施態様により構成された除去デバイスの透視図である。
【図12】  図12は、他のフローコントロールエレメントの側面図である。
【図13】  図13は、図12のフローコントロールエレメントの他の側面図である。
【図14】  図14は、図12のフローコントロールエレメントの断面図である。
【図15】  図15は、図12のフローコントロールエレメントの他の断面図である。
【図16】  図16は、テーパー形を有するように変えた図12のフローコントロールエレメントの等角図である。
【図17】  図17は、他のフローコントロールエレメントを示す。
【図18】  図18は、図17のフローコントロールエレメントの端面図である。
【図19】  図19は、他のフローコントロールエレメントを示す。
【図20】  図20は、また他のフローコントロールエレメントを示す。
【図21】  図21は、他のフローコントロールエレメントの側面図である。
【図22】  図22は、ラインA−Aに沿った図21の断面図である。
【図23】  図23は、図21の縦の断面図である。
【図24】  図24は、図21のフローコントロールエレメントの他の実施態様である。
【図25】  図25は、ラインB−Bに沿った図24の断面図である。
【図26】  図26は、閉じ位置のフラップバルブを伴う他のフローコントロールエレメントを示す。
【図27】  図27は、開き位置の図26のフラップバルブを示す。
【図28】  図28は、閉じ位置のスリットバルブを示す。
【図29】  図29は、開き位置のスリットバルブを示す。
【図30】  図30は、ブリストルを伴うフローコントロールエレメントを示す。
【図31】  図31は、ボールバルブの断面図である。
【図32】  図32は、ポペットバルブの断面図である。
【図33】  図33は、リーフレットバルブを示す。
【図34】  図34は、図33のリーフレットバルブの断面図である。
【図35】  図35は、他のフラップバルブを示す。
【図36】  図36は、図35のフラップバルブの断面図である。
【図37】  図37は、また他のフラップバルブを示す。
【図38】  図38は、図36のフラップバルブの断面図である。
【図39】  図39は、肺処置(pulmonary procedure)を行うためのシステムを示す。
【図40】  図40は、図39のシステムの遠位末端(distal end)の断面図である。
【図41】  図41は、本発明のフローコントロールエレメントを通る肺の隔離部分へのアクセスを示している。
【図42】  図42は、デバイス周辺をシールするバルブと共に図12−15のフローコントロールエレメントを通過するデバイスを示す。[0001]
 This application is a continuation-in-part of application entitled 09 / 519,735, filed March 4, 2000, entitled “Methods and Devices for use in Performing Pulmonary Procedures” by the inventor Deem et al. Are incorporated herein by reference.
 [0002]
 Field of the invention
 The present invention relates generally to methods and devices for use in performing pulmonary procedures, and more particularly to procedures for treating various diseases of the lung.
 [0003]
 Background art
 Pulmonary diseases such as emphysema and chronic obstructive pulmonary disease (COPD) reduce the ability to exhaust air completely by one or both lungs during the exhalation phase of the respiratory cycle. The diseased lung tissue is less elastic than healthy lung tissue, which is one factor that prevents full air exhalation. During breathing, the diseased part of the lung does not recoil completely because the tissue is not elastic. As a result, the disease (eg emphysema) lung disease has a relatively low driving force, and as a result, the diseased lung has less air volume that can be exhausted than a healthy lung. When the volume of air is reduced, less force is applied to the trachea that can close the trachea before all the air is exhausted, and other factors prevent complete exhaustion.
 [0004]
 The problem is further exacerbated by the diseased, less resilient tissue surrounding the very thin trachea that leads to the alveoli (the air sac where oxygen-carbon dioxide replacement occurs). This tissue is less active than healthy tissue and typically cannot open and maintain a thin trachea until the end of the exhalation cycle. This traps air in the lungs and exacerbates the already inefficient breathing cycle. This trapped air causes the tissue to overexpand and no more efficient oxygen-carbon dioxide replacement can occur. By applying suction to these fine trachea (the procedure proposed in the literature for deflating the diseased part of the lung), the trachea is crushed by the surrounding diseased tissue, thereby preventing fluid removal. .
 [0005]
 In addition, overexpanded lung tissue occupies more pleural space than healthy lung tissue. In most cases, some lungs are ill, while the rest are healthy, so that efficient oxygen replacement can still be performed. By occupying more pleural space, overexpanded lung tissue reduces the amount of space available to accommodate healthy, functioning lung tissue. As a result, overexpanded pulmonary tissue causes inefficient breathing because it loses function and adversely affects the function of nearby healthy tissue.
 [0006]
 Lung reduction surgery is the usual method of treating lung diseases such as emphysema. The diseased portion of the lung is surgically removed, resulting in a larger pleural space that can be used to accommodate a functioning healthy lung portion. The lung is typically accessed by a median sternotomy or a small lateral thoracotomy. A portion of the lung, typically the upper lobe of each lung, is separated from the chest wall and then lined with bovine pericardium, for example, to strengthen lung tissue adjacent to the incision and to prevent air or blood leakage. A part is excised by the stapler. The chest is then closed, a tube is inserted, and air and fluid are removed from the pleural cavity. Normal surgical approaches become relatively traumatic and invasive, and most surgical procedures are not a viable option for all patients.
 [0007]
 More recently, proposed treatments include the use of devices that use RF or laser energy to cut, atrophy or fuse diseased lung tissue. Other lung volume reduction devices utilize mechanical structures that are used to wrap lung tissue into a contracted lower profile that remains permanently compressed. As far as the type of procedure used is concerned, open surgical, minimally invasive and endobronchial approaches have all been proposed. Another proposed device (disclosed in
 [0008]
 The search for new and better treatments has revealed the shortcomings associated with existing pulmonary procedures. Therefore, there is a need in the art for improved methods and devices for performing pulmonary procedures, particularly for treating lung diseases such as emphysema.
 [0009]
 Summary of the invention
 In one embodiment, the present invention provides a method of treating a patient's lungs. The method includes selecting a hollow structure in the patient's lung, wherein the hollow structure determines a path that constitutes flow in at least a first and a second direction, and a path in the first direction While controlling the flow in the second direction.
 [0010]
 In another embodiment, the present invention provides a method of treating a patient's lungs. The method includes providing a valve that can flow in a first direction and restricting flow in a second direction, and a first direction corresponding to an exhalation direction and a second direction corresponding to an inhalation direction. Positioning the valve at a desired location in the patient's lung in the direction.
 [0011]
 In another embodiment, the present invention provides a flow control element that restricts flow in at least one direction, the flow control element at a location in the patient's lung in a direction substantially corresponding to the inspiratory direction. Positioning, and removing the flow control element after a period of time.
 [0012]
 In another embodiment, the present invention provides a method of treating a patient's lung, the method comprising: selecting a hollow in the patient's lung, wherein the flow is in at least first and second directions. Determining a path to configure, aspirating and drawing liquid through the first direction path, and substantially preventing flow through the second direction path.
 [0013]
 In another embodiment, the present invention provides a system for treating a patient's lungs. The system includes a flow control element that is sized and configured to be located in a hollow structure located in a patient's lung, wherein the flow control element can flow in a first direction. A valve member that substantially impedes flow in the second direction. The delivery device is sized and formed to guide and position in or near the hollow structure, and the flow control element is removably mounted on the delivery device. The valve can be a poppet, ball, duckbill, heimrick, flap or leaflet valve.
 [0014]
 In another embodiment, a system for treating a patient's lung is provided. The system includes a measurement device that determines an approximate size of a hollow structure in a patient's lung, and a flow control element that is sized and configured to be located in a hollow structure located in the patient's lung. In this case, the flow control element can flow in the first direction, but substantially hinder flow in the second direction.
 [0015]
 In another embodiment, the present invention provides a system for treating a patient's lungs. The system includes a flow control element that is sized and formed to be located in a hollow structure located in a patient's lung, wherein the flow control element can flow in a first direction, but the first A removal device for substantially preventing flow in the two directions and removing the flow control element from the hollow structure and then positioning the flow control element in the hollow structure.
 [0016]
 In other embodiments, the blocking element binds to the delivery element. The blocking element is advanced to a position in the patient's lung. The inflatable member inflates and occludes the lung passage, and then air is withdrawn from the lungs. The blocking element is released and blocks air flow into the isolated portion of the lung. The blocking element can also be a valve. The inflatable member can be performed by a delivery element or by a separation element.
 [0017]
 In yet other embodiments, the device is advanced through the blocking element after implantation of the blocking element. Procedures such as delivery or drainage of fluids or liquids can then be performed on the device. The device is then removed with a blocking element and again prevents air from passing in the inhalation direction. The blocking element can also be a valve that allows flow in the exhalation direction.
 [0018]
 Brief Description of Drawings
 FIG. 1 is an elevational view illustrating a system constructed in accordance with one embodiment of the present invention, which system is used to perform a pulmonary procedure in a patient.
 FIG. 2 is an elevated view of the patient's lung shown in FIG. 1 enlarged along the system of the present invention.
 FIG. 3 is an enlarged elevational view, in section, of the flow control element that forms part of the system shown in FIG. 2, where the flow control element is capable of flow in a first direction. Block the flow in the second direction.
 FIG. 4 is a cross-sectional, enlarged elevational view of another flow control element capable of flow in the first direction but blocking flow in the second direction.
 FIG. 5 is an enlarged elevational view, in cross section, of another flow control element.
 FIG. 6 is also an enlarged elevational view of a cross section of another flow control element.
 FIG. 7 is a perspective view of an introducer constructed in accordance with another aspect of the present invention.
 FIG. 8 is an enlarged perspective view of a portion of the introducer shown in FIG.
 FIG. 9 is a perspective view of a delivery device constructed in accordance with another embodiment of the present invention for carrying a flow control element to a selected location in a patient's lung.
 FIG. 10 is a perspective view of a measuring device constructed in accordance with another embodiment of the present invention for determining the size of the hollow structure prior to placing the flow control element in the structure. and
 FIG. 11 is a perspective view of a removal device constructed in accordance with another embodiment of the present invention for removing a flow control element already located in a hollow structure.
 FIG. 12 is a side view of another flow control element.
 FIG. 13 is another side view of the flow control element of FIG.
 14 is a cross-sectional view of the flow control element of FIG.
 FIG. 15 is another cross-sectional view of the flow control element of FIG.
 FIG. 16 is an isometric view of the flow control element of FIG. 12 modified to have a tapered shape.
 FIG. 17 shows another flow control element.
 18 is an end view of the flow control element of FIG.
 FIG. 19 shows another flow control element.
 FIG. 20 shows another flow control element.
 FIG. 21 is a side view of another flow control element.
 22 is a cross-sectional view of FIG. 21 along line AA.
 FIG. 23 is a vertical cross-sectional view of FIG.
 FIG. 24 is another embodiment of the flow control element of FIG.
 25 is a cross-sectional view of FIG. 24 taken along line BB.
 FIG. 26 shows another flow control element with a flap valve in the closed position.
 FIG. 27 shows the flap valve of FIG. 26 in the open position.
 FIG. 28 shows the slit valve in the closed position.
 FIG. 29 shows the slit valve in the open position.
 FIG. 30 shows a flow control element with Bristol.
 FIG. 31 is a cross-sectional view of the ball valve.
 FIG. 32 is a cross-sectional view of the poppet valve.
 FIG. 33 shows a leaflet valve.
 34 is a cross-sectional view of the leaflet valve of FIG.
 FIG. 35 shows another flap valve.
 36 is a cross-sectional view of the flap valve of FIG.
 FIG. 37 shows yet another flap valve.
 38 is a cross-sectional view of the flap valve of FIG.
 FIG. 39 shows a system for performing a pulmonary procedure.
 40 is a cross-sectional view of the distal end of the system of FIG.
 FIG. 41 illustrates access to the isolated portion of the lung through the flow control element of the present invention.
 FIG. 42 shows the device passing through the flow control element of FIGS. 12-15 with a valve sealing around the device.
 [0019]
 Detailed Description of the Preferred Embodiment
 The present invention provides methods and devices for treating various lung diseases such as emphysema and COPD, for performing pulmonary procedures. One preferred embodiment of the present invention provides a flow control element that allows flow in a first direction but controls flow in a second direction. As used herein, fluid means gas, liquid, or a mixture of gas and liquid. In addition, as used herein, controlled flow means that the flow changes in several ways, i.e. the flow is not impeded in the second direction. . The particular way in which flow is controlled in the second direction depends on the configuration of the flow control element. The flow control element can, for example, fully block, substantially block, restrict, and meter or regulate flow in the second direction by a valve or other suitable structure.
 [0020]
 When located in a hollow structure in the patient's body, such as the bronchus in one lung, the flow control element is oriented to allow flow in the exhalation direction but prevent flow in the inhalation direction . The flow control element has a valve member that opens during expiration to squeeze or depressurize the isolated lung portion distal to the flow control element. This maintains the diseased tissue in a reduced pressure state that prevents further overexpansion of the tissue. The present invention also allows for slow decompression of pulmonary diseases over short or long periods.
 [0021]
 As such, the present invention can be used to prevent fluid from being drawn into one or more portions of a patient's lungs. According to another aspect of the invention, a portion of the lung can be withdrawn without crushed the thin tracheal wall that the diseased tissue surrounds by applying gentle suction (via a flow control element) to the overdilated tissue. . With this suction, air, liquid, mucus and the like are drawn out of the lung portion in order to remove air from the diseased tissue. These and other aspects of the invention can be implemented independently or in combination with each other.
 [0022]
 FIG. 1 is a schematic diagram illustrating a system 10 configured according to one embodiment of the present invention for performing a pulmonary procedure of a lung L of a patient P. It should be first noted that suitable systems, methods, or devices outside those specifically described herein may be used in the practice of the present invention. As such, the system 10 is merely exemplary and includes a
 [0023]
 FIG. 1 shows a
 [0024]
 FIG. 2 is an enlarged view of the patient's lung L shown in FIG. 1 after removal of the
 [0025]
 Referring to FIG. 3 which shows the
 [0026]
 As described above, the
 [0027]
 FIG. 4 illustrates an exemplary
 [0028]
 When the
 [0029]
 According to another aspect of the invention, the flow control element can be configured to provide a pumping action aimed at moving gas or liquid within a hollow structure, such as a bronchiole. For example, when the lungs are distorted during inspiration and / or expiration, the mechanical pumping action can be used to move gas or liquid to further deflate the isolated region of the lungs. FIG. 5 shows an exemplary flow control element 50 constructed in accordance with this embodiment and includes a pair of valve members 52, 54 that are supported in series by a
 [0030]
 The valve member 54 couples with the
 [0031]
 FIG. 6 shows yet another
 [0032]
 7 and 8 show details of the
 [0033]
 FIG. 9 shows the
 [0034]
 The flow control element of the present invention is guided and positioned at a desired location in a pulmonary system such as the
 [0035]
 The present invention is carried out by first determining the approximate size of the target lumen, ie the hollow structure in which the flow control element is placed. FIG. 10 somewhat outlines an exemplary device for determining the size of hollow structures in a patient's body, for example, bronchioles in the lungs.
 [0036]
 The positioning element 96 is optional and can be used to fix the position of the
 [0037]
 In use, the
 [0038]
 In some instances, it may be necessary or desirable to remove the flow control element from the hollow structure in which it is deployed. As in the examples, standing the flow control element for a predetermined time may produce beneficial results in diseased lung tissue. Depending on the time the diseased tissue collapses and depressurizes, the tissue can recover some elasticity as a result of becoming temporarily inactive. After the tissue has regained its elasticity somewhat or completely, the flow control element should be removed and the tissue will be functional. However, the flow control element is preferably not removed before the tissue has sufficient chance of recovery.
 [0039]
 Accordingly, the present invention also provides a method and device for removing a flow control element from a hollow structure such as a bronchiole in a patient's body. FIG. 11 shows a
 [0040]
 The flow control element of the present invention is fixed in place in a hollow structure such as
 [0041]
 The flow control element arrangement constructed in accordance with the present invention in the patient's pulmonary system achieves several advantages. With respect to the
 [0042]
 Referring to FIGS. 12-16, another
 [0043]
 The
 [0044]
 The
 [0045]
 The
 [0046]
 The sealing
 [0047]
 The
 [0048]
 Referring to FIGS. 17 and 18, another
 [0049]
 Referring to FIG. 19, another
 [0050]
 Referring to FIG. 20, yet another
 [0051]
 Any flow control element of the present invention may also be used with a sealant 162, such as an adhesive, that seals and / or secures the device. Referring to FIG. 20, the sealant 162 is located outside the device between the sealing
 [0052]
 Referring to FIGS. 21-23, yet another
 [0053]
 The
 [0054]
 Referring to FIGS. 24 and 25, other devices are shown, where the same or similar reference numbers refer to the same or similar structures. The device has a
 [0055]
 Referring to FIGS. 26 and 27, yet another
 [0056]
 Referring to FIGS. 28 and 29, still other valves are shown having slits or seams that open to allow passage of exhaled air. The slit or
 [0057]
 Referring to FIG. 30, yet another
 [0058]
 Referring to FIG. 31, yet another
 [0059]
 Referring to FIGS. 33 and 34, another
 [0060]
 Referring to FIGS. 39 and 40, another system 200 for deploying a device at a lung location is shown. The system 200 is of course useful for carrying any device described herein or any other suitable device. The system 200 includes a
 [0061]
 The
 [0062]
 Referring to FIGS. 39, 41 and 42, the isolated portion of the lung may be accessed after device implantation for later medical procedures. For example, the valve may be pierced with a
 [0063]
 Referring to FIG. 42, the
 [0064]
 An advantage of the present invention is that the isolation portion can sag after valve implantation without penetrating the valve. The device can be located near the valve and the expandable element can be expanded to occlude the pulmonary pathway. Suction is then applied through the device, thereby creating a low pressure region between the valve and the occlusion member. When the pressure differential becomes large enough, the valve opens and drains and deflates the isolated part of the lung. This process can be continued in a controlled manner until the desired amount of depression is achieved or until the target pressure is reached. When aspiration stops, the valve closes and isolates the lung portion.
 [0065]
 After deployment of the valve, a delivery device or other suitable device can also be used as a diagnostic tool. For example, the balloon can deflate in an instant, so that the isolated area between the balloon and the valve increases in pressure. If the pressure decreases after the balloon is inflated again, it indicates that the valve is not properly sealed because air can pass around or through the valve and into the isolation section. Other diagnostics may pressurize the space between the valve and the expandable member. The pressure response can then be monitored to determine if the valve provides a sufficient seal.
 [0066]
 The devices and valves of the present invention provide the ability to prevent inflation of the diseased area of the lung while also draining these portions of the lung. The valve preferably opens through the valve with a relatively small pressure differential. For example, the valve preferably opens with a pressure differential of only 10 inches of water, more preferably only 5 inches of water and most preferably only 1 inch of water. Although the valves and valve elements of the present invention can open with a relatively small pressure differential, the valves and valve elements can also have higher opening pressures. For example, the valve can also be designed to open only in the event of a high pressure such as a cough. For that valve, the opening pressure or pressure differential is at least 25 inches of water, but only 120 inches of water. Consistent with the method of the present invention, coughing can induce an increase in power drive and expiratory pressure to expel the isolated portion of the lung.
 [0067]
 The flow control element of the present invention can gradually shrink diseased tissue, either under the patient's own power or by applying a relatively gentle suction for a predetermined time. The suction can be applied intermittently or continuously by any suitable means. For example, an aspiration catheter can pass through the flow control element in the bronchiole and into the distal tissue. A flow control element, such as a valve member, may preferably seal around the catheter to prevent fluid from moving distally through the valve.
 [0068]
 Thus, the present invention drains fluid from the alveoli without deflating the flexible walls of the narrow trachea that guides the fluid, a problem that exists in normal lung diseases such as emphysema and COPD as described above. This is advantageous. Thus, the present invention facilitates more fluid removal from diseased lung tissue than prior art approaches, and the effect is in more space available to healthy lung tissue.
 [0069]
 In addition, as described above, the use of the present invention to deflate diseased lung tissue for a selected predetermined time, eg, one month, may have benefits that arise in that tissue by temporarily removing it from the respiratory cycle. That is. The flow control element is preferably removed before the tissue is necrotic, but when the element is removed, the tissue is significantly significant enough that it does not recover its flexible, toneless state. Left for a long time. Elsewhere, the diseased lung tissue is either repaired (rather removed or removed) either by controlling the flow in the lung tissue or by controlling the flow in combination with the delivery of one or more substances. The present invention can be used as a means to
 [0070]
 For example, some possible substances that may use the present invention include gene therapy or angiogenesis for lung repair or tissue re-establishment, growth factors, antibiotic length or air and blood flow Anti-angiogenic factors (or agents that induce necrosis or apoptosis) that prevent re-establishment of the drug, antibiotics that prevent infection, anti-inflammatory products including steroids and cortisone, promote rapid therapy, e.g., early flow control elements Included are sclerosing drugs or materials that can be removed, agents to absorb the maintenance fluid, and sealing materials to increase isolation of diseased tissue.
 [0071]
 The portion of the lung to be treated can be deflated for a period of time through repeated natural inspiration and expiration, with the flow control element in place. Alternatively or additionally, a vacuum source can be coupled to the flow control element to draw fluid outside the diseased tissue in the manner described above. This contraction of the diseased part can be performed alone or in conjunction with the delivery biological material. The pressure used for aspiration of the lung portion is preferably low to avoid collapsing the thin tracheal wall.
 [0072]
 In embodiments where the flow control element includes a valve, various materials can be formed and configured in various ways. By way of example, the valve may include an annulus or support ring that forms any suitable material or synthetic material, a valve member formed from silicone, natural rubber, latex, polyurethane, polytetrafluoroethylene, thermoplastic elastomer, tissue, etc. Can be included. The valve member can be integrated with the support ring, or can be a separate member, to which appropriate means are coupled, such as sutures, adhesives, mechanical fasteners and the like. If the flow control element includes a stent with a valve, prior art bonding methods can be used. See, for example, US Pat. No. 5,954,766. The contents of which are incorporated herein by reference.
 [0073]
 The particular characteristics of the flow control element can vary depending on the particular application. For example, it is desirable to provide a multiple flow control element with a valve member that requires different expiratory pressures to open in order to be able to treat patients with different expiratory pressures. The various flow control elements are provided in the kit and can be distinguished from each other based on the required opening force, size, material, etc. The kit may include a color or other coding system that indicates these factors.
 [0074]
 The flow control element of the present invention is preferably configured to require a relatively low opening force since it can flow in the first direction. Emphysema patients typically drain a small amount of low-pressure fluid. In the present invention, any fluid that escapes through the flow control element in the hollow structure is preferred. In that case, the flow control element is designed to open and can flow in a first direction in response to any positive pressure generated by the patient. As long as some pressure difference occurs between the distal lung tissue and the proximal portion of the bronchiole, the flow control element opens to allow fluid to leak out of the tissue. Nevertheless, it is recognized that the specific force required to open the flow control element will vary depending on the expiratory pressure associated with the target patient group.
 [0075]
 While the features of the various preferred embodiments of the present invention may be used independently or in conjunction with one another, it will be appreciated that the described methods and devices may be modified or combined in whole or in part. Is done. The device of the invention may include a removable or separable component, and may include a disposable or reusable component, or a combination of disposable and reusable components. Similarly, the invention may be practiced with one or more steps specifically described and described herein, and with one or more steps modified or omitted as described herein.
 [0076]
 It will also be appreciated that the present invention is not limited to treating pulmonary disease as shown in the figure but may be recognized as preferably applied. The present invention can be used in any pulmonary or non-pulmonary procedure, where it is desirable to be able to flow in the first direction and to control flow in the second direction, various directions within the hollow structure. . Finally, a minimally invasive, endobronchial approach is shown in the figure, but other approaches such as open surgical procedure using median sternotomy, mini-thoracotomy A minimally invasive procedure using or a less invasive procedure using one or more parts or openings such as the rib cage may be used.
 [0077]
 Preferred embodiments of the present invention are described in detail for complete disclosure and for explanation and clarity. It is readily understood that the scope of the invention, as determined by the appended claims, includes many variations and modifications.
 [Brief description of the drawings]
 FIG. 1 is an elevational view illustrating a system constructed in accordance with one embodiment of the present invention, which system is used to perform a pulmonary procedure in a patient.
 FIG. 2 is an enlarged elevational view of the patient's lung shown in FIG. 1 along the system of the present invention.
 FIG. 3 is a cross-sectional, enlarged elevational view of a flow control element forming part of the system shown in FIG. 2, where the flow control element is a flow in a first direction. Is possible, but blocks the flow in the second direction.
 FIG. 4 is a cross-sectional, enlarged elevational view of another flow control element capable of flow in a first direction but blocking flow in a second direction.
 FIG. 5 is an enlarged elevational view in cross section of another flow control element.
 FIG. 6 is also an enlarged elevational view in section of another flow control element.
 FIG. 7 is a perspective view of an introducer constructed in accordance with another aspect of the present invention.
 FIG. 8 is an enlarged perspective view of a portion of the introducer shown in FIG.
 FIG. 9 is a perspective view of a delivery device constructed in accordance with another embodiment of the present invention for carrying a flow control element to a selected location in a patient's lung.
 FIG. 10 is a perspective view of a measurement device constructed in accordance with another embodiment of the present invention for determining the size of a hollow structure prior to placing a flow control element in the structure. .
 FIG. 11 is a perspective view of a removal device constructed in accordance with another embodiment of the present invention for removing a flow control element already located in a hollow structure.
 FIG. 12 is a side view of another flow control element.
 FIG. 13 is another side view of the flow control element of FIG.
 FIG. 14 is a cross-sectional view of the flow control element of FIG.
 FIG. 15 is another cross-sectional view of the flow control element of FIG.
 FIG. 16 is an isometric view of the flow control element of FIG. 12 modified to have a tapered shape.
 FIG. 17 shows another flow control element.
 FIG. 18 is an end view of the flow control element of FIG.
 FIG. 19 shows another flow control element.
 FIG. 20 shows yet another flow control element.
 FIG. 21 is a side view of another flow control element.
 FIG. 22 is a cross-sectional view of FIG. 21 along line AA.
 FIG. 23 is a vertical cross-sectional view of FIG.
 24 is another embodiment of the flow control element of FIG. 21. FIG.
 FIG. 25 is a cross-sectional view of FIG. 24 taken along line BB.
 FIG. 26 shows another flow control element with a flap valve in the closed position.
 FIG. 27 shows the flap valve of FIG. 26 in an open position.
 FIG. 28 shows the slit valve in the closed position.
 FIG. 29 shows the slit valve in the open position.
 FIG. 30 shows a flow control element with bristles.
 FIG. 31 is a cross-sectional view of a ball valve.
 FIG. 32 is a cross-sectional view of a poppet valve.
 FIG. 33 shows a leaflet valve.
 34 is a cross-sectional view of the leaflet valve of FIG. 33. FIG.
 FIG. 35 shows another flap valve.
 36 is a cross-sectional view of the flap valve of FIG. 35. FIG.
 FIG. 37 shows yet another flap valve.
 38 is a cross-sectional view of the flap valve of FIG. 36. FIG.
 FIG. 39 shows a system for performing a pulmonary procedure.
 40 is a cross-sectional view of the distal end of the system of FIG. 39. FIG.
 FIG. 41 illustrates access to an isolated portion of the lung through the flow control element of the present invention.
 FIG. 42 shows the device passing through the flow control element of FIGS. 12-15 with a valve sealing around the device.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US09/519,735US6679264B1 (en) | 2000-03-04 | 2000-03-04 | Methods and devices for use in performing pulmonary procedures | 
| PCT/US2001/006958WO2001066190A2 (en) | 2000-03-04 | 2001-03-02 | Methods and devices for use in performing pulmonary procedures | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP2006190712ADivisionJP2006314816A (en) | 2000-03-04 | 2006-07-11 | Method and device for use in performing pulmonary treatment | 
| Publication Number | Publication Date | 
|---|---|
| JP2004504867A JP2004504867A (en) | 2004-02-19 | 
| JP2004504867A5 JP2004504867A5 (en) | 2005-01-27 | 
| JP3881242B2true JP3881242B2 (en) | 2007-02-14 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP2001564839AExpired - LifetimeJP3881242B2 (en) | 2000-03-04 | 2001-03-02 | Device for use in lung treatment | 
| JP2006190712APendingJP2006314816A (en) | 2000-03-04 | 2006-07-11 | Method and device for use in performing pulmonary treatment | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP2006190712APendingJP2006314816A (en) | 2000-03-04 | 2006-07-11 | Method and device for use in performing pulmonary treatment | 
| Country | Link | 
|---|---|
| US (8) | US6679264B1 (en) | 
| EP (1) | EP1359978B1 (en) | 
| JP (2) | JP3881242B2 (en) | 
| AT (1) | ATE506103T1 (en) | 
| AU (2) | AU4341601A (en) | 
| CA (1) | CA2401331C (en) | 
| DE (1) | DE60144491D1 (en) | 
| WO (1) | WO2001066190A2 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US7027869B2 (en) | 1998-01-07 | 2006-04-11 | Asthmatx, Inc. | Method for treating an asthma attack | 
| US7992572B2 (en) | 1998-06-10 | 2011-08-09 | Asthmatx, Inc. | Methods of evaluating individuals having reversible obstructive pulmonary disease | 
| US6488673B1 (en)* | 1997-04-07 | 2002-12-03 | Broncus Technologies, Inc. | Method of increasing gas exchange of a lung | 
| US6634363B1 (en) | 1997-04-07 | 2003-10-21 | Broncus Technologies, Inc. | Methods of treating lungs having reversible obstructive pulmonary disease | 
| US7425212B1 (en)* | 1998-06-10 | 2008-09-16 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy | 
| US5954766A (en) | 1997-09-16 | 1999-09-21 | Zadno-Azizi; Gholam-Reza | Body fluid flow control device | 
| US7921855B2 (en) | 1998-01-07 | 2011-04-12 | Asthmatx, Inc. | Method for treating an asthma attack | 
| US20020144696A1 (en) | 1998-02-13 | 2002-10-10 | A. Adam Sharkawy | Conduits for use in placing a target vessel in fluid communication with a source of blood | 
| US6651670B2 (en)* | 1998-02-13 | 2003-11-25 | Ventrica, Inc. | Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication | 
| US8016823B2 (en)* | 2003-01-18 | 2011-09-13 | Tsunami Medtech, Llc | Medical instrument and method of use | 
| US7892229B2 (en)* | 2003-01-18 | 2011-02-22 | Tsunami Medtech, Llc | Medical instruments and techniques for treating pulmonary disorders | 
| US20070123958A1 (en)* | 1998-06-10 | 2007-05-31 | Asthmatx, Inc. | Apparatus for treating airways in the lung | 
| US8181656B2 (en)* | 1998-06-10 | 2012-05-22 | Asthmatx, Inc. | Methods for treating airways | 
| US7198635B2 (en) | 2000-10-17 | 2007-04-03 | Asthmatx, Inc. | Modification of airways by application of energy | 
| US7578828B2 (en) | 1999-01-15 | 2009-08-25 | Medtronic, Inc. | Methods and devices for placing a conduit in fluid communication with a target vessel | 
| US6328689B1 (en) | 2000-03-23 | 2001-12-11 | Spiration, Inc., | Lung constriction apparatus and method | 
| US8474460B2 (en)* | 2000-03-04 | 2013-07-02 | Pulmonx Corporation | Implanted bronchial isolation devices and methods | 
| US20030070683A1 (en)* | 2000-03-04 | 2003-04-17 | Deem Mark E. | Methods and devices for use in performing pulmonary procedures | 
| US6679264B1 (en) | 2000-03-04 | 2004-01-20 | Emphasys Medical, Inc. | Methods and devices for use in performing pulmonary procedures | 
| US8251070B2 (en)* | 2000-03-27 | 2012-08-28 | Asthmatx, Inc. | Methods for treating airways | 
| US6514290B1 (en) | 2000-03-31 | 2003-02-04 | Broncus Technologies, Inc. | Lung elastic recoil restoring or tissue compressing device and method | 
| EP1284663A4 (en)* | 2000-05-18 | 2007-04-18 | Emphasys Medical Inc | Bronchiopulmonary occlusion devices and lung volume reduction methods | 
| US6722360B2 (en) | 2000-06-16 | 2004-04-20 | Rajiv Doshi | Methods and devices for improving breathing in patients with pulmonary disease | 
| AU2001292609A1 (en)* | 2000-09-11 | 2002-03-26 | Closure Medical Corporation | Bronchial occlusion method and apparatus | 
| US7104987B2 (en) | 2000-10-17 | 2006-09-12 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums | 
| US20060135947A1 (en)* | 2000-10-27 | 2006-06-22 | Pulmonx | Occlusal stent and methods for its use | 
| US6527761B1 (en)* | 2000-10-27 | 2003-03-04 | Pulmonx, Inc. | Methods and devices for obstructing and aspirating lung tissue segments | 
| US7549987B2 (en) | 2000-12-09 | 2009-06-23 | Tsunami Medtech, Llc | Thermotherapy device | 
| US9433457B2 (en) | 2000-12-09 | 2016-09-06 | Tsunami Medtech, Llc | Medical instruments and techniques for thermally-mediated therapies | 
| US6846319B2 (en) | 2000-12-14 | 2005-01-25 | Core Medical, Inc. | Devices for sealing openings through tissue and apparatus and methods for delivering them | 
| US6896692B2 (en) | 2000-12-14 | 2005-05-24 | Ensure Medical, Inc. | Plug with collet and apparatus and method for delivering such plugs | 
| US6623509B2 (en) | 2000-12-14 | 2003-09-23 | Core Medical, Inc. | Apparatus and methods for sealing vascular punctures | 
| US6890343B2 (en) | 2000-12-14 | 2005-05-10 | Ensure Medical, Inc. | Plug with detachable guidewire element and methods for use | 
| US8083768B2 (en) | 2000-12-14 | 2011-12-27 | Ensure Medical, Inc. | Vascular plug having composite construction | 
| US20020112729A1 (en)* | 2001-02-21 | 2002-08-22 | Spiration, Inc. | Intra-bronchial obstructing device that controls biological interaction with the patient | 
| US20040074491A1 (en)* | 2001-03-02 | 2004-04-22 | Michael Hendricksen | Delivery methods and devices for implantable bronchial isolation devices | 
| US7011094B2 (en)* | 2001-03-02 | 2006-03-14 | Emphasys Medical, Inc. | Bronchial flow control devices and methods of use | 
| US7798147B2 (en)* | 2001-03-02 | 2010-09-21 | Pulmonx Corporation | Bronchial flow control devices with membrane seal | 
| JP4409123B2 (en)* | 2001-07-19 | 2010-02-03 | オリンパス株式会社 | Medical obturator | 
| US6743259B2 (en)* | 2001-08-03 | 2004-06-01 | Core Medical, Inc. | Lung assist apparatus and methods for use | 
| US6994706B2 (en) | 2001-08-13 | 2006-02-07 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of benign prostatic hyperplasia | 
| US6645205B2 (en) | 2001-08-15 | 2003-11-11 | Core Medical, Inc. | Apparatus and methods for reducing lung volume | 
| US20030050648A1 (en) | 2001-09-11 | 2003-03-13 | Spiration, Inc. | Removable lung reduction devices, systems, and methods | 
| US6790237B2 (en)* | 2001-10-09 | 2004-09-14 | Scimed Life Systems, Inc. | Medical stent with a valve and related methods of manufacturing | 
| CA2458595C (en)* | 2001-10-11 | 2007-12-04 | Peter M. Wilson | Bronchial flow control devices and methods of use | 
| US6592594B2 (en)* | 2001-10-25 | 2003-07-15 | Spiration, Inc. | Bronchial obstruction device deployment system and method | 
| US20030127090A1 (en)* | 2001-11-14 | 2003-07-10 | Emphasys Medical, Inc. | Active pump bronchial implant devices and methods of use thereof | 
| US8444636B2 (en) | 2001-12-07 | 2013-05-21 | Tsunami Medtech, Llc | Medical instrument and method of use | 
| US20030154988A1 (en)* | 2002-02-21 | 2003-08-21 | Spiration, Inc. | Intra-bronchial device that provides a medicant intra-bronchially to the patient | 
| US6929637B2 (en)* | 2002-02-21 | 2005-08-16 | Spiration, Inc. | Device and method for intra-bronchial provision of a therapeutic agent | 
| US20060235432A1 (en)* | 2002-02-21 | 2006-10-19 | Devore Lauri J | Intra-bronchial obstructing device that controls biological interaction with the patient | 
| AU2003220124A1 (en)* | 2002-03-08 | 2003-09-22 | Emphasys Medical, Inc. | Methods and devices for inducing collapse in lung regions fed by collateral pathways | 
| EP2353557B1 (en)* | 2002-03-20 | 2020-05-27 | Spiration, Inc. | Removable anchored lung volume reduction devices | 
| US20030216769A1 (en) | 2002-05-17 | 2003-11-20 | Dillard David H. | Removable anchored lung volume reduction devices and methods | 
| US20030181922A1 (en)* | 2002-03-20 | 2003-09-25 | Spiration, Inc. | Removable anchored lung volume reduction devices and methods | 
| US20030195385A1 (en)* | 2002-04-16 | 2003-10-16 | Spiration, Inc. | Removable anchored lung volume reduction devices and methods | 
| US20030212412A1 (en)* | 2002-05-09 | 2003-11-13 | Spiration, Inc. | Intra-bronchial obstructing device that permits mucus transport | 
| US20040089306A1 (en)* | 2002-05-28 | 2004-05-13 | Ronald Hundertmark | Devices and methods for removing bronchial isolation devices implanted in the lung | 
| US7096536B2 (en)* | 2002-06-07 | 2006-08-29 | Illinois Tool Works Inc | Hinge apparatus with check mechanism | 
| US7166120B2 (en)* | 2002-07-12 | 2007-01-23 | Ev3 Inc. | Catheter with occluding cuff | 
| US20040010209A1 (en)* | 2002-07-15 | 2004-01-15 | Spiration, Inc. | Device and method for measuring the diameter of an air passageway | 
| US20040059263A1 (en)* | 2002-09-24 | 2004-03-25 | Spiration, Inc. | Device and method for measuring the diameter of an air passageway | 
| EP1524942B1 (en)* | 2002-07-26 | 2008-09-10 | Emphasys Medical, Inc. | Bronchial flow control devices with membrane seal | 
| US20100158795A1 (en)* | 2008-06-12 | 2010-06-24 | Pulmonx | Methods and systems for assessing lung function and delivering therapeutic agents | 
| US7814912B2 (en)* | 2002-11-27 | 2010-10-19 | Pulmonx Corporation | Delivery methods and devices for implantable bronchial isolation devices | 
| US7717115B2 (en)* | 2002-11-27 | 2010-05-18 | Pulmonx Corporation | Delivery methods and devices for implantable bronchial isolation devices | 
| US20040210248A1 (en)* | 2003-03-12 | 2004-10-21 | Spiration, Inc. | Apparatus, method and assembly for delivery of intra-bronchial devices | 
| US7100616B2 (en)* | 2003-04-08 | 2006-09-05 | Spiration, Inc. | Bronchoscopic lung volume reduction method | 
| US8082921B2 (en)* | 2003-04-25 | 2011-12-27 | Anthony David Wondka | Methods, systems and devices for desufflating a lung area | 
| US7811274B2 (en)* | 2003-05-07 | 2010-10-12 | Portaero, Inc. | Method for treating chronic obstructive pulmonary disease | 
| US20040226556A1 (en) | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin | 
| US7426929B2 (en) | 2003-05-20 | 2008-09-23 | Portaero, Inc. | Intra/extra-thoracic collateral ventilation bypass system and method | 
| DE602004029159D1 (en) | 2003-05-28 | 2010-10-28 | Cook Inc | |
| US7533667B2 (en)* | 2003-05-29 | 2009-05-19 | Portaero, Inc. | Methods and devices to assist pulmonary decompression | 
| US7252086B2 (en)* | 2003-06-03 | 2007-08-07 | Cordis Corporation | Lung reduction system | 
| US7377278B2 (en)* | 2003-06-05 | 2008-05-27 | Portaero, Inc. | Intra-thoracic collateral ventilation bypass system and method | 
| WO2005007023A2 (en)* | 2003-07-09 | 2005-01-27 | Emphasys Medical, Inc. | Treatment planning with implantable bronchial isolation devices | 
| US7682332B2 (en)* | 2003-07-15 | 2010-03-23 | Portaero, Inc. | Methods to accelerate wound healing in thoracic anastomosis applications | 
| WO2005011534A1 (en)* | 2003-07-31 | 2005-02-10 | Cook Incorporated | Prosthetic valve devices and methods of making such devices | 
| US7533671B2 (en)* | 2003-08-08 | 2009-05-19 | Spiration, Inc. | Bronchoscopic repair of air leaks in a lung | 
| US20050103340A1 (en)* | 2003-08-20 | 2005-05-19 | Wondka Anthony D. | Methods, systems & devices for endobronchial ventilation and drug delivery | 
| US20050059862A1 (en)* | 2003-09-12 | 2005-03-17 | Scimed Life Systems, Inc. | Cannula with integrated imaging and optical capability | 
| CA2482725C (en)* | 2003-09-30 | 2012-11-20 | Ethicon Endo-Surgery, Inc. | Multi-angled duckbill seal assembly | 
| US8034032B2 (en) | 2003-09-30 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Multi-angled duckbill seal assembly | 
| US8579892B2 (en)* | 2003-10-07 | 2013-11-12 | Tsunami Medtech, Llc | Medical system and method of use | 
| US7361183B2 (en) | 2003-10-17 | 2008-04-22 | Ensure Medical, Inc. | Locator and delivery device and method of use | 
| US8852229B2 (en) | 2003-10-17 | 2014-10-07 | Cordis Corporation | Locator and closure device and method of use | 
| US7036509B2 (en) | 2003-12-04 | 2006-05-02 | Emphasys Medical, Inc. | Multiple seal port anesthesia adapter | 
| US20050178389A1 (en)* | 2004-01-27 | 2005-08-18 | Shaw David P. | Disease indications for selective endobronchial lung region isolation | 
| US8206684B2 (en)* | 2004-02-27 | 2012-06-26 | Pulmonx Corporation | Methods and devices for blocking flow through collateral pathways in the lung | 
| EP2368525B1 (en)* | 2004-03-08 | 2019-09-18 | Pulmonx, Inc | Implanted bronchial isolation devices | 
| US7670282B2 (en)* | 2004-06-14 | 2010-03-02 | Pneumrx, Inc. | Lung access device | 
| EP3542736A1 (en) | 2004-06-16 | 2019-09-25 | PneumRx, Inc. | Intra-bronchial lung volume reduction system | 
| EP1768747B1 (en)* | 2004-06-24 | 2013-08-07 | Calypso Medical Technologies, INC. | Systems for treating a lung of a patient using guided radiation therapy or surgery | 
| US7766891B2 (en)* | 2004-07-08 | 2010-08-03 | Pneumrx, Inc. | Lung device with sealing features | 
| CA2570261C (en) | 2004-07-08 | 2014-06-10 | Pneumrx, Inc. | Pleural effusion treatment device, method and material | 
| US20060030863A1 (en)* | 2004-07-21 | 2006-02-09 | Fields Antony J | Implanted bronchial isolation device delivery devices and methods | 
| US20060047291A1 (en)* | 2004-08-20 | 2006-03-02 | Uptake Medical Corporation | Non-foreign occlusion of an airway and lung collapse | 
| US7906124B2 (en)* | 2004-09-18 | 2011-03-15 | Asthmatx, Inc. | Inactivation of smooth muscle tissue | 
| WO2006052940A2 (en) | 2004-11-05 | 2006-05-18 | Asthmatx, Inc. | Medical device with procedure improvement features | 
| US7949407B2 (en)* | 2004-11-05 | 2011-05-24 | Asthmatx, Inc. | Energy delivery devices and methods | 
| US20070093802A1 (en)* | 2005-10-21 | 2007-04-26 | Danek Christopher J | Energy delivery devices and methods | 
| MX2007005937A (en) | 2004-11-16 | 2007-09-11 | Robert L Barry | Device and method for lung treatment. | 
| US7451765B2 (en)* | 2004-11-18 | 2008-11-18 | Mark Adler | Intra-bronchial apparatus for aspiration and insufflation of lung regions distal to placement or cross communication and deployment and placement system therefor | 
| US8220460B2 (en)* | 2004-11-19 | 2012-07-17 | Portaero, Inc. | Evacuation device and method for creating a localized pleurodesis | 
| US20060118126A1 (en)* | 2004-11-19 | 2006-06-08 | Don Tanaka | Methods and devices for controlling collateral ventilation | 
| US7398782B2 (en)* | 2004-11-19 | 2008-07-15 | Portaero, Inc. | Method for pulmonary drug delivery | 
| US7771472B2 (en) | 2004-11-19 | 2010-08-10 | Pulmonx Corporation | Bronchial flow control devices and methods of use | 
| WO2006058195A2 (en) | 2004-11-23 | 2006-06-01 | Pneumrx, Inc. | Steerable device for accessing a target site and methods | 
| EP1824544B1 (en)* | 2004-12-08 | 2013-06-05 | Ventus Medical, Inc. | Respiratory devices and methods of use | 
| US8061357B2 (en)* | 2004-12-08 | 2011-11-22 | Ventus Medical, Inc. | Adhesive nasal respiratory devices | 
| US10610228B2 (en) | 2004-12-08 | 2020-04-07 | Theravent, Inc. | Passive nasal peep devices | 
| US9833354B2 (en) | 2004-12-08 | 2017-12-05 | Theravent, Inc. | Nasal respiratory devices | 
| US7824366B2 (en)* | 2004-12-10 | 2010-11-02 | Portaero, Inc. | Collateral ventilation device with chest tube/evacuation features and method | 
| US20080228137A1 (en)* | 2007-03-12 | 2008-09-18 | Pulmonx | Methods and devices for passive residual lung volume reduction and functional lung volume expansion | 
| US8496006B2 (en)* | 2005-01-20 | 2013-07-30 | Pulmonx Corporation | Methods and devices for passive residual lung volume reduction and functional lung volume expansion | 
| US11883029B2 (en) | 2005-01-20 | 2024-01-30 | Pulmonx Corporation | Methods and devices for passive residual lung volume reduction and functional lung volume expansion | 
| US8876791B2 (en) | 2005-02-25 | 2014-11-04 | Pulmonx Corporation | Collateral pathway treatment using agent entrained by aspiration flow current | 
| US8088144B2 (en) | 2005-05-04 | 2012-01-03 | Ensure Medical, Inc. | Locator and closure device and method of use | 
| US8926654B2 (en) | 2005-05-04 | 2015-01-06 | Cordis Corporation | Locator and closure device and method of use | 
| US20070032785A1 (en)* | 2005-08-03 | 2007-02-08 | Jennifer Diederich | Tissue evacuation device | 
| US8104474B2 (en)* | 2005-08-23 | 2012-01-31 | Portaero, Inc. | Collateral ventilation bypass system with retention features | 
| US9265605B2 (en)* | 2005-10-14 | 2016-02-23 | Boston Scientific Scimed, Inc. | Bronchoscopic lung volume reduction valve | 
| EP1951129B1 (en) | 2005-10-19 | 2012-11-21 | Pulsar Vascular, Inc. | Methods and systems for endovascularly clipping and repairing lumen and tissue defects | 
| US8545530B2 (en)* | 2005-10-19 | 2013-10-01 | Pulsar Vascular, Inc. | Implantable aneurysm closure systems and methods | 
| US7406963B2 (en) | 2006-01-17 | 2008-08-05 | Portaero, Inc. | Variable resistance pulmonary ventilation bypass valve and method | 
| US20070186933A1 (en)* | 2006-01-17 | 2007-08-16 | Pulmonx | Systems and methods for delivering flow restrictive element to airway in lungs | 
| WO2007100846A2 (en)* | 2006-02-28 | 2007-09-07 | Emphasys Medical, Inc. | Endoscopic tool | 
| US8136526B2 (en)* | 2006-03-08 | 2012-03-20 | Pulmonx Corporation | Methods and devices to induce controlled atelectasis and hypoxic pulmonary vasoconstriction | 
| US9402633B2 (en) | 2006-03-13 | 2016-08-02 | Pneumrx, Inc. | Torque alleviating intra-airway lung volume reduction compressive implant structures | 
| US8157837B2 (en)* | 2006-03-13 | 2012-04-17 | Pneumrx, Inc. | Minimally invasive lung volume reduction device and method | 
| US8888800B2 (en) | 2006-03-13 | 2014-11-18 | Pneumrx, Inc. | Lung volume reduction devices, methods, and systems | 
| US7691151B2 (en)* | 2006-03-31 | 2010-04-06 | Spiration, Inc. | Articulable Anchor | 
| US7829986B2 (en)* | 2006-04-01 | 2010-11-09 | Stats Chippac Ltd. | Integrated circuit package system with net spacer | 
| WO2007132449A2 (en)* | 2006-05-11 | 2007-11-22 | Yossi Gross | Implantable respiration therapy device | 
| GB0610171D0 (en) | 2006-05-23 | 2006-06-28 | Robitaille Jean Pierre | Valved nasal canula | 
| CA2653139C (en)* | 2006-05-23 | 2016-01-05 | Ventus Medical, Inc. | Nasal respiratory devices | 
| US8690938B2 (en)* | 2006-05-26 | 2014-04-08 | DePuy Synthes Products, LLC | Occlusion device combination of stent and mesh with diamond-shaped porosity | 
| US20090145441A1 (en)* | 2007-12-06 | 2009-06-11 | Rajiv Doshi | Delayed resistance nasal devices and methods of use | 
| CN101489630B (en)* | 2006-06-07 | 2013-10-23 | 温吐斯医学公司 | Layered nasal devices | 
| EP2032213A4 (en)* | 2006-06-07 | 2014-02-19 | Theravent Inc | DEVICES FOR THE NOSE | 
| US20110203598A1 (en)* | 2006-06-07 | 2011-08-25 | Favet Michael L | Nasal devices including layered nasal devices and delayed resistance adapters for use with nasal devices | 
| US7654264B2 (en) | 2006-07-18 | 2010-02-02 | Nellcor Puritan Bennett Llc | Medical tube including an inflatable cuff having a notched collar | 
| US20080072914A1 (en)* | 2006-08-25 | 2008-03-27 | Hendricksen Michael J | Bronchial Isolation Devices for Placement in Short Lumens | 
| US8342182B2 (en) | 2006-08-28 | 2013-01-01 | Pulmonx Corporation | Functional assessment and treatment catheters and methods for their use in the lung | 
| US7931647B2 (en)* | 2006-10-20 | 2011-04-26 | Asthmatx, Inc. | Method of delivering energy to a lung airway using markers | 
| US8585645B2 (en)* | 2006-11-13 | 2013-11-19 | Uptake Medical Corp. | Treatment with high temperature vapor | 
| US7993323B2 (en) | 2006-11-13 | 2011-08-09 | Uptake Medical Corp. | High pressure and high temperature vapor catheters and systems | 
| WO2008061252A2 (en)* | 2006-11-16 | 2008-05-22 | Ventus Medical, Inc. | Nasal devices applicators | 
| US7985254B2 (en) | 2007-01-08 | 2011-07-26 | David Tolkowsky | Endobronchial fluid exhaler devices and methods for use thereof | 
| GB0701315D0 (en) | 2007-01-24 | 2007-03-07 | Smiths Group Plc | Medico-surgical devices | 
| US20080221582A1 (en)* | 2007-03-05 | 2008-09-11 | Pulmonx | Pulmonary stent removal device | 
| TW200836781A (en)* | 2007-03-07 | 2008-09-16 | Ventus Medical Inc | Nasal devices | 
| EP1967178A1 (en)* | 2007-03-07 | 2008-09-10 | Raffinerie Notre Dame - Orafti S.A. | Fructan-based epilatory compositions | 
| US8821376B2 (en)* | 2007-03-12 | 2014-09-02 | David Tolkowsky | Devices and methods for performing medical procedures in tree-like luminal structures | 
| US8137302B2 (en)* | 2007-03-12 | 2012-03-20 | Pulmonx Corporation | Methods and systems for occluding collateral flow channels in the lung | 
| US7931641B2 (en)* | 2007-05-11 | 2011-04-26 | Portaero, Inc. | Visceral pleura ring connector | 
| US8163034B2 (en)* | 2007-05-11 | 2012-04-24 | Portaero, Inc. | Methods and devices to create a chemically and/or mechanically localized pleurodesis | 
| US20080281151A1 (en)* | 2007-05-11 | 2008-11-13 | Portaero, Inc. | Pulmonary pleural stabilizer | 
| US20080283065A1 (en)* | 2007-05-15 | 2008-11-20 | Portaero, Inc. | Methods and devices to maintain patency of a lumen in parenchymal tissue of the lung | 
| US20080287878A1 (en)* | 2007-05-15 | 2008-11-20 | Portaero, Inc. | Pulmonary visceral pleura anastomosis reinforcement | 
| US8062315B2 (en) | 2007-05-17 | 2011-11-22 | Portaero, Inc. | Variable parietal/visceral pleural coupling | 
| US20080295829A1 (en)* | 2007-05-30 | 2008-12-04 | Portaero, Inc. | Bridge element for lung implant | 
| US8235983B2 (en) | 2007-07-12 | 2012-08-07 | Asthmatx, Inc. | Systems and methods for delivering energy to passageways in a patient | 
| EP2190373B1 (en) | 2007-08-23 | 2013-01-09 | Aegea Medical, Inc. | Uterine therapy device | 
| US8043301B2 (en)* | 2007-10-12 | 2011-10-25 | Spiration, Inc. | Valve loader method, system, and apparatus | 
| WO2009051698A2 (en)* | 2007-10-12 | 2009-04-23 | Beth Israel Deaconess Medical Center | Catheter guided endotracheal intubation | 
| EP2641572B1 (en)* | 2007-10-12 | 2019-07-24 | Spiration Inc. | Valve loader method, system, and apparatus | 
| US8147532B2 (en)* | 2007-10-22 | 2012-04-03 | Uptake Medical Corp. | Determining patient-specific vapor treatment and delivery parameters | 
| US8322335B2 (en) | 2007-10-22 | 2012-12-04 | Uptake Medical Corp. | Determining patient-specific vapor treatment and delivery parameters | 
| US8020700B2 (en)* | 2007-12-05 | 2011-09-20 | Ventus Medical, Inc. | Packaging and dispensing nasal devices | 
| WO2009099995A1 (en)* | 2008-02-01 | 2009-08-13 | Ventus Medical, Inc. | Cpap interface and backup devices | 
| US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation | 
| WO2009105432A2 (en)* | 2008-02-19 | 2009-08-27 | Portaero, Inc. | Devices and methods for delivery of a therapeutic agent through a pneumostoma | 
| US8336540B2 (en)* | 2008-02-19 | 2012-12-25 | Portaero, Inc. | Pneumostoma management device and method for treatment of chronic obstructive pulmonary disease | 
| US8475389B2 (en)* | 2008-02-19 | 2013-07-02 | Portaero, Inc. | Methods and devices for assessment of pneumostoma function | 
| US9924992B2 (en)* | 2008-02-20 | 2018-03-27 | Tsunami Medtech, Llc | Medical system and method of use | 
| US10117707B2 (en) | 2008-04-29 | 2018-11-06 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies | 
| US11254926B2 (en) | 2008-04-29 | 2022-02-22 | Virginia Tech Intellectual Properties, Inc. | Devices and methods for high frequency electroporation | 
| US10238447B2 (en) | 2008-04-29 | 2019-03-26 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress | 
| US9598691B2 (en) | 2008-04-29 | 2017-03-21 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation to create tissue scaffolds | 
| US9283051B2 (en) | 2008-04-29 | 2016-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating a treatment volume for administering electrical-energy based therapies | 
| US11272979B2 (en) | 2008-04-29 | 2022-03-15 | Virginia Tech Intellectual Properties, Inc. | System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies | 
| US10245098B2 (en) | 2008-04-29 | 2019-04-02 | Virginia Tech Intellectual Properties, Inc. | Acute blood-brain barrier disruption using electrical energy based therapy | 
| US9198733B2 (en) | 2008-04-29 | 2015-12-01 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for electroporation-based therapies | 
| US10272178B2 (en) | 2008-04-29 | 2019-04-30 | Virginia Tech Intellectual Properties Inc. | Methods for blood-brain barrier disruption using electrical energy | 
| US10702326B2 (en) | 2011-07-15 | 2020-07-07 | Virginia Tech Intellectual Properties, Inc. | Device and method for electroporation based treatment of stenosis of a tubular body part | 
| US8992517B2 (en) | 2008-04-29 | 2015-03-31 | Virginia Tech Intellectual Properties Inc. | Irreversible electroporation to treat aberrant cell masses | 
| US9867652B2 (en) | 2008-04-29 | 2018-01-16 | Virginia Tech Intellectual Properties, Inc. | Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds | 
| JP2011519699A (en) | 2008-05-09 | 2011-07-14 | インノブアトイブエ プルモナルイ ソルウトイオンス,インコーポレイティッド | Systems, assemblies and methods for treatment of bronchial trees | 
| US8721632B2 (en) | 2008-09-09 | 2014-05-13 | Tsunami Medtech, Llc | Methods for delivering energy into a target tissue of a body | 
| US20090308398A1 (en)* | 2008-06-16 | 2009-12-17 | Arthur Ferdinand | Adjustable resistance nasal devices | 
| US8579888B2 (en) | 2008-06-17 | 2013-11-12 | Tsunami Medtech, Llc | Medical probes for the treatment of blood vessels | 
| WO2010028314A1 (en) | 2008-09-05 | 2010-03-11 | Pulsar Vascular, Inc. | Systems and methods for supporting or occluding a physiological opening or cavity | 
| US9173669B2 (en) | 2008-09-12 | 2015-11-03 | Pneumrx, Inc. | Enhanced efficacy lung volume reduction devices, methods, and systems | 
| US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation | 
| US9700365B2 (en) | 2008-10-06 | 2017-07-11 | Santa Anna Tech Llc | Method and apparatus for the ablation of gastrointestinal tissue | 
| US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue | 
| US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications | 
| US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation | 
| JP2012507313A (en)* | 2008-11-04 | 2012-03-29 | ウノメディカル アクティーゼルスカブ | Occluded respiratory suction system | 
| US20100160906A1 (en)* | 2008-12-23 | 2010-06-24 | Asthmatx, Inc. | Expandable energy delivery devices having flexible conductive elements and associated systems and methods | 
| US8347881B2 (en)* | 2009-01-08 | 2013-01-08 | Portaero, Inc. | Pneumostoma management device with integrated patency sensor and method | 
| US11284931B2 (en)* | 2009-02-03 | 2022-03-29 | Tsunami Medtech, Llc | Medical systems and methods for ablating and absorbing tissue | 
| US8518053B2 (en)* | 2009-02-11 | 2013-08-27 | Portaero, Inc. | Surgical instruments for creating a pneumostoma and treating chronic obstructive pulmonary disease | 
| US8632534B2 (en) | 2009-04-03 | 2014-01-21 | Angiodynamics, Inc. | Irreversible electroporation (IRE) for congestive obstructive pulmonary disease (COPD) | 
| US9254245B2 (en) | 2009-04-09 | 2016-02-09 | University Of Utah | Optically guided medical tube and control unit assembly and methods of use | 
| US8361041B2 (en) | 2009-04-09 | 2013-01-29 | University Of Utah Research Foundation | Optically guided feeding tube, catheters and associated methods | 
| US11638603B2 (en) | 2009-04-09 | 2023-05-02 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields | 
| US11382681B2 (en) | 2009-04-09 | 2022-07-12 | Virginia Tech Intellectual Properties, Inc. | Device and methods for delivery of high frequency electrical pulses for non-thermal ablation | 
| FR2944201B1 (en)* | 2009-04-14 | 2011-06-10 | Novatech Sa | BRONCHIC SHUTTER WITH VALVE | 
| WO2010135352A1 (en) | 2009-05-18 | 2010-11-25 | Pneumrx, Inc. | Cross-sectional modification during deployment of an elongate lung volume reduction device | 
| WO2010138919A2 (en) | 2009-05-28 | 2010-12-02 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm | 
| US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation | 
| EP2805680B1 (en) | 2009-09-04 | 2017-10-25 | Pulsar Vascular, Inc. | Systems for enclosing an anatomical opening | 
| EP2298238B1 (en)* | 2009-09-21 | 2015-11-11 | Arnold Wolfovich Levin | Device for the treatment of lung associated conditions | 
| WO2011056684A2 (en) | 2009-10-27 | 2011-05-12 | Innovative Pulmonary Solutions, Inc. | Delivery devices with coolable energy emitting assemblies | 
| US20110108041A1 (en)* | 2009-11-06 | 2011-05-12 | Elliot Sather | Nasal devices having a safe failure mode and remotely activatable | 
| US8900223B2 (en)* | 2009-11-06 | 2014-12-02 | Tsunami Medtech, Llc | Tissue ablation systems and methods of use | 
| US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same | 
| WO2011060200A1 (en) | 2009-11-11 | 2011-05-19 | Innovative Pulmonary Solutions, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis | 
| US9161801B2 (en)* | 2009-12-30 | 2015-10-20 | Tsunami Medtech, Llc | Medical system and method of use | 
| US8425455B2 (en) | 2010-03-30 | 2013-04-23 | Angiodynamics, Inc. | Bronchial catheter and method of use | 
| US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis | 
| US8875711B2 (en) | 2010-05-27 | 2014-11-04 | Theravent, Inc. | Layered nasal respiratory devices | 
| US20120041534A1 (en)* | 2010-08-10 | 2012-02-16 | Boston Scientific Scimed, Inc. | Stent delivery system with integrated camera | 
| US9943353B2 (en) | 2013-03-15 | 2018-04-17 | Tsunami Medtech, Llc | Medical system and method of use | 
| WO2012042287A1 (en)* | 2010-09-29 | 2012-04-05 | Arnold Wolfovich Levin | Device for the treatment of lung associated conditions | 
| EP2627274B1 (en) | 2010-10-13 | 2022-12-14 | AngioDynamics, Inc. | System for electrically ablating tissue of a patient | 
| US20120095369A1 (en) | 2010-10-15 | 2012-04-19 | Teixeira Scott M | System and Method for Sampling Device for Bodily Fluids | 
| ES2912362T3 (en) | 2010-11-09 | 2022-05-25 | Aegea Medical Inc | Method of placement and apparatus for delivering steam to the uterus | 
| WO2012088149A2 (en) | 2010-12-20 | 2012-06-28 | Virginia Tech Intellectual Properties, Inc. | High-frequency electroporation for cancer therapy | 
| CN102133136A (en)* | 2011-01-28 | 2011-07-27 | 于军 | Biological power duplex valve device and charging and discharging method | 
| US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis | 
| US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue | 
| US8795241B2 (en) | 2011-05-13 | 2014-08-05 | Spiration, Inc. | Deployment catheter | 
| CN103582460B (en) | 2011-06-03 | 2019-03-19 | 帕尔萨维斯库勒公司 | Aneurysm devices and related systems and methods with additional anchoring mechanism | 
| EP2713905B1 (en) | 2011-06-03 | 2022-03-16 | Pulsar Vascular, Inc. | Systems for enclosing an anatomical opening, including shock absorbing aneurysm devices | 
| US9038634B2 (en) | 2011-06-22 | 2015-05-26 | Breathe Technologies, Inc. | Ventilation mask with integrated piloted exhalation valve | 
| US9616194B2 (en) | 2011-06-22 | 2017-04-11 | Breathe Technologies, Inc. | Ventilation mask with integrated piloted exhalation valve and method of ventilating a patient using the same | 
| US8844533B2 (en) | 2011-06-22 | 2014-09-30 | Breathe Technologies, Inc. | Ventilation mask with integrated piloted exhalation valve | 
| FR2978345B1 (en) | 2011-07-25 | 2013-08-30 | Charam Khosrovaninejad | SURGICAL DEVICE FOR ANCHOR CONTROL IN INTESTINES. | 
| WO2013044267A1 (en) | 2011-09-23 | 2013-03-28 | Pulmonx, Inc. | Implant loading device and system | 
| US9078665B2 (en) | 2011-09-28 | 2015-07-14 | Angiodynamics, Inc. | Multiple treatment zone ablation probe | 
| US9730830B2 (en) | 2011-09-29 | 2017-08-15 | Trudell Medical International | Nasal insert and cannula and methods for the use thereof | 
| US9119625B2 (en) | 2011-10-05 | 2015-09-01 | Pulsar Vascular, Inc. | Devices, systems and methods for enclosing an anatomical opening | 
| CA2851355C (en) | 2011-10-07 | 2020-02-18 | Aegea Medical Inc. | Integrity testing method and apparatus for delivering vapor to the uterus | 
| US9414881B2 (en) | 2012-02-08 | 2016-08-16 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation | 
| EP3281608B1 (en) | 2012-02-10 | 2020-09-16 | CVDevices, LLC | Medical product comprising a frame and visceral pleura | 
| EP2846706A1 (en) | 2012-05-10 | 2015-03-18 | Pulsar Vascular, Inc. | Coil-tipped aneurysm devices | 
| US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system | 
| WO2013184319A1 (en) | 2012-06-04 | 2013-12-12 | Boston Scientific Scimed, Inc. | Systems and methods for treating tissue of a passageway within a body | 
| JP5891119B2 (en)* | 2012-06-21 | 2016-03-22 | テルモ株式会社 | Exhalation resistance device | 
| US9592086B2 (en) | 2012-07-24 | 2017-03-14 | Boston Scientific Scimed, Inc. | Electrodes for tissue treatment | 
| EP2911611B1 (en) | 2012-10-24 | 2022-12-07 | Cook Medical Technologies LLC | Anti-reflux prosthesis | 
| US9272132B2 (en) | 2012-11-02 | 2016-03-01 | Boston Scientific Scimed, Inc. | Medical device for treating airways and related methods of use | 
| WO2014071372A1 (en) | 2012-11-05 | 2014-05-08 | Boston Scientific Scimed, Inc. | Devices for delivering energy to body lumens | 
| SMT201700286T1 (en) | 2012-12-04 | 2017-07-18 | Ino Therapeutics Llc | Cannula for minimizing dilution of dosing during nitric oxide delivery | 
| US9795756B2 (en) | 2012-12-04 | 2017-10-24 | Mallinckrodt Hospital Products IP Limited | Cannula for minimizing dilution of dosing during nitric oxide delivery | 
| US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation | 
| EP2752170B1 (en) | 2013-01-08 | 2017-02-22 | Cook Medical Technologies LLC | Multi valve anti-reflux prosthesis | 
| EP3964151A3 (en) | 2013-01-17 | 2022-03-30 | Virender K. Sharma | Apparatus for tissue ablation | 
| US9888956B2 (en) | 2013-01-22 | 2018-02-13 | Angiodynamics, Inc. | Integrated pump and generator device and method of use | 
| CA2900862C (en) | 2013-02-11 | 2017-10-03 | Cook Medical Technologies Llc | Expandable support frame and medical device | 
| US9434977B2 (en) | 2013-02-27 | 2016-09-06 | Avent, Inc. | Rapid identification of organisms in bodily fluids | 
| US11426900B2 (en) | 2013-02-28 | 2022-08-30 | Hewlett-Packard Development Company, L.P. | Molding a fluid flow structure | 
| PL3296113T3 (en) | 2013-02-28 | 2020-02-28 | Hewlett-Packard Development Company, L.P. | Molded print bar | 
| US10821729B2 (en) | 2013-02-28 | 2020-11-03 | Hewlett-Packard Development Company, L.P. | Transfer molded fluid flow structure | 
| CN108058485B (en) | 2013-02-28 | 2019-10-22 | 惠普发展公司,有限责任合伙企业 | The fluid flow structure of molding | 
| US20140276051A1 (en)* | 2013-03-13 | 2014-09-18 | Gyrus ACM, Inc. (d.b.a Olympus Surgical Technologies America) | Device for Minimally Invasive Delivery of Treatment Substance | 
| US9724920B2 (en) | 2013-03-20 | 2017-08-08 | Hewlett-Packard Development Company, L.P. | Molded die slivers with exposed front and back surfaces | 
| US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart | 
| US10188509B2 (en) | 2013-05-03 | 2019-01-29 | Cormatrix Cardiovascular, Inc. | Prosthetic tissue valves | 
| US10188510B2 (en) | 2013-05-03 | 2019-01-29 | Cormatrix Cardiovascular, Inc. | Prosthetic tissue valves | 
| US9814618B2 (en) | 2013-06-06 | 2017-11-14 | Boston Scientific Scimed, Inc. | Devices for delivering energy and related methods of use | 
| US9308078B2 (en) | 2013-07-19 | 2016-04-12 | Boston Scientific Scimed, Inc. | Medical device, system, and method for regulating fluid flow in bronchial passageways | 
| EP3335658B1 (en) | 2013-08-09 | 2020-04-22 | Boston Scientific Scimed, Inc. | Expandable catheter | 
| AU2014240225A1 (en) | 2013-10-01 | 2015-04-16 | Uptake Medical Technology Inc. | Preferential volume reduction of diseased segments of a heterogeneous lobe | 
| TW201601783A (en)* | 2014-04-16 | 2016-01-16 | 賽諾菲股份有限公司 | Sealing member for a medical device | 
| WO2015175570A1 (en) | 2014-05-12 | 2015-11-19 | Virginia Tech Intellectual Properties, Inc. | Selective modulation of intracellular effects of cells using pulsed electric fields | 
| JP6534385B2 (en)* | 2014-05-19 | 2019-06-26 | 学校法人 名城大学 | Stent | 
| EP3145425B1 (en) | 2014-05-22 | 2024-10-23 | CooperSurgical, Inc. | Systems for performing endometrial ablation | 
| US10179019B2 (en) | 2014-05-22 | 2019-01-15 | Aegea Medical Inc. | Integrity testing method and apparatus for delivering vapor to the uterus | 
| JP6668325B2 (en)* | 2014-07-18 | 2020-03-18 | エシコン・インコーポレイテッドEthicon, Inc. | Method and apparatus for controlling emphysema cyst size | 
| JP6661600B2 (en) | 2014-07-18 | 2020-03-11 | エシコン・インコーポレイテッドEthicon, Inc. | Mechanical retraction by mooring for lung volume reduction | 
| US10390838B1 (en) | 2014-08-20 | 2019-08-27 | Pneumrx, Inc. | Tuned strength chronic obstructive pulmonary disease treatment | 
| US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring | 
| US10485604B2 (en) | 2014-12-02 | 2019-11-26 | Uptake Medical Technology Inc. | Vapor treatment of lung nodules and tumors | 
| US10694972B2 (en) | 2014-12-15 | 2020-06-30 | Virginia Tech Intellectual Properties, Inc. | Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment | 
| US10531906B2 (en) | 2015-02-02 | 2020-01-14 | Uptake Medical Technology Inc. | Medical vapor generator | 
| WO2016153635A1 (en) | 2015-03-24 | 2016-09-29 | Spiration, Inc.D/B/A Olympus Respiratory America | Airway stent | 
| US9592138B1 (en)* | 2015-09-13 | 2017-03-14 | Martin Mayse | Pulmonary airflow | 
| US11364034B2 (en)* | 2015-11-30 | 2022-06-21 | Materialise N.V. | Method and apparatus for improved airflow distribution through generation of a computer model of a patient's lungs | 
| CA3007660A1 (en) | 2015-12-15 | 2017-06-22 | Neovasc Tiara Inc. | Transseptal delivery system | 
| US10433952B2 (en) | 2016-01-29 | 2019-10-08 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow | 
| EP3416551B1 (en) | 2016-02-19 | 2022-10-12 | Aegea Medical Inc. | Apparatus for determining the integrity of a bodily cavity | 
| US11039926B2 (en) | 2016-03-25 | 2021-06-22 | Spiration, Inc. | Valve planning tool | 
| US12364537B2 (en) | 2016-05-02 | 2025-07-22 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue | 
| US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions | 
| EP3478351B1 (en) | 2016-06-30 | 2021-03-10 | Vapotherm, Inc. | Cannula device for high flow therapy | 
| EP4335413A3 (en)* | 2016-07-11 | 2024-05-15 | Cormatrix Cardiovascular, Inc. | Prosthetic tissue valves | 
| EP3380044B1 (en)* | 2016-07-11 | 2020-01-29 | Cormatrix Cardiovascular, Inc. | Prosthetic tissue valves | 
| US11419490B2 (en)* | 2016-08-02 | 2022-08-23 | Covidien Lp | System and method of using an endoscopic catheter as a port in laparoscopic surgery | 
| WO2018060848A1 (en) | 2016-09-30 | 2018-04-05 | Pneumrx Inc. | Guidewire | 
| US10758333B2 (en)* | 2016-10-05 | 2020-09-01 | Pulmonx Corporation | High resistance implanted bronchial isolation devices and methods | 
| US11529224B2 (en) | 2016-10-05 | 2022-12-20 | Pulmonx Corporation | High resistance implanted bronchial isolation devices and methods | 
| US10905492B2 (en) | 2016-11-17 | 2021-02-02 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode | 
| CA3042588A1 (en) | 2016-11-21 | 2018-05-24 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system | 
| WO2018169547A1 (en) | 2017-03-17 | 2018-09-20 | Spiration, Inc. D.B.A. Olympus Respiratory America | Airway sizing apparatus | 
| US11129673B2 (en) | 2017-05-05 | 2021-09-28 | Uptake Medical Technology Inc. | Extra-airway vapor ablation for treating airway constriction in patients with asthma and COPD | 
| CA3073834A1 (en) | 2017-08-25 | 2019-02-28 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis | 
| US11344364B2 (en) | 2017-09-07 | 2022-05-31 | Uptake Medical Technology Inc. | Screening method for a target nerve to ablate for the treatment of inflammatory lung disease | 
| US11724056B2 (en) | 2017-09-08 | 2023-08-15 | Vapotherm, Inc. | Birfurcated cannula device | 
| US11350988B2 (en) | 2017-09-11 | 2022-06-07 | Uptake Medical Technology Inc. | Bronchoscopic multimodality lung tumor treatment | 
| USD845467S1 (en) | 2017-09-17 | 2019-04-09 | Uptake Medical Technology Inc. | Hand-piece for medical ablation catheter | 
| US11419658B2 (en) | 2017-11-06 | 2022-08-23 | Uptake Medical Technology Inc. | Method for treating emphysema with condensable thermal vapor | 
| US11607537B2 (en) | 2017-12-05 | 2023-03-21 | Virginia Tech Intellectual Properties, Inc. | Method for treating neurological disorders, including tumors, with electroporation | 
| US11490946B2 (en) | 2017-12-13 | 2022-11-08 | Uptake Medical Technology Inc. | Vapor ablation handpiece | 
| US11925405B2 (en) | 2018-03-13 | 2024-03-12 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation | 
| US11311329B2 (en) | 2018-03-13 | 2022-04-26 | Virginia Tech Intellectual Properties, Inc. | Treatment planning for immunotherapy based treatments using non-thermal ablation techniques | 
| US12390262B2 (en) | 2018-03-13 | 2025-08-19 | Virginia Tech Intellectual Properties, Inc. | Treatment planning system for immunotherapy enhancement via non-thermal ablation | 
| EP3801324B1 (en) | 2018-06-01 | 2025-05-28 | Aqua Medical, Inc. | Vapor generation and delivery systems | 
| CN113271890B (en) | 2018-11-08 | 2024-08-30 | 内奥瓦斯克迪亚拉公司 | Ventricular deployment of transcatheter mitral valve prosthesis | 
| US11653927B2 (en) | 2019-02-18 | 2023-05-23 | Uptake Medical Technology Inc. | Vapor ablation treatment of obstructive lung disease | 
| CA3132873A1 (en) | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system | 
| CA3135753C (en) | 2019-04-01 | 2023-10-24 | Neovasc Tiara Inc. | Controllably deployable prosthetic valve | 
| US11491006B2 (en) | 2019-04-10 | 2022-11-08 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow | 
| EP3806754A1 (en)* | 2019-04-18 | 2021-04-21 | Clearstream Technologies Limited | Embolization devices and methods of manufacturing the same | 
| US20220211481A1 (en)* | 2019-04-22 | 2022-07-07 | Eolo Medical Inc. | Devices for the treatment of pulmonary disorders with implantable valves | 
| US11779742B2 (en) | 2019-05-20 | 2023-10-10 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism | 
| JP7520897B2 (en) | 2019-06-20 | 2024-07-23 | ニオバスク ティアラ インコーポレイテッド | Thin prosthetic mitral valve | 
| US11950835B2 (en) | 2019-06-28 | 2024-04-09 | Virginia Tech Intellectual Properties, Inc. | Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy | 
| MX2021016082A (en)* | 2019-06-28 | 2022-03-11 | Vapotherm Inc | Variable geometry cannula. | 
| US12214189B2 (en) | 2019-07-24 | 2025-02-04 | Virginia Tech Intellectual Properties, Inc. | Fourier analysis spectroscopy for monitoring tissue impedance changes and treatment outcome during electroporation-based-therapies | 
| BR112022001231A2 (en)* | 2019-07-24 | 2022-04-05 | Quest Medical Inc | Filtered vacuum discharge vent valve | 
| MX2022003715A (en) | 2019-09-26 | 2022-07-11 | Vapotherm Inc | Internal cannula mounted nebulizer. | 
| CN114585293A (en)* | 2019-10-16 | 2022-06-03 | 株式会社钟化 | Medical instrument assembly and method of use | 
| JP2023536121A (en)* | 2020-07-28 | 2023-08-23 | プルモンクス コーポレイション | High resistance implantable bronchial isolation device and method | 
| CN113018678A (en)* | 2021-02-07 | 2021-06-25 | 深圳麦科田生物医疗技术股份有限公司 | Voice valve assembly | 
| CN113288019B (en)* | 2021-05-14 | 2024-02-13 | 宁波海泰科迈医疗器械有限公司 | Access component for cleaning endoscope lens in real time and application method thereof | 
| CN113244481B (en)* | 2021-05-25 | 2022-07-05 | 吉林大学 | Split type piezoelectricity driven intelligent insulin pastes | 
| AU2022314061A1 (en) | 2021-07-20 | 2024-02-08 | Apreo Health, Inc. | Endobronchial implants and related technology | 
| US20250010006A1 (en)* | 2021-11-18 | 2025-01-09 | Luiz Maracaja | Selective lobe delivery of therapeutics and apparatus for interventional bronchoscopy | 
| CN114052991B (en)* | 2021-12-21 | 2024-05-07 | 启晨(上海)医疗器械有限公司 | Lung volume reduction device and method of use thereof | 
| CN115531038B (en)* | 2022-09-26 | 2023-06-16 | 中日友好医院(中日友好临床医学研究所) | One-way valve for bronchus | 
| WO2024165944A1 (en)* | 2023-02-07 | 2024-08-15 | Medtronic, Inc. | A prothesis configured to prevent or restrict billowing | 
| US12245766B2 (en) | 2023-03-17 | 2025-03-11 | SafeHeal SAS | Systems and methods for introducing and monitoring a negative pressure device for protecting an intestinal anastomosis | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US111620A (en)* | 1871-02-07 | Improvement in devices for enlarging wells | ||
| US192550A (en)* | 1877-06-26 | Ifviprovefvlewt in steam-piston valves | ||
| US138165A (en)* | 1873-04-22 | Improvement in boat-detaching apparatus | ||
| US112729A (en)* | 1871-03-14 | Improvement in dress-swords | ||
| US51799A (en)* | 1866-01-02 | Improvement in sashes and frames for windows | ||
| US16435A (en)* | 1857-01-20 | Sawing-machine | ||
| US111619A (en)* | 1871-02-07 | Improvement in saws | ||
| US56274A (en)* | 1866-07-10 | Improvement in cotton-seed planters | ||
| US95209A (en)* | 1869-09-28 | Improved medical extract | ||
| US87153A (en)* | 1869-02-23 | eaton | ||
| US77696A (en)* | 1868-05-05 | Improvement in corn-harvesters | ||
| US25132A (en)* | 1859-08-16 | Eotary movement | ||
| US75169A (en)* | 1868-03-03 | Richard kitson | ||
| US77593A (en)* | 1868-05-05 | Samuel f | ||
| US75170A (en)* | 1868-03-03 | Improvement in the manufacture of soap | ||
| US62120A (en)* | 1867-02-19 | Smith dtar | ||
| US41906A (en)* | 1864-03-15 | Improvement in grain-weighers | ||
| US52344A (en)* | 1866-01-30 | Alfbed w | ||
| US37808A (en)* | 1863-03-03 | Improvement in dumping-tubs | ||
| US2832078A (en)* | 1956-10-17 | 1958-04-29 | Battelle Memorial Institute | Heart valve | 
| US2981254A (en) | 1957-11-12 | 1961-04-25 | Edwin G Vanderbilt | Apparatus for the gas deflation of an animal's stomach | 
| US3320972A (en)* | 1964-04-16 | 1967-05-23 | Roy F High | Prosthetic tricuspid valve and method of and device for fabricating same | 
| US3445916A (en)* | 1967-04-19 | 1969-05-27 | Rudolf R Schulte | Method for making an anatomical check valve | 
| US3671979A (en)* | 1969-09-23 | 1972-06-27 | Univ Utah | Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve | 
| US3709227A (en)* | 1970-04-28 | 1973-01-09 | Scott And White Memorial Hospi | Endotracheal tube with positive check valve air seal | 
| US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body | 
| US3822720A (en)* | 1971-03-04 | 1974-07-09 | Noyce R | Flow control assembly | 
| US3788327A (en) | 1971-03-30 | 1974-01-29 | H Donowitz | Surgical implant device | 
| US3794036A (en)* | 1972-08-02 | 1974-02-26 | R Carroll | Pressure regulated inflatable cuff for an endotracheal or tracheostomy tube | 
| US3874388A (en) | 1973-02-12 | 1975-04-01 | Ochsner Med Found Alton | Shunt defect closure system | 
| US4014318A (en) | 1973-08-20 | 1977-03-29 | Dockum James M | Circulatory assist device and system | 
| US3901272A (en)* | 1974-01-04 | 1975-08-26 | Ford Motor Co | Unidirectional flow control valve | 
| US4084268A (en)* | 1976-04-22 | 1978-04-18 | Shiley Laboratories, Incorporated | Prosthetic tissue heart valve | 
| US4056854A (en) | 1976-09-28 | 1977-11-08 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Aortic heart valve catheter | 
| US4086665A (en) | 1976-12-16 | 1978-05-02 | Thermo Electron Corporation | Artificial blood conduit | 
| US4250873A (en)* | 1977-04-26 | 1981-02-17 | Richard Wolf Gmbh | Endoscopes | 
| DK229077A (en)* | 1977-05-25 | 1978-11-26 | Biocoating Aps | HEARTBALL PROSTHET AND PROCEDURE FOR MANUFACTURING IT | 
| US4212463A (en) | 1978-02-17 | 1980-07-15 | Pratt Enoch B | Humane bleeder arrow | 
| US4222126A (en) | 1978-12-14 | 1980-09-16 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare | Unitized three leaflet heart valve | 
| SU852321A1 (en) | 1979-10-02 | 1981-08-07 | Второй Московский Ордена Ленинагосударственный Медицинский Ин-Ститут Им. H.И.Пирогова | Method of treating acute purulent diseases of lungs and pleura of children | 
| DE3019996A1 (en) | 1980-05-24 | 1981-12-03 | Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen | HOHLORGAN | 
| US4808183A (en) | 1980-06-03 | 1989-02-28 | University Of Iowa Research Foundation | Voice button prosthesis and method for installing same | 
| US4302854A (en) | 1980-06-04 | 1981-12-01 | Runge Thomas M | Electrically activated ferromagnetic/diamagnetic vascular shunt for left ventricular assist | 
| US4339831A (en)* | 1981-03-27 | 1982-07-20 | Medtronic, Inc. | Dynamic annulus heart valve and reconstruction ring | 
| US4477930A (en) | 1982-09-28 | 1984-10-23 | Mitral Medical International, Inc. | Natural tissue heat valve and method of making same | 
| FR2543834B1 (en)* | 1983-04-07 | 1985-08-23 | Descartes Universite Rene | VARIABLE GEOMETRY PROBE FOR MEASURING RADIAL CONSTRAINTS IN A SPHINCTER OF A LIVING ORGANISM | 
| WO1986002845A1 (en) | 1984-11-15 | 1986-05-22 | Stefano Nazari | Device for selective bronchial intubation and separate lung ventilation | 
| ES8705239A1 (en) | 1984-12-05 | 1987-05-01 | Medinvent Sa | A device for implantation and a method of implantation in a vessel using such device. | 
| US4759758A (en) | 1984-12-07 | 1988-07-26 | Shlomo Gabbay | Prosthetic heart valve | 
| US4710192A (en) | 1985-12-30 | 1987-12-01 | Liotta Domingo S | Diaphragm and method for occlusion of the descending thoracic aorta | 
| SU1371700A1 (en) | 1986-02-21 | 1988-02-07 | МВТУ им.Н.Э.Баумана | Prosthesis of heart valve | 
| US4832680A (en) | 1986-07-03 | 1989-05-23 | C.R. Bard, Inc. | Apparatus for hypodermically implanting a genitourinary prosthesis | 
| US4795449A (en) | 1986-08-04 | 1989-01-03 | Hollister Incorporated | Female urinary incontinence device | 
| US4852568A (en) | 1987-02-17 | 1989-08-01 | Kensey Nash Corporation | Method and apparatus for sealing an opening in tissue of a living being | 
| SU1593651A1 (en) | 1987-07-07 | 1990-09-23 | 1-Й Московский Медицинский Институт Им.И.М.Сеченова | Artery prosthesis | 
| DE3821631A1 (en) | 1987-07-28 | 1989-02-09 | Bader Paul | CLOSURE FOR A MALE UTILITY | 
| US4774942A (en) | 1987-08-28 | 1988-10-04 | Litton Systems, Inc. | Balanced exhalation valve for use in a closed loop breathing system | 
| US4879998A (en) | 1987-08-28 | 1989-11-14 | Litton Systems, Inc. | Balanced exhalation valve for use in a closed loop breathing system | 
| US5010892A (en)* | 1988-05-04 | 1991-04-30 | Triangle Research And Development Corp. | Body lumen measuring instrument | 
| US4830003A (en) | 1988-06-17 | 1989-05-16 | Wolff Rodney G | Compressive stent and delivery system | 
| JP2710355B2 (en) | 1988-09-20 | 1998-02-10 | 日本ゼオン株式会社 | Medical valve device | 
| SE8803444D0 (en)* | 1988-09-28 | 1988-09-28 | Medinvent Sa | A DEVICE FOR TRANSLUMINAL IMPLANTATION OR EXTRACTION | 
| US4846836A (en) | 1988-10-03 | 1989-07-11 | Reich Jonathan D | Artificial lower gastrointestinal valve | 
| US4877025A (en)* | 1988-10-06 | 1989-10-31 | Hanson Donald W | Tracheostomy tube valve apparatus | 
| DE3834545A1 (en) | 1988-10-11 | 1990-04-12 | Rau Guenter | FLEXIBLE LOCKING ORGAN, PARTICULARLY HEART VALVE, AND METHOD FOR PRODUCING THE SAME | 
| US4968294A (en) | 1989-02-09 | 1990-11-06 | Salama Fouad A | Urinary control valve and method of using same | 
| US5800339A (en) | 1989-02-09 | 1998-09-01 | Opticon Medical Inc. | Urinary control valve | 
| JPH02255122A (en)* | 1989-03-29 | 1990-10-15 | Terumo Corp | Gas flow valve | 
| JP3127378B2 (en) | 1989-05-31 | 2001-01-22 | バクスター インターナショナル インコーポレーテッド | Biological valve prosthesis | 
| US5352240A (en) | 1989-05-31 | 1994-10-04 | Promedica International, Inc. | Human heart valve replacement with porcine pulmonary valve | 
| US5562608A (en)* | 1989-08-28 | 1996-10-08 | Biopulmonics, Inc. | Apparatus for pulmonary delivery of drugs with simultaneous liquid lavage and ventilation | 
| US5137024A (en)* | 1989-10-06 | 1992-08-11 | Terumo Kabushiki Kaisha | Gas flow valve and sphygmomanometer air-feeding/discharging apparatus using the same | 
| US5061274A (en) | 1989-12-04 | 1991-10-29 | Kensey Nash Corporation | Plug device for sealing openings and method of use | 
| US5271385A (en) | 1990-03-29 | 1993-12-21 | United States Surgical Corporation | Abdominal cavity organ retractor | 
| US5158548A (en)* | 1990-04-25 | 1992-10-27 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery | 
| DK124690D0 (en) | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION | 
| US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis | 
| US5116360A (en) | 1990-12-27 | 1992-05-26 | Corvita Corporation | Mesh composite graft | 
| IT1247037B (en) | 1991-06-25 | 1994-12-12 | Sante Camilli | ARTIFICIAL VENOUS VALVE | 
| US5649906A (en)* | 1991-07-17 | 1997-07-22 | Gory; Pierre | Method for implanting a removable medical apparatus in a human body | 
| US5161524A (en) | 1991-08-02 | 1992-11-10 | Glaxo Inc. | Dosage inhalator with air flow velocity regulating means | 
| US5151105A (en) | 1991-10-07 | 1992-09-29 | Kwan Gett Clifford | Collapsible vessel sleeve implant | 
| US5662713A (en) | 1991-10-09 | 1997-09-02 | Boston Scientific Corporation | Medical stents for body lumens exhibiting peristaltic motion | 
| US5123919A (en) | 1991-11-21 | 1992-06-23 | Carbomedics, Inc. | Combined prosthetic aortic heart valve and vascular graft | 
| IT1253903B (en) | 1991-12-05 | 1995-08-31 | Luigi Gigante | VALVE CATHETER FOR INCONTINENCE AND URINARY RETENTION | 
| US6190381B1 (en)* | 1995-06-07 | 2001-02-20 | Arthrocare Corporation | Methods for tissue resection, ablation and aspiration | 
| CA2128338C (en) | 1992-01-21 | 2004-10-12 | Gladwin S. Das | Septal defect closure device | 
| US5382261A (en) | 1992-09-01 | 1995-01-17 | Expandable Grafts Partnership | Method and apparatus for occluding vessels | 
| US5409019A (en) | 1992-10-30 | 1995-04-25 | Wilk; Peter J. | Coronary artery by-pass method | 
| US5643317A (en) | 1992-11-25 | 1997-07-01 | William Cook Europe S.A. | Closure prosthesis for transcatheter placement | 
| DE4300285A1 (en)* | 1993-01-08 | 1994-07-14 | Wolf Gmbh Richard | Instrument for implanting and extracting stents | 
| US5980455A (en) | 1993-02-22 | 1999-11-09 | Heartport, Inc. | Method for manipulating a tissue structure within a thoracic cavity | 
| US5306234A (en) | 1993-03-23 | 1994-04-26 | Johnson W Dudley | Method for closing an atrial appendage | 
| DE69317548T2 (en) | 1993-04-23 | 1998-08-13 | Schneider (Europe) Gmbh, Buelach | Stent with a coating of elastic material and method for applying the coating on the stent | 
| WO1994026175A1 (en) | 1993-05-06 | 1994-11-24 | Vitaphore Corporation | Embolization device | 
| US5486154A (en)* | 1993-06-08 | 1996-01-23 | Kelleher; Brian S. | Endoscope | 
| US5366478A (en) | 1993-07-27 | 1994-11-22 | Ethicon, Inc. | Endoscopic surgical sealing device | 
| US5957672A (en) | 1993-11-10 | 1999-09-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Blood pump bearing system | 
| US5453090A (en) | 1994-03-01 | 1995-09-26 | Cordis Corporation | Method of stent delivery through an elongate softenable sheath | 
| US5645519A (en)* | 1994-03-18 | 1997-07-08 | Jai S. Lee | Endoscopic instrument for controlled introduction of tubular members in the body and methods therefor | 
| US5392775A (en)* | 1994-03-22 | 1995-02-28 | Adkins, Jr.; Claude N. | Duckbill valve for a tracheostomy tube that permits speech | 
| US5499995C1 (en) | 1994-05-25 | 2002-03-12 | Paul S Teirstein | Body passageway closure apparatus and method of use | 
| US5683451A (en) | 1994-06-08 | 1997-11-04 | Cardiovascular Concepts, Inc. | Apparatus and methods for deployment release of intraluminal prostheses | 
| US5417226A (en) | 1994-06-09 | 1995-05-23 | Juma; Saad | Female anti-incontinence device | 
| US5642730A (en)* | 1994-06-17 | 1997-07-01 | Trudell Medical Limited | Catheter system for delivery of aerosolized medicine for use with pressurized propellant canister | 
| US5755770A (en) | 1995-01-31 | 1998-05-26 | Boston Scientific Corporatiion | Endovascular aortic graft | 
| DE29507519U1 (en) | 1995-05-05 | 1995-08-10 | Angiomed Ag, 76227 Karlsruhe | Endosphincter and set for releasable closing of the urethra | 
| US6312407B1 (en) | 1995-06-05 | 2001-11-06 | Medtronic Percusurge, Inc. | Occlusion of a vessel | 
| US5645565A (en) | 1995-06-13 | 1997-07-08 | Ethicon Endo-Surgery, Inc. | Surgical plug | 
| US5697968A (en) | 1995-08-10 | 1997-12-16 | Aeroquip Corporation | Check valve for intraluminal graft | 
| US5660175A (en) | 1995-08-21 | 1997-08-26 | Dayal; Bimal | Endotracheal device | 
| ATE440559T1 (en) | 1995-10-13 | 2009-09-15 | Medtronic Vascular Inc | DEVICE FOR INTERSTITIAL TRANSVASCULAR PROCEDURES | 
| US5653231A (en)* | 1995-11-28 | 1997-08-05 | Medcare Medical Group, Inc. | Tracheostomy length single use suction catheter | 
| DE19547538C2 (en) | 1995-12-20 | 1999-09-23 | Ruesch Willy Ag | Instrument for use in interventional flexible tracheoscopy / bronchoscopy | 
| EP1011889B1 (en) | 1996-01-30 | 2002-10-30 | Medtronic, Inc. | Articles for and methods of making stents | 
| US5885228A (en)* | 1996-05-08 | 1999-03-23 | Heartport, Inc. | Valve sizer and method of use | 
| US6050972A (en) | 1996-05-20 | 2000-04-18 | Percusurge, Inc. | Guidewire inflation system | 
| US6152909A (en) | 1996-05-20 | 2000-11-28 | Percusurge, Inc. | Aspiration system and method | 
| EP0906135B1 (en) | 1996-05-20 | 2004-12-29 | Medtronic Percusurge, Inc. | Low profile catheter valve | 
| US6325777B1 (en) | 1996-05-20 | 2001-12-04 | Medtronic Percusurge, Inc. | Low profile catheter valve and inflation adaptor | 
| EP0808614B1 (en) | 1996-05-23 | 2003-02-26 | Samsung Electronics Co., Ltd. | Flexible self-expandable stent and method for making the same | 
| KR980000327U (en) | 1996-06-13 | 1998-03-30 | 이정행 | Earring hole molding for earring installation | 
| US5855601A (en) | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same | 
| WO1998000840A1 (en) | 1996-06-28 | 1998-01-08 | Samsung Electronics Co., Ltd. | Thin film magnetic head tip and manufacturing method therefor | 
| IT1284108B1 (en) | 1996-07-04 | 1998-05-08 | Carlo Rebuffat | SURGICAL PRESIDIUM FOR THE TREATMENT OF PULMONARY EMPHYSEMA | 
| US6077295A (en) | 1996-07-15 | 2000-06-20 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system | 
| US5782916A (en) | 1996-08-13 | 1998-07-21 | Galt Laboratories, Inc. | Device for maintaining urinary continence | 
| US6027508A (en)* | 1996-10-03 | 2000-02-22 | Scimed Life Systems, Inc. | Stent retrieval device | 
| US5893867A (en) | 1996-11-06 | 1999-04-13 | Percusurge, Inc. | Stent positioning apparatus and method | 
| WO1998038929A1 (en) | 1997-03-06 | 1998-09-11 | Percusurge, Inc. | Intravascular aspiration system | 
| US5851232A (en) | 1997-03-15 | 1998-12-22 | Lois; William A. | Venous stent | 
| US6634363B1 (en) | 1997-04-07 | 2003-10-21 | Broncus Technologies, Inc. | Methods of treating lungs having reversible obstructive pulmonary disease | 
| US6273907B1 (en) | 1997-04-07 | 2001-08-14 | Broncus Technologies, Inc. | Bronchial stenter | 
| US6411852B1 (en) | 1997-04-07 | 2002-06-25 | Broncus Technologies, Inc. | Modification of airways by application of energy | 
| US6283988B1 (en) | 1997-04-07 | 2001-09-04 | Broncus Technologies, Inc. | Bronchial stenter having expandable electrodes | 
| US6488673B1 (en) | 1997-04-07 | 2002-12-03 | Broncus Technologies, Inc. | Method of increasing gas exchange of a lung | 
| US6200333B1 (en) | 1997-04-07 | 2001-03-13 | Broncus Technologies, Inc. | Bronchial stenter | 
| US6083255A (en)* | 1997-04-07 | 2000-07-04 | Broncus Technologies, Inc. | Bronchial stenter | 
| DE19715698C2 (en) | 1997-04-15 | 2000-10-05 | Konrad Engel | Lithotrypsy probe for a ureteroscope for mechanical destruction of ureter stones | 
| GB2324729B (en) | 1997-04-30 | 2002-01-02 | Bradford Hospitals Nhs Trust | Lung treatment device | 
| US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent | 
| US5855597A (en) | 1997-05-07 | 1999-01-05 | Iowa-India Investments Co. Limited | Stent valve and stent graft for percutaneous surgery | 
| US6245102B1 (en) | 1997-05-07 | 2001-06-12 | Iowa-India Investments Company Ltd. | Stent, stent graft and stent valve | 
| US6162245A (en) | 1997-05-07 | 2000-12-19 | Iowa-India Investments Company Limited | Stent valve and stent graft | 
| US6007575A (en) | 1997-06-06 | 1999-12-28 | Samuels; Shaun Laurence Wilkie | Inflatable intraluminal stent and method for affixing same within the human body | 
| US5957919A (en) | 1997-07-02 | 1999-09-28 | Laufer; Michael D. | Bleb reducer | 
| DE19731894C1 (en) | 1997-07-24 | 1999-05-12 | Storz Karl Gmbh & Co | Endoscopic instrument for performing endoscopic interventions or examinations and endoscopic instruments containing such an endoscopic instrument | 
| US5984965A (en) | 1997-08-28 | 1999-11-16 | Urosurge, Inc. | Anti-reflux reinforced stent | 
| US5954766A (en) | 1997-09-16 | 1999-09-21 | Zadno-Azizi; Gholam-Reza | Body fluid flow control device | 
| US6254642B1 (en) | 1997-12-09 | 2001-07-03 | Thomas V. Taylor | Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof | 
| US5976174A (en) | 1997-12-15 | 1999-11-02 | Ruiz; Carlos E. | Medical hole closure device and methods of use | 
| US6699231B1 (en) | 1997-12-31 | 2004-03-02 | Heartport, Inc. | Methods and apparatus for perfusion of isolated tissue structure | 
| US5910144A (en)* | 1998-01-09 | 1999-06-08 | Endovascular Technologies, Inc. | Prosthesis gripping system and method | 
| US5944738A (en) | 1998-02-06 | 1999-08-31 | Aga Medical Corporation | Percutaneous catheter directed constricting occlusion device | 
| US20010016704A1 (en) | 1998-02-19 | 2001-08-23 | Gholam Reza Zadno-Azizi | Low profile fluid delivery and sealing system for a catheter | 
| DE59812219D1 (en) | 1998-03-04 | 2004-12-09 | Schneider Europ Gmbh Buelach | Device for inserting an endoprosthesis into a catheter shaft | 
| US6009614A (en) | 1998-04-21 | 2000-01-04 | Advanced Cardiovascular Systems, Inc. | Stent crimping tool and method of use | 
| US6141855A (en) | 1998-04-28 | 2000-11-07 | Advanced Cardiovascular Systems, Inc. | Stent crimping tool and method of use | 
| US5974652A (en) | 1998-05-05 | 1999-11-02 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for uniformly crimping a stent onto a catheter | 
| US6493589B1 (en) | 1998-05-07 | 2002-12-10 | Medtronic, Inc. | Methods and apparatus for treatment of pulmonary conditions | 
| US6174323B1 (en) | 1998-06-05 | 2001-01-16 | Broncus Technologies, Inc. | Method and assembly for lung volume reduction | 
| US6599311B1 (en) | 1998-06-05 | 2003-07-29 | Broncus Technologies, Inc. | Method and assembly for lung volume reduction | 
| US6641610B2 (en) | 1998-09-10 | 2003-11-04 | Percardia, Inc. | Valve designs for left ventricular conduits | 
| US6270527B1 (en) | 1998-10-16 | 2001-08-07 | Sulzer Carbomedics Inc. | Elastic valve with partially exposed stent | 
| RU2140211C1 (en) | 1998-10-28 | 1999-10-27 | Российская медицинская академия последипломного образования Министерства здравоохранения Российской Федерации | Method of surgical treatment of patients with pathology of respiratory organs complicated with pulmonary hemorrhages | 
| US6020380A (en) | 1998-11-25 | 2000-02-01 | Tap Holdings Inc. | Method of treating chronic obstructive pulmonary disease | 
| US6051022A (en) | 1998-12-30 | 2000-04-18 | St. Jude Medical, Inc. | Bileaflet valve having non-parallel pivot axes | 
| WO2000042950A2 (en) | 1999-01-26 | 2000-07-27 | Edwards Lifesciences Corporation | Flexible heart valve | 
| DE19906191A1 (en) | 1999-02-15 | 2000-08-17 | Ingo F Herrmann | Mouldable endoscope for transmitting light and images with supplementary device has non-round cross section along longitudinal section for inserting in human or animal body opening | 
| ATE398888T1 (en) | 1999-03-05 | 2008-07-15 | Seiko Epson Corp | CORRECTING DEVICE FOR IMAGE DATA, CORRECTING METHOD FOR IMAGE DATA, CARRIER ON WHICH AN IMAGE DATA CORRECTION PROGRAM IS RECORDED. | 
| US6206918B1 (en) | 1999-05-12 | 2001-03-27 | Sulzer Carbomedics Inc. | Heart valve prosthesis having a pivot design for improving flow characteristics | 
| EP1191977A1 (en) | 1999-06-18 | 2002-04-03 | Powerlung Inc | Pulmonary exercise device | 
| US6234996B1 (en) | 1999-06-23 | 2001-05-22 | Percusurge, Inc. | Integrated inflation/deflation device and method | 
| US6287290B1 (en) | 1999-07-02 | 2001-09-11 | Pulmonx | Methods, systems, and kits for lung volume reduction | 
| US6247471B1 (en)* | 1999-07-08 | 2001-06-19 | Essex Pb&R Corporation | Smoke hood with oxygen supply device and method of use | 
| US6174331B1 (en) | 1999-07-19 | 2001-01-16 | Sulzer Carbomedics Inc. | Heart valve leaflet with reinforced free margin | 
| US6709427B1 (en) | 1999-08-05 | 2004-03-23 | Kensey Nash Corporation | Systems and methods for delivering agents into targeted tissue of a living being | 
| EP1400204A1 (en) | 1999-08-05 | 2004-03-24 | Broncus Technologies, Inc. | Methods and devices for creating collateral channels in the lungs | 
| US6712812B2 (en) | 1999-08-05 | 2004-03-30 | Broncus Technologies, Inc. | Devices for creating collateral channels | 
| US6749606B2 (en) | 1999-08-05 | 2004-06-15 | Thomas Keast | Devices for creating collateral channels | 
| US7175644B2 (en) | 2001-02-14 | 2007-02-13 | Broncus Technologies, Inc. | Devices and methods for maintaining collateral channels in tissue | 
| US6235026B1 (en) | 1999-08-06 | 2001-05-22 | Scimed Life Systems, Inc. | Polypectomy snare instrument | 
| AU6896400A (en) | 1999-08-13 | 2001-03-13 | Percusurge, Inc. | Occlusion of a vessel | 
| US6610043B1 (en) | 1999-08-23 | 2003-08-26 | Bistech, Inc. | Tissue volume reduction | 
| US6416554B1 (en) | 1999-08-24 | 2002-07-09 | Spiration, Inc. | Lung reduction apparatus and method | 
| US6328689B1 (en) | 2000-03-23 | 2001-12-11 | Spiration, Inc., | Lung constriction apparatus and method | 
| US6293951B1 (en) | 1999-08-24 | 2001-09-25 | Spiration, Inc. | Lung reduction device, system, and method | 
| DE60031052T2 (en) | 1999-08-24 | 2007-04-05 | Spiration, Inc., Redmond | Set for reducing the lung volume | 
| US6454702B1 (en) | 1999-10-14 | 2002-09-24 | Scimed Life Systems, Inc. | Endoscope and endoscopic instrument system having reduced backlash when moving the endoscopic instrument within a working channel of the endoscope | 
| US6402754B1 (en) | 1999-10-20 | 2002-06-11 | Spiration, Inc. | Apparatus for expanding the thorax | 
| US6440164B1 (en)* | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve | 
| US6398775B1 (en) | 1999-10-21 | 2002-06-04 | Pulmonx | Apparatus and method for isolated lung access | 
| US6911032B2 (en) | 1999-11-18 | 2005-06-28 | Scimed Life Systems, Inc. | Apparatus and method for compressing body tissue | 
| US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof | 
| JP2003514616A (en) | 1999-11-24 | 2003-04-22 | グリースハーバー ウント コンパニー アーゲー シャフハウゼン | Apparatus for improving the outflow of aqueous humor in a living eye | 
| AU2736901A (en) | 1999-12-23 | 2001-07-03 | Percusurge, Inc. | Strut design for an occlusion device | 
| US6510846B1 (en) | 1999-12-23 | 2003-01-28 | O'rourke Sam | Sealed back pressure breathing device | 
| MXPA02007426A (en) | 2000-01-31 | 2003-10-14 | Cook Biotech Inc | Stent valves and uses of same. | 
| PT1255544E (en) | 2000-01-31 | 2007-06-15 | Genaera Corp | INHIBITORS OF MUCIN SYNTHESIS. | 
| US6458076B1 (en)* | 2000-02-01 | 2002-10-01 | 5 Star Medical | Multi-lumen medical device | 
| US6540782B1 (en) | 2000-02-02 | 2003-04-01 | Robert V. Snyders | Artificial heart valve | 
| US20030070683A1 (en) | 2000-03-04 | 2003-04-17 | Deem Mark E. | Methods and devices for use in performing pulmonary procedures | 
| US6679264B1 (en)* | 2000-03-04 | 2004-01-20 | Emphasys Medical, Inc. | Methods and devices for use in performing pulmonary procedures | 
| US6450976B2 (en) | 2000-03-10 | 2002-09-17 | Accumed Systems, Inc. | Apparatus for measuring the length and width of blood vessels and other body lumens | 
| IL135371A (en) | 2000-03-30 | 2006-10-31 | Roie Medical Technologies Ltd | Resectoscope | 
| WO2001074271A1 (en) | 2000-03-31 | 2001-10-11 | Broncus Technologies, Inc. | Lung elastic recoil restoring/compression device | 
| JP4716594B2 (en) | 2000-04-17 | 2011-07-06 | オリンパス株式会社 | Endoscope | 
| US6471638B1 (en) | 2000-04-28 | 2002-10-29 | Origin Medsystems, Inc. | Surgical apparatus | 
| WO2001087166A2 (en) | 2000-05-18 | 2001-11-22 | Cook Urological Inc. | Medical device handle | 
| EP1284663A4 (en) | 2000-05-18 | 2007-04-18 | Emphasys Medical Inc | Bronchiopulmonary occlusion devices and lung volume reduction methods | 
| US6722360B2 (en) | 2000-06-16 | 2004-04-20 | Rajiv Doshi | Methods and devices for improving breathing in patients with pulmonary disease | 
| US6951568B1 (en) | 2000-07-10 | 2005-10-04 | Origin Medsystems, Inc. | Low-profile multi-function vessel harvester and method | 
| AU2001275974A1 (en) | 2000-07-19 | 2002-01-30 | University Of Florida | Method for treating chronic obstructive pulmonary disorder | 
| US6921361B2 (en) | 2000-07-24 | 2005-07-26 | Olympus Corporation | Endoscopic instrument for forming an artificial valve | 
| US6572652B2 (en) | 2000-08-29 | 2003-06-03 | Venpro Corporation | Method and devices for decreasing elevated pulmonary venous pressure | 
| US6719752B2 (en) | 2000-08-31 | 2004-04-13 | Pentax Corporation | Endoscopic treatment instrument | 
| AU2001292609A1 (en) | 2000-09-11 | 2002-03-26 | Closure Medical Corporation | Bronchial occlusion method and apparatus | 
| US6719763B2 (en) | 2000-09-29 | 2004-04-13 | Olympus Optical Co., Ltd. | Endoscopic suturing device | 
| US6499995B1 (en) | 2000-10-04 | 2002-12-31 | Dann A. Schwartz | Phosphorescent dental appliance and method of construction | 
| EP1326549B1 (en) | 2000-10-17 | 2005-12-21 | Asthmatx, Inc. | Modification of airways by application of energy | 
| US6585639B1 (en) | 2000-10-27 | 2003-07-01 | Pulmonx | Sheath and method for reconfiguring lung viewing scope | 
| US6527761B1 (en) | 2000-10-27 | 2003-03-04 | Pulmonx, Inc. | Methods and devices for obstructing and aspirating lung tissue segments | 
| US6716226B2 (en) | 2001-06-25 | 2004-04-06 | Inscope Development, Llc | Surgical clip | 
| EP1341487B1 (en) | 2000-12-15 | 2005-11-23 | Angiomed GmbH & Co. Medizintechnik KG | Stent with valve | 
| AU2002241902A1 (en) | 2001-01-18 | 2002-07-30 | The Brigham And Women's Hospital, Inc. | Prosthetic device for respiratory patients | 
| US6997931B2 (en) | 2001-02-02 | 2006-02-14 | Lsi Solutions, Inc. | System for endoscopic suturing | 
| JP3939158B2 (en) | 2001-02-06 | 2007-07-04 | オリンパス株式会社 | Endoscope device | 
| US20020112729A1 (en) | 2001-02-21 | 2002-08-22 | Spiration, Inc. | Intra-bronchial obstructing device that controls biological interaction with the patient | 
| US7798147B2 (en) | 2001-03-02 | 2010-09-21 | Pulmonx Corporation | Bronchial flow control devices with membrane seal | 
| US7011094B2 (en) | 2001-03-02 | 2006-03-14 | Emphasys Medical, Inc. | Bronchial flow control devices and methods of use | 
| US6503272B2 (en) | 2001-03-21 | 2003-01-07 | Cordis Corporation | Stent-based venous valves | 
| US20020177847A1 (en) | 2001-03-30 | 2002-11-28 | Long Gary L. | Endoscopic ablation system with flexible coupling | 
| JP4261814B2 (en) | 2001-04-04 | 2009-04-30 | オリンパス株式会社 | Tissue puncture system | 
| US6958076B2 (en) | 2001-04-16 | 2005-10-25 | Biomedical Research Associates Inc. | Implantable venous valve | 
| US6808491B2 (en) | 2001-05-21 | 2004-10-26 | Syntheon, Llc | Methods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments | 
| KR100393548B1 (en) | 2001-06-05 | 2003-08-02 | 주식회사 엠아이텍 | Stent | 
| US6977918B2 (en) | 2001-06-29 | 2005-12-20 | Nokia Corp. | Method and apparatus for processing a signal received in a high data rate communication system | 
| US6491706B1 (en) | 2001-07-10 | 2002-12-10 | Spiration, Inc. | Constriction device including fixation structure | 
| JP4602602B2 (en) | 2001-07-19 | 2010-12-22 | オリンパス株式会社 | Medical instruments | 
| US20030018327A1 (en) | 2001-07-20 | 2003-01-23 | Csaba Truckai | Systems and techniques for lung volume reduction | 
| US6824509B2 (en) | 2001-07-23 | 2004-11-30 | Olympus Corporation | Endoscope | 
| US20030050648A1 (en) | 2001-09-11 | 2003-03-13 | Spiration, Inc. | Removable lung reduction devices, systems, and methods | 
| CA2458595C (en)* | 2001-10-11 | 2007-12-04 | Peter M. Wilson | Bronchial flow control devices and methods of use | 
| JP3772107B2 (en) | 2001-10-12 | 2006-05-10 | オリンパス株式会社 | Endoscope system | 
| CA2463400A1 (en) | 2001-10-12 | 2003-04-24 | Applied Medical Resources Corporation | High flow stone basket system | 
| US6592594B2 (en) | 2001-10-25 | 2003-07-15 | Spiration, Inc. | Bronchial obstruction device deployment system and method | 
| US20030127090A1 (en) | 2001-11-14 | 2003-07-10 | Emphasys Medical, Inc. | Active pump bronchial implant devices and methods of use thereof | 
| EP1314392B1 (en) | 2001-11-27 | 2003-10-29 | Karl Storz GmbH & Co. | Seal for endoscope | 
| US7081097B2 (en) | 2002-01-04 | 2006-07-25 | Vision Sciences, Inc. | Endoscope sheath assemblies having an attached biopsy sampling device | 
| US6740030B2 (en) | 2002-01-04 | 2004-05-25 | Vision Sciences, Inc. | Endoscope assemblies having working channels with reduced bending and stretching resistance | 
| AU2003220124A1 (en)* | 2002-03-08 | 2003-09-22 | Emphasys Medical, Inc. | Methods and devices for inducing collapse in lung regions fed by collateral pathways | 
| US7261728B2 (en) | 2002-03-15 | 2007-08-28 | Ethicon Endo-Surgery, Inc. | Biopsy forceps device and method | 
| US20030181922A1 (en)* | 2002-03-20 | 2003-09-25 | Spiration, Inc. | Removable anchored lung volume reduction devices and methods | 
| US6878149B2 (en) | 2002-03-25 | 2005-04-12 | Acueity, Inc. | Apparatus and method for intraductal abalation | 
| US20040089306A1 (en) | 2002-05-28 | 2004-05-13 | Ronald Hundertmark | Devices and methods for removing bronchial isolation devices implanted in the lung | 
| EP1524942B1 (en) | 2002-07-26 | 2008-09-10 | Emphasys Medical, Inc. | Bronchial flow control devices with membrane seal | 
| US7814912B2 (en) | 2002-11-27 | 2010-10-19 | Pulmonx Corporation | Delivery methods and devices for implantable bronchial isolation devices | 
| US7717115B2 (en) | 2002-11-27 | 2010-05-18 | Pulmonx Corporation | Delivery methods and devices for implantable bronchial isolation devices | 
| US7100616B2 (en)* | 2003-04-08 | 2006-09-05 | Spiration, Inc. | Bronchoscopic lung volume reduction method | 
| DE602004023350D1 (en) | 2003-04-30 | 2009-11-12 | Medtronic Vascular Inc | Percutaneous inserted provisional valve | 
| WO2005007023A2 (en) | 2003-07-09 | 2005-01-27 | Emphasys Medical, Inc. | Treatment planning with implantable bronchial isolation devices | 
| US7036509B2 (en) | 2003-12-04 | 2006-05-02 | Emphasys Medical, Inc. | Multiple seal port anesthesia adapter | 
| US20050178389A1 (en) | 2004-01-27 | 2005-08-18 | Shaw David P. | Disease indications for selective endobronchial lung region isolation | 
| US8206684B2 (en) | 2004-02-27 | 2012-06-26 | Pulmonx Corporation | Methods and devices for blocking flow through collateral pathways in the lung | 
| EP2368525B1 (en) | 2004-03-08 | 2019-09-18 | Pulmonx, Inc | Implanted bronchial isolation devices | 
| US20060030863A1 (en)* | 2004-07-21 | 2006-02-09 | Fields Antony J | Implanted bronchial isolation device delivery devices and methods | 
| US6951571B1 (en) | 2004-09-30 | 2005-10-04 | Rohit Srivastava | Valve implanting device | 
| US7771472B2 (en)* | 2004-11-19 | 2010-08-10 | Pulmonx Corporation | Bronchial flow control devices and methods of use | 
| WO2007100846A2 (en)* | 2006-02-28 | 2007-09-07 | Emphasys Medical, Inc. | Endoscopic tool | 
| CN101489630B (en)* | 2006-06-07 | 2013-10-23 | 温吐斯医学公司 | Layered nasal devices | 
| US20080072914A1 (en)* | 2006-08-25 | 2008-03-27 | Hendricksen Michael J | Bronchial Isolation Devices for Placement in Short Lumens | 
| Publication number | Publication date | 
|---|---|
| AU4341601A (en) | 2001-09-17 | 
| CA2401331C (en) | 2010-07-27 | 
| US20010037808A1 (en) | 2001-11-08 | 
| DE60144491D1 (en) | 2011-06-01 | 
| US20090114226A1 (en) | 2009-05-07 | 
| US20040134487A1 (en) | 2004-07-15 | 
| CA2401331A1 (en) | 2001-09-13 | 
| JP2006314816A (en) | 2006-11-24 | 
| WO2001066190A3 (en) | 2003-08-21 | 
| US20040016435A1 (en) | 2004-01-29 | 
| EP1359978B1 (en) | 2011-04-20 | 
| JP2004504867A (en) | 2004-02-19 | 
| US7662181B2 (en) | 2010-02-16 | 
| US20030192550A1 (en) | 2003-10-16 | 
| ATE506103T1 (en) | 2011-05-15 | 
| US7165548B2 (en) | 2007-01-23 | 
| US20030192551A1 (en) | 2003-10-16 | 
| AU2001243416B2 (en) | 2006-05-11 | 
| US6694979B2 (en) | 2004-02-24 | 
| EP1359978A2 (en) | 2003-11-12 | 
| EP1359978A4 (en) | 2008-05-07 | 
| US6840243B2 (en) | 2005-01-11 | 
| US8357139B2 (en) | 2013-01-22 | 
| US6679264B1 (en) | 2004-01-20 | 
| US20060174870A1 (en) | 2006-08-10 | 
| WO2001066190A2 (en) | 2001-09-13 | 
| Publication | Publication Date | Title | 
|---|---|---|
| JP3881242B2 (en) | Device for use in lung treatment | |
| US6904909B2 (en) | Methods and devices for use in performing pulmonary procedures | |
| AU2001243416A1 (en) | Methods and devices for use in performing pulmonary procedures | |
| US8474460B2 (en) | Implanted bronchial isolation devices and methods | |
| EP1722716B1 (en) | Implanted bronchial isolation devices and methods | |
| US7011094B2 (en) | Bronchial flow control devices and methods of use | |
| US7100616B2 (en) | Bronchoscopic lung volume reduction method | |
| EP1434615B1 (en) | Bronchial flow control device | |
| JP6393774B2 (en) | Suction stent, stent system, and method for sealing a leak | |
| US20040089306A1 (en) | Devices and methods for removing bronchial isolation devices implanted in the lung | |
| US12115363B1 (en) | System and method for introducing a construct either on or around the surface of the heart | 
| Date | Code | Title | Description | 
|---|---|---|---|
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20050216 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20050301 | |
| A601 | Written request for extension of time | Free format text:JAPANESE INTERMEDIATE CODE: A601 Effective date:20050601 | |
| A602 | Written permission of extension of time | Free format text:JAPANESE INTERMEDIATE CODE: A602 Effective date:20050610 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20050901 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20060314 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20060612 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20060614 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A821 Effective date:20060612 | |
| A911 | Transfer to examiner for re-examination before appeal (zenchi) | Free format text:JAPANESE INTERMEDIATE CODE: A911 Effective date:20060719 | |
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20061017 | |
| A61 | First payment of annual fees (during grant procedure) | Free format text:JAPANESE INTERMEDIATE CODE: A61 Effective date:20061109 | |
| R150 | Certificate of patent or registration of utility model | Free format text:JAPANESE INTERMEDIATE CODE: R150 Ref document number:3881242 Country of ref document:JP Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20101117 Year of fee payment:4 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20101117 Year of fee payment:4 | |
| S111 | Request for change of ownership or part of ownership | Free format text:JAPANESE INTERMEDIATE CODE: R313113 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20101117 Year of fee payment:4 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20101117 Year of fee payment:4 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20111117 Year of fee payment:5 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20121117 Year of fee payment:6 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20121117 Year of fee payment:6 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20131117 Year of fee payment:7 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| EXPY | Cancellation because of completion of term |