Movatterモバイル変換


[0]ホーム

URL:


JP3822545B2 - Light emitting device - Google Patents

Light emitting device
Download PDF

Info

Publication number
JP3822545B2
JP3822545B2JP2002249957AJP2002249957AJP3822545B2JP 3822545 B2JP3822545 B2JP 3822545B2JP 2002249957 AJP2002249957 AJP 2002249957AJP 2002249957 AJP2002249957 AJP 2002249957AJP 3822545 B2JP3822545 B2JP 3822545B2
Authority
JP
Japan
Prior art keywords
led
electrode
leds
light emitting
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002249957A
Other languages
Japanese (ja)
Other versions
JP2004006582A (en
Inventor
士郎 酒井
金平 敖
泰夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitride Semiconductors Co Ltd
Original Assignee
Nitride Semiconductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002249957ApriorityCriticalpatent/JP3822545B2/en
Application filed by Nitride Semiconductors Co LtdfiledCriticalNitride Semiconductors Co Ltd
Priority to DE60336252Tprioritypatent/DE60336252D1/en
Priority to AT03794115Tprioritypatent/ATE500616T1/en
Priority to KR20057002667Aprioritypatent/KR100697803B1/en
Priority to EP20090000561prioritypatent/EP2101355A1/en
Priority to PCT/JP2003/010922prioritypatent/WO2004023568A1/en
Priority to RU2005103616Aprioritypatent/RU2295174C2/en
Priority to ES03794115Tprioritypatent/ES2362407T3/en
Priority to EP09014624.2Aprioritypatent/EP2154722B1/en
Priority to CNB2007101029609Aprioritypatent/CN100570883C/en
Priority to EP07118916.1Aprioritypatent/EP1892764B1/en
Priority to EP18150767.4Aprioritypatent/EP3389094A1/en
Priority to CNB038206226Aprioritypatent/CN100421266C/en
Priority to EP09014623.4Aprioritypatent/EP2154721B1/en
Priority to EP20090014620prioritypatent/EP2157609A3/en
Priority to EP20030794115prioritypatent/EP1553641B1/en
Priority to EP20090014625prioritypatent/EP2149907A3/en
Priority to EP20090014622prioritypatent/EP2149906A3/en
Priority to EP20090014621prioritypatent/EP2149905A3/en
Priority to US10/525,998prioritypatent/US7417259B2/en
Priority to TW92123908Aprioritypatent/TWI280672B/en
Publication of JP2004006582ApublicationCriticalpatent/JP2004006582A/en
Application grantedgrantedCritical
Publication of JP3822545B2publicationCriticalpatent/JP3822545B2/en
Priority to US11/705,205prioritypatent/US7956367B2/en
Priority to US12/060,693prioritypatent/US8129729B2/en
Priority to US12/139,927prioritypatent/US7897982B2/en
Priority to US12/352,280prioritypatent/US7615793B2/en
Priority to US12/352,271prioritypatent/US7569861B2/en
Priority to US12/352,240prioritypatent/US8097889B2/en
Priority to US12/352,296prioritypatent/US8084774B2/en
Priority to US12/478,456prioritypatent/US7667237B2/en
Priority to US12/479,380prioritypatent/US7646031B2/en
Priority to US12/652,518prioritypatent/US8680533B2/en
Priority to US12/958,947prioritypatent/US8735918B2/en
Priority to US13/584,140prioritypatent/US20120305951A1/en
Priority to US13/610,819prioritypatent/US8735911B2/en
Priority to US13/890,878prioritypatent/US9947717B2/en
Priority to US14/583,476prioritypatent/US20150108497A1/en
Priority to US15/430,440prioritypatent/US20170154922A1/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Landscapes

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
本発明は、基板上に複数の発光素子が形成された発光装置に関する。
【0002】
【従来の技術】
発光素子(LED)等の発光手段が表示用途等に使用される場合には、その使用条件が駆動電圧約1〜4V、駆動電流が約20mAとなっている。ところで、近年GaN系化合物半導体を用いた短波長LEDが開発され、フルカラーや白色等の固体光源が実用化されたことに伴い、次第にLEDを照明用途にも応用することが検討されている。LEDを照明用途に応用する場合に、上述した駆動電圧1〜4V、駆動電流20mAという使用条件とは異なる条件で使用される事態も生じる。このため、LEDにより大電流を流し、発光出力を大きくする工夫がなされている。大電流を流すためには、LEDのpn接合面積を大きくし、電流密度を小さく抑える必要がある。
【0003】
【発明が解決しようとする課題】
LEDを照明用光源として使用する場合には、電源として交流を使用し、100V以上の駆動電圧で使用できることが便利である。また、同じ電力を投入して同じ発光出力を得るのであれば、低い電流値を保ちながら高い電圧を印加した方が電力損失を小さくすることができる。しかし、従来のLEDでは、必ずしも十分に駆動電圧を高くすることはできなかった。
【0004】
本発明は、上記従来技術の有する課題に鑑みなされたものであり、その目的は、高い駆動電圧で動作できる発光装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、絶縁基板上に複数のGaN系発光ダイオード素子を形成してなる発光装置であって、前記複数の発光ダイオード素子は前記絶縁基板上に二次元配置され、前記複数の発光ダイオード素子は同数ずつ第1の組と第2の組に分けられ、第1の組と第2の組はそれぞれジグザグ状に互い違いに配置され、第1の組と第2の組は2個の交流電源用電極に互いに反対極性となるように並列接続され、前記第1の組を構成する発光ダイオード素子のうちの、少なくとも、端部に位置する発光ダイオード素子を除くいずれかの発光ダイオード素子の負電極と、前記第2の組を構成する発光ダイオード素子のうちの、前記いずれかの発光ダイオード素子に隣接する発光ダイオード素子の負電極とが共有されて電気的に接続されることを特徴とする。
【0015】
このように、本発明では複数の発光素子をモノリシックに、すなわち同一基板上に形成し、これらを直列接続することで、高駆動電圧を可能とする。複数の発光素子を一方向に接続することで直流駆動が可能となるが、複数の発光素子を2組に分け、各組の発光素子(発光素子アレイ)を互いに逆極性となるように電極に接続することで交流駆動も可能となる。各組の個数は同数でもよく、あるいは異なっていてもよい。
【0016】
複数の発光素子を二次元配列する方法は種々存在するが、基板専有面積をできるだけ小さくすることが望ましい。例えば、2組の発光素子アレイをそれぞれジグザグ状に、すなわち複数の発光素子を折れ曲がった直線上に配置し、それぞれの発光素子アレイを互い違いに配置することで、基板面積を有効活用して多数の発光素子を接続することができる。2組の発光素子アレイを互い違いに配置することで、配線の交叉部分が生じる場合もあるが、発光素子間をエアブリッジ配線で接続することにより交叉部分での短絡を有効に防止できる。発光素子及び電極の形状は任意であるが、例えば平面形状が略正方形となるように形成することで全体形状も略正方形となり、標準的なマウント構造を使用できる。発光素子及び電極を正方形以外、例えば三角形とした場合でも、これらの三角形状を組み合わせることで全体として略正方形を形成すれば、同様に標準的なマウント構造を使用できるようになる。
【0017】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について説明する。
【0018】
図1には、本実施形態においてGaN系化合物半導体発光素子としてのLED1の基本構成が示されている。LED1は、基板10上に順次GaN層12、Siドープのn型GaN層14、InGaN発光層16、AlGaN層18、p型GaN層20が積層され、p型GaN層20に接してp電極22、n型GaN層14に接してn電極24が形成される構成である。
【0019】
図1に示されたLEDは以下のプロセスにより作製される。すなわち、まず、MOCVD装置にてサファイアc面基板を水素雰囲気中で1100℃、10分間熱処理する。そして、温度を500℃まで降温させ、シランガスとアンモニアガスを100秒間供給して不連続なSiN膜を基板10上に形成する。なお、このプロセスはデバイス中の転位密度を低減させるためのものであり、図ではSiN膜は省略している。次に、同一温度でトリメチルガリウム及びアンモニアガスを供給してGaN層を20nm厚成長させる。温度を1050℃に昇温し、再びトリメチルガリウム及びアンモニアガスを供給してアンドープGaN(u−GaN)層12及びSiドープのn型GaN層14を各2μm厚成長させる。その後、温度を700℃程度まで降温してInGaN発光層16を2nm厚成長させる。目標組成はx=0.15、すなわちIn0.15Ga0.85Nである。発光層16成長後、温度を1000℃まで昇温してAlGaN正孔注入層18を成長させ、さらにp型GaN層20を成長させる。
【0020】
p型GaN層20を成長させた後、ウエハをMOCVD装置から取り出し、Ni10nm厚、Au10nm厚を順次真空蒸着で成長層表面に形成する。5%の酸素を含む窒素ガス雰囲気中で520℃熱処理することで金属膜はp型透明電極22となる。透明電極形成後、全面にフォトレジストを塗布し、n型電極形成のためのエッチングをフォトレジストをマスクとして行う。エッチング深さは、例えば600nm程度である。エッチングで露出したn型GaN層14上にTi5nm厚、Al5nm厚を形成し、窒素ガス雰囲気中で450℃、30分間熱処理してn型電極24を形成する。最後に、基板10の裏面を100μmまで研磨してチップを切り出し、マウントすることでLED1が得られる。
【0021】
図1では、基板10上に一つのLED1が形成されているが、本実施形態では、基板10上にLED1をモノリシックに、かつ二次元アレイ状に複数形成し、各LEDを接続して発光装置(チップ)を構成する。
【0022】
図2には、発光装置の等価回路図が示されている。図2において、2次元アレイ状に形成された発光素子群は同数(図では4個)ずつ2組に分けられ、各組のLED1はそれぞれ直列接続され、2組のLED列は電極(駆動電極)に対して逆極性となるように並列接続される。このようにLED列が直列接続されることにより、各々の駆動電圧が加算された高い電圧でLED1を駆動することができる。また、各LED列はその極性が互いに反対となるように電極に並列接続されているので、電源として交流電源を使用した場合にも、電源の各周期中に必ずどちらかのLED列が発光していることになるので、効率のよい発光を行うことができる。
【0023】
図3には、基板10上にモノリシックに形成された複数のLEDの部分的な平面図が示されている。また、図4は、図3のIV−IV断面図が示されている。図3において、LED1の上面には、図1に示されるようにp電極22及びn電極24が形成されている。隣接するLED1のp電極22とn電極24との間がエアブリッジ配線28により接続され、複数のLED1が直列接続される。
【0024】
図4において、各LED1は説明の都合上簡略的に示されている。すなわち、n−GaN層14、p−GaN層20、p−電極22、n−電極24のみが示されている。実際には図1に示されるようにInGaN発光層16等が存在することは云うまでもない。エアブリッジ配線28は、p電極22からn電極24までを空中を介して接続する。これにより、素子表面に絶縁膜を塗布し、この上に電極を形成してp電極22とn電極24とを電気的に接続する方法に比べ、エッチング溝に沿って電極を配置する必要が無くなるので、配線切れや絶縁膜からn層、p層へ絶縁材料を構成する元素が熱拡散してLED1を劣化させるという問題を回避できる。エアブリッジ配線28は、LED1間のみならずLED1と図示しない電極との間の接続にも使用される。
【0025】
また、図4に示されるように、各LED1は互いに独立し、電気的に絶縁される必要がある。このため、各LED1はサファイア基板10上で分離された構成となっている。サファイアはそれ自身絶縁体であるので、LED1をそれぞれ電気的に分離することができる。このように、サファイア基板10をLEDの電気的な分離を行うための抵抗体として使用することにより、容易かつ確実にLEDの電気的な分離を行うことができる。
【0026】
なお、発光素子としては、pn接合を有するLEDの他、MISとすることもできる。
【0027】
図5には、発光装置の他の等価回路図が示されている。図において、20個のLED1が直列接続されて1つのLEDアレイを形成しており、2つのLEDアレイ(合計40個のLED)が電源に並列に接続されている。LED1の駆動電圧は5Vに設定されており、各LEDアレイの駆動電圧は100Vとなっている。2つのLEDアレイは図2と同様に互いに反対極性となるように電源に並列接続されており、電源の極性がいずれであっても必ずどちらかのLEDアレイが発光することになる。
【0028】
図6には、二次元アレイが具体的に示されている。図2の等価回路図に対応するものである。図において、サファイア基板10上に合計40個のLED1が形成されており、それぞれ20個ずつ2組に分けられ、エアブリッジ配線28により直列接続されて2つのLEDアレイを形成している。より詳細には、各LED1は全て同形の正方形で同サイズであり、1つのLEDアレイは上から6個、7個、7個とそれぞれ直線上に配置され、上から第1列目(6個)と第2列目(7個)は互いに逆向きに形成され、第2列目と第3列目も互いに逆向きに形成される。第1列目と第2列目、第2列目と第3列目は互いに離間して配置されている。これは、後述するように他方のLEDアレイの列が交互に挿入されるためである。第1列目の右端のLED1と第2列目の右端のLED1とはエアブリッジ配線28により接続される。第2列目の左端のLED1と第3列目の左端のLED1もエアブリッジ配線28で接続されてジグザグ配列となる。第1列目の左端のLED1は基板10の左上部に形成された電極(パッド)32にエアブリッジ配線28で接続され、第3列目の右端のLED1は基板10の右下部に形成された電極(パッド)32にエアブリッジ配線28で接続される。2つの電極(パッド)32もLED1と同形の正方形である。他方のLEDアレイは上述した一方のLEDアレイの間隙に互い違いとなるように形成される。すなわち、他方のLEDアレイは上から7個、7個、6個とそれぞれ直線上に配置され、上から第1列目は一方のLEDアレイの第1列目と第2列目の間に形成され、第2列目は一方のLEDアレイの第2列目と第3列目の間に形成され、第3列目は一方のLEDアレイの第3列目の下に形成される。他方のLEDアレイの第1列目と第2列目、及び第2列目と第3列目も互いに逆方向となるように形成され、第1列目の右端のLED1は第2列目の右端のLED1にエアブリッジ配線28で接続され、第2列目の左端のLED1は第3列の左端のLED1にエアブリッジ配線28で接続されてジグザグ状となる。他方のLEDアレイの第1列目の左端のLEDは基板10の左上部に形成された電極32にエアブリッジ配線28で接続され、第3列目の右端のLED1は基板10の右下部に形成された電極32にエアブリッジ配線28で接続される。一方のLEDアレイと他方のLEDアレイの電極32に対する極性は互いに逆である。発光装置(チップ)の全体形状は長方形である。電源が供給される2つの電極32は、長方形の対角位置に離間して形成される点も着目されたい。
【0029】
図7には、図6の回路図が示されている。それぞれのLEDアレイはジグザグ状に屈曲しつつ直列接続され、2つのLEDアレイはジグザグ状の各列が互いの列の間に形成される様子が明らかとなろう。このような配置とすることで、多数のLED1を小さな基板10上に配置することができる。また、40個のLED1に対して電極32が2個でよいので、この点でも基板10の使用効率を向上させることができる。また、各LED1を分離するためにLED1を個別に形成する場合にはウエハをカットして分離する必要があるのに対し、本実施形態では各LED1の分離をエッチングで行うことができるので、LED1の間隔を狭くすることができる。これにより、サファイア基板10の大きさをより小さくすることができる。LED1同士の分離は、フォトレジストや反応性イオンエッチング、ウエットエッチングを併用することでLED1以外の領域を基板10に達するまでエッチング除去することで達成される。各LEDアレイは交互に発光するので、発光効率を向上できるとともに放熱特性も向上させることができる。また、直列接続させるLED1の数を変更すれば、全体としての駆動電圧も変更できる。また、LED1の面積を小さくすると、1つのLED当たりの駆動電圧を高くすることもできる。LED1を20個直列に接続した場合、商用電源(100V、60Hz)で駆動すると、およそ150mWの発光出力を得ることができる。この場合の駆動電流としては20mA程度である。
【0030】
なお、図7から分かるように、2つのLEDアレイをジグザグ状に交互に配列する場合、エアブリッジ配線28に交叉部分34が必然的に発生する。例えば、他方のLEDアレイの第1列目と第2列目を接続する際に、一方のLEDアレイの第1列目と第2列目を接続するための配線部分と交叉する。しかし、本実施形態のエアブリッジ配線28は、上述したように基板10に接着しておらず、基板10から離れて空中を通過するので、交叉部分34においてエアブリッジ配線28同士が接触し、短絡することを容易に回避することができる。エアブリッジ配線28を用いる利点の一つである。エアブリッジ配線28は、例えば以下のようにして形成される。すなわち、全面に2μmの厚さのフォトレジストを塗布し、エアブリッジ配線の形状に穴を開けた後にポストベークする。その上に、真空蒸着でTiを10nm、Auを10nm、この順序で蒸着する。さらにその上の全面に2μm厚さでフォトレジストを再度塗布し、エアブリッジ配線を形成する部分のみに穴を開ける。次いで、TiとAuを電極として電解液中でイオンプレーティング(メッキ)により電極全面に3〜5μmの厚さのAuを付着させる。その後、試料をアセトンに浸し、超音波洗浄によりフォトレジストを溶解除去してエアブリッジ配線28が完成する。
【0031】
このように、複数のLED1を二次元アレイ状に配置することで、基板面積を有効に活用しつつ高駆動電圧、特に商用電源での駆動も可能となるが、二次元アレイのパターンとしてはこの他にも種々のパターンが可能である。一般に、二次元アレイパターンとしては、以下の条件を備えることが望ましい。
【0032】
(1)各LEDに均一に電流を流し、均一な発光を得るためには各LEDの形状、電極位置が同一であることが望ましい。
【0033】
(2)ウエハをカットしてチップにするためには、各LEDの辺は直線であることが望ましい。
【0034】
(3)光取り出し効率を向上させるため、標準的なマウントを使用して周辺からの反射を利用するためにはLEDは平面形状が正方形に近い形状が望ましい。
【0035】
(4)2つの電極(ボンディングパット)の大きさは100μm角程度で、互いに離れていることが望ましい。
【0036】
(5)ウエハ面積の有効利用のため、配線、パッドの占める割合は小さい方が望ましい。
【0037】
もちろん、これらは必須ではなく、例えば各LEDの形状としては平面形状三角形を用いることも可能であろう。各LEDの形状が三角形であっても、これらを組み合わせることで全体形状を略正方形とすることができる。以下、二次元アレイパターンの例をいくつか示す。
【0038】
図8には、合計6個のLED1を二次元に配置した例が示されており、図9にはその回路図が示されている。図8の配置は、基本的には図6の配置と同様であり、合計6個のLEDアレイは同数ずつ2組に分けられ、それぞれ直列接続された3個のLEDから構成される。一方のLEDアレイはジグザグ状に配列され、上から第1列目は1個のLED1、第2列目は2個のLED1が形成される。第1列目のLEDと第2列目の右端のLED1はエアブリッジ配線28で直列接続され、第2列目の2個のLED1もエアブリッジ配線28で直列接続される。基板10の左上部と左下部に電極(パッド)32が形成され、第1列目のLED1は左上部の電極32にエアブリッジ配線で接続され、第2列目の左端のLED1は左下部の電極32に接続される。他方のLEDアレイもジグザグ状に配列され、上から第1列目は2個のLED1、第2列目は1個のLED1が形成される。他方のLEDアレイの第1列目は前記一方のLEDアレイの第1列目と第2列目の間に形成され、他方のLEDアレイの第2列目は前記一方のLEDアレイの第2列目の下方に形成される。第1列目の右端のLED1は第2列目のLED1にエアブリッジ配線28で直列接続され、第1列目の2個のLED1同士もエアブリッジ配線28で直列接続される。第1列目の左端のLED1は左上部の電極32にエアブリッジ配線28で接続され、第2列目のLED1は左下部の電極32にエアブリッジ配線28で接続される。図9から分かるように、この例でも2つのLEDアレイは互いに並列に電極32に接続され、かつ、互いに逆極性となるように接続される。したがって、交流電源を供給した場合、2つのLEDアレイは交互に発光することになる。
【0039】
図10には、合計14個のLEDを二次元配置した例が示されており、図11にはその回路図が示されている。合計14個のLEDアレイは2組に分けられ、それぞれ直列接続された7個のLEDから構成される。一方のLEDアレイはジグザグ状に配列され、上から第1列目は3個のLED1、第2列目は4個のLED1が形成される。第1列目の左端のLEDと第2列目の左端のLED1はエアブリッジ配線28で直列接続され、第1列目の3個のLED同士、及び第2列目の4個のLED1同士もエアブリッジ配線28で直列接続される。基板10の右上部と右下部に電極(パッド)32が形成され、第1列目の右端のLED1は右上部の電極32にエアブリッジ配線で接続され、第2列目の右端のLED1は右下部の電極32に接続される。他方のLEDアレイもジグザグ状に配列され、上から第1列目は4個のLED1、第2列目は3個のLED1が形成される。他方のLEDアレイの第1列目は前記一方のLEDアレイの第1列目と第2列目の間に形成され、他方のLEDアレイの第2列目は前記一方のLEDアレイの第2列目の下方に形成される。第1列目の左端のLED1は第2列目の左端のLED1にエアブリッジ配線28で直列接続される。第1列目の4個のLED1同士、及び第2列目の3個のLED1同士も直列接続される。第1列目の右端のLED1は右上部の電極32にエアブリッジ配線28で接続され、第2列目の右端のLED1は右下部の電極32にエアブリッジ配線28で接続される。図11から分かるように、この例でも2つのLEDアレイは互いに並列に電極32に接続され、かつ、互いに逆極性となるように接続される。したがって、交流電源を供給した場合、2つのLEDアレイは交互に発光することになる。
【0040】
図6、図8、図10の二次元パターンに共通する特徴としては、各LED1が略正方形の同形、同サイズであること、2つの電極(パッド)も略正方形であり、隣接形成されていない(離間形成されている)こと、2つのLEDアレイの組み合わせであること、2つのLEDアレイは屈曲しつつチップ上に互いに交錯するように形成されること、2つのLEDアレイは互いに逆極性となるように電極に接続されること、等である。
【0041】
図12には、平面形状が三角形のLEDを二次元配列した場合の例が示されており、図13にはその回路図が示されている。図12において、合計6個のLED1a、1b、1c、1d、1e、1fがその平面形状が三角形状となるように形成されている。LED1aとLED1eが三角形の一辺で対向して2つで略正方形となるように配置され、LED1bと1fが対向して2つで略正方形となるように配置される。また、LED1dと電極32が対向して接続し、LED1cと電極32が対向して接続する。2つの電極32もLEDと同様に平面形状が三角形状であり、同様に略正方形となるように配置される。LED同士の対向する辺はn電極24を構成し、すなわち、対向する2つのLEDはn電極24を共有する。LEDと電極32もn電極接続である。この配置も、上述した例と同様に合計6個のLEDは2組に分けられる。一方のLEDアレイは、LED1a、LED1b、LED1cからなるアレイであり、LED1aのp電極22は電極32にエアブリッジ配線28で接続され、そのn電極24はLED1bのp電極22とエアブリッジ配線28で接続される。LED1bのn電極24はLED1cのp電極22とエアブリッジ配線28で接続される。LED1cのn電極24は電極32に接続される。他方のLEDアレイは、LED1d、LED1e、LED1fから構成され、電極32とLED1fのp電極22はエアブリッジ配線28で接続され、LED1fのn電極24はLED1eのp電極22とエアブリッジ配線28で接続され、LED1eのn電極24とLED1dのp電極22はエアブリッジ配線28で接続され、LED1dのn電極24は電極32に接続される。
【0042】
図13において、一方のLEDアレイを構成するLED1aと他方のLEDアレイを構成するLED1eのn電極が接続されており、一方のLEDアレイを構成するLED1bと他方のLEDアレイを構成するLED1fのn電極が接続されている点にも着目されたい。2組のLEDアレイのいくつかのn電極を共有することで、回路配線を削減することができる。また、この例においても、2つのLEDアレイは並列に電極32に接続され、かつ、互いに逆極性となるように接続される。また、各LEDは同形、同サイズであり、各LEDを一つの辺で対向させるとともに電極32も三角形状とすることでLED及び電極を高密度に形成して必要な基板面積を小さくすることができる。
【0043】
図14には、平面形状が三角形のLEDを二次元配列した他の例が示されており、図15にはその回路図が示されている。この例では、合計16個のLED1a〜1rが二次元形成されている。LED1aと1j、1bと1k、1cと1m、1dと1n、1eと1p、1fと1q、1gと1rがそれぞれ三角形の一つの辺で対向する。対向する辺にはn電極24が共通形成されている。また、LED1iと電極32が対向し、LED1hと電極32が対向する。一方のLEDアレイはLED1a、1b、1c、1d、1e、1f、1g、1hから構成され、他方のLEDアレイはLED1r、1q、1p、1n、1m、1k、1j、1iから構成される。LED1bのn電極24はエアブリッジ配線28によりLED1cのp電極22に接続され、LED1eのn電極24もエアブリッジ配線28によりLED1fのp電極22に接続される。また、LED1qのn電極24もエアブリッジ配線28によりLED1pのp電極22に接続され、LED1mのn電極24もエアブリッジ配線28によりLED1kのp電極22に接続される。図14においても、図12と同様に交叉部分が生じるが、エアブリッジ配線28により短絡を回避できる。また、この例においても2組のLEDアレイのいくつかのn電極24を共有構造とすることで必要な配線を削減している。また、この例においても2つのLEDアレイは並列で互いに逆極性で電極32に接続されており、交流駆動が可能である。図12においては合計6個のLEDの場合、図14においては合計16個のLEDの場合について示したが、他の個数のLEDでも同様に二次元配列できる。本願出願人は、38個のLEDを二次元配列した発光装置も作成している。
【0044】
以上、交流駆動の場合について説明したが、直流駆動も可能であることは言うまでもない。この場合、LEDアレイを互いに逆極性となるように電極に接続するのではなく、直流電源の極性の向きに合わせてLEDアレイを順方向に接続すればよい。複数のLEDを直列接続することで、高電圧駆動が可能である。以下、直流駆動の場合についても説明する。
【0045】
図16には、2個のLEDを直列接続した例が示されており、図17にはその回路図が示されている。各LED1は平面形状が矩形状であり、2個のLED間はエアブリッジ配線28で接続される。電極32は各LED1の近傍に形成されており、電極32とLED1とで長方形の領域を形成する。すなわち、電極32は長方形領域の一部を占有し、長方形領域の他の領域にLED1が形成されている。
【0046】
図18には、合計4個のLEDを二次元配列した例が示されており、図19にはその回路図が示されている。図16のLED1を2個に分割し、それぞれを並列に接続したものである。2個のLEDからなるLEDアレイを2組並列に順方向接続したと云うこともできる。LED1aと1bで一つのLEDアレイを構成し、LED1cと1dでもう一つのLEDアレイを構成する。LED1aとLED1cはp電極22及びn電極24を共有し、LED1bとLED1dもp電極22及びn電極24を共有する。この構成によれば、図16に比べて電流が均一化する効果がある。
【0047】
図20は、合計3個のLEDを二次元配列した例が示されており、図21にはその回路図が示されている。LED1a、1b、1cは同形ではなく、LED1aの一部に電極32が形成されている。LED1aのn電極24とLED1bのp電極はLED1bの上を跨ぐエアブリッジ配線28で接続される。各LEDの形状及び配置を工夫することで、3個のLEDであっても発光装置(チップ)全体の外観形状を略正方形とすることができる。
【0048】
図22には、合計6個のLEDを二次元配列した例が示されており、図23にはその回路図が示されている。各LED1a〜1fは同形、同サイズである。LED1a〜1fは直列接続される。LED1a〜1cは直線上に配置され、LED1d〜1fは他の直線上に配置される。LED1cとLED1dはエアブリッジ配線28で接続される。この例においても、チップの全体形状を略正方形とすることができる。
【0049】
図24には、合計5個のLEDを二次元配列した例が示されており、図25にはその回路図が示されている。LED1a〜1eは同形(長方形)、同サイズである。この例においても、全体形状を略正方形とすることができる。
【0050】
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく種々の変更が可能である。特に、複数の発光素子(LED等)を二次元配置する場合のパターンは上述したパターン以外にも可能である。この場合、隣接する発光素子間で電極を共有して配線を少なくすること、全体形状を正方形あるいは長方形とすること、複数組の発光素子アレイを電極に並列接続すること、交流駆動の場合に複数組の発光素子アレイを互い逆極性とすること、複数組の発光素子アレイをそれぞれジグザグ状に屈曲させて組み合わせること、等が好適である。
【0051】
図26〜図31には、これらの変更例のいくつかが例示されている。図26は交流駆動の場合の二次元配置であり、合計40個のLEDが配置されている。図27はその回路図である。図6と異なる点は、2組のLEDアレイのいくつかがn電極24を共有する点である(図5参照)。例えば、一方のLEDアレイの第1列の右端から2番目に位置するLED(図中αで示す)のn電極24は、他方のLEDアレイの第1列の右端に位置するLED(図中βで示す)のn電極24と共有されている。なお、LEDアレイの端部(図中γ部分)におけるエアブリッジ配線28は、交叉させることなく共通形成されている。
【0052】
図28は、交流駆動の場合の二次元配置であり、合計14個のLEDが配置されている。図29はその回路図である。図10と異なる点は、2組のLEDアレイのいくつかがn電極24を共有する点である。例えば、一方のLEDアレイの第1列の左端のLED(図中αで示す)のn電極24は、他方のLEDアレイの第1列の右端から2番目に位置するLED(図中βで示す)のn電極24と共有されている。また、端部(図中γ部分)におけるエアブリッジ配線28は共通形成されている。
【0053】
図30は、交流駆動の場合の二次元配置であり、合計6個のLEDが配置されている。図31はその回路図である。この例においても、端部(γ部)のエアブリッジ配線28が共通形成されている。この構成も、一方のLEDアレイにおけるn電極24と他方のLEDアレイにおけるn電極24が共有されていると云うことができる。
【0054】
【発明の効果】
以上説明したように、本発明によれば、高い駆動電圧で駆動し発光させることができる。
【図面の簡単な説明】
【図1】 発光素子(LED)の基本構成図である。
【図2】 発光装置の等価回路図である。
【図3】 2個のLEDの平面図である。
【図4】 図3のIV−IV断面図である。
【図5】 発光装置の他の等価回路図である。
【図6】 40個のLEDを二次元配列した説明図である。
【図7】 図6の回路図である。
【図8】 6個のLEDを二次元配列した説明図である。
【図9】 図8の回路図である。
【図10】 14個のLEDを二次元配列した説明図である。
【図11】 図10の回路図である。
【図12】 6個のLEDを二次元配列した説明図である。
【図13】 図12の回路図である。
【図14】 16個のLEDを二次元配列した説明図である。
【図15】 図14の回路図である。
【図16】 2個のLEDを配列した説明図である。
【図17】 図16の回路図である。
【図18】 4個のLEDを二次元配列した説明図である。
【図19】 図18の回路図である。
【図20】 3個のLEDを二次元配列した説明図である。
【図21】 図20の回路図である。
【図22】 6個のLEDを二次元配列した説明図である。
【図23】 図22の回路図である。
【図24】 5個のLEDを二次元配列した説明図である。
【図25】 図24の回路図である。
【図26】 他の二次元配置説明図である。
【図27】 図26の回路図である。
【図28】 他の二次元配置説明図である。
【図29】 図28の回路図である。
【図30】 他の二次元配置説明図である。
【図31】 図30の回路図である。
【符号の説明】
10 基板(ウエハ)、12 u−GaN層、14 n型GaN層、16 InGaN発光層、18 AlGaN層、20 p−GaN層、22 p−電極、24 n−電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device in which a plurality of light emitting elements are formed on a substrate.
[0002]
[Prior art]
When a light emitting means such as a light emitting element (LED) is used for a display application or the like, the use conditions are a drive voltage of about 1 to 4 V and a drive current of about 20 mA. By the way, with the recent development of short-wavelength LEDs using GaN-based compound semiconductors and the practical use of solid-state light sources such as full color and white, it has been studied to gradually apply LEDs to lighting applications. When the LED is applied to lighting applications, there is a situation in which the LED is used under conditions different from the use conditions of the drive voltage of 1 to 4 V and the drive current of 20 mA. For this reason, a device has been devised in which a large current is passed through the LED to increase the light emission output. In order to flow a large current, it is necessary to increase the pn junction area of the LED and reduce the current density.
[0003]
[Problems to be solved by the invention]
When using an LED as a light source for illumination, it is convenient that an alternating current is used as a power source and it can be used at a driving voltage of 100 V or more. If the same light output is obtained by applying the same power, the power loss can be reduced by applying a high voltage while maintaining a low current value. However, in the conventional LED, the drive voltage cannot always be sufficiently increased.
[0004]
The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a light-emitting device that can operate at a high driving voltage.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a light emitting device in which a plurality of GaN-based light emitting diode elements are formed on an insulating substrate,The plurality of light emitting diode elements are two-dimensionally arranged on the insulating substrate, and the plurality of light emitting diode elements are divided into the first group and the second group by the same number, and the first group and the second group are respectively Among the light-emitting diode elements constituting the first set, the first set and the second set are connected in parallel so as to have opposite polarities to the two AC power supply electrodes. Of at least one of the light-emitting diode elements excluding the light-emitting diode element located at the end and adjacent to any one of the light-emitting diode elements constituting the second set The negative electrode of the light emitting diode element is shared and electrically connected It is characterized by that.
[0015]
Thus, in the present invention, a plurality of light emitting elements are formed monolithically, that is, on the same substrate, and these are connected in series, thereby enabling a high driving voltage. Direct current drive is possible by connecting a plurality of light emitting elements in one direction, but the plurality of light emitting elements are divided into two sets, and each set of light emitting elements (light emitting element array) is connected to electrodes so as to have opposite polarities. By connecting, AC driving is also possible. The number of each set may be the same or different.
[0016]
Although there are various methods for two-dimensionally arranging a plurality of light emitting elements, it is desirable to make the area occupied by the substrate as small as possible. For example, two sets of light-emitting element arrays are arranged in a zigzag shape, that is, a plurality of light-emitting elements are arranged on a bent straight line, and the light-emitting element arrays are alternately arranged, so that a large number of light-emitting element arrays can be used effectively. A light emitting element can be connected. By arranging two sets of light emitting element arrays in a staggered manner, there may be a crossing portion of the wiring, but a short circuit at the crossing portion can be effectively prevented by connecting the light emitting elements with an air bridge wiring. Although the shape of the light emitting element and the electrode is arbitrary, for example, when the planar shape is formed to be approximately square, the overall shape is also approximately square, and a standard mount structure can be used. Even when the light emitting element and the electrode are other than a square, for example, a triangle, a standard mount structure can be similarly used if a substantially square is formed as a whole by combining these triangles.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 shows a basic configuration of anLED 1 as a GaN-based compound semiconductor light-emitting element in the present embodiment. In theLED 1, aGaN layer 12, a Si-doped n-type GaN layer 14, an InGaNlight emitting layer 16, an AlGaNlayer 18, and a p-type GaN layer 20 are sequentially stacked on asubstrate 10, and a p-electrode 22 is in contact with the p-type GaN layer 20. Then electrode 24 is formed in contact with the n-type GaN layer 14.
[0019]
The LED shown in FIG. 1 is manufactured by the following process. That is, first, a sapphire c-plane substrate is heat-treated in a hydrogen atmosphere at 1100 ° C. for 10 minutes by a MOCVD apparatus. Then, the temperature is lowered to 500 ° C., silane gas and ammonia gas are supplied for 100 seconds, and a discontinuous SiN film is formed on thesubstrate 10. This process is for reducing the dislocation density in the device, and the SiN film is omitted in the figure. Next, trimethylgallium and ammonia gas are supplied at the same temperature to grow a GaN layer to a thickness of 20 nm. The temperature is raised to 1050 ° C., and trimethylgallium and ammonia gas are supplied again to grow the undoped GaN (u-GaN)layer 12 and the Si-doped n-type GaN layer 14 to a thickness of 2 μm each. Thereafter, the temperature is lowered to about 700 ° C., and the InGaNlight emitting layer 16 is grown to a thickness of 2 nm. The target composition is x = 0.15, ie In0.15 Ga0.85 N. After thelight emitting layer 16 is grown, the temperature is raised to 1000 ° C. to grow the AlGaNhole injection layer 18 and further the p-type GaN layer 20 is grown.
[0020]
After the p-type GaN layer 20 is grown, the wafer is taken out from the MOCVD apparatus, andNi 10 nm thickness andAu 10 nm thickness are sequentially formed on the growth layer surface by vacuum deposition. The metal film becomes the p-typetransparent electrode 22 by heat treatment at 520 ° C. in a nitrogen gas atmosphere containing 5% oxygen. After forming the transparent electrode, a photoresist is applied to the entire surface, and etching for forming the n-type electrode is performed using the photoresist as a mask. The etching depth is, for example, about 600 nm. Ti 5 nm thickness and Al 5 nm thickness are formed on the n-type GaN layer 14 exposed by etching, and an n-type electrode 24 is formed by heat treatment at 450 ° C. for 30 minutes in a nitrogen gas atmosphere. Finally, the back surface of thesubstrate 10 is polished to 100 μm, the chip is cut out, and mounted to obtain theLED 1.
[0021]
In FIG. 1, oneLED 1 is formed on thesubstrate 10, but in this embodiment, a plurality ofLEDs 1 are formed monolithically and in a two-dimensional array on thesubstrate 10, and each LED is connected to form a light emitting device. (Chip).
[0022]
FIG. 2 shows an equivalent circuit diagram of the light emitting device. In FIG. 2, the light emitting element groups formed in a two-dimensional array are divided into two sets of the same number (four in the figure), each set ofLEDs 1 is connected in series, and two sets of LED rows are electrodes (drive electrodes). ) Are connected in parallel so as to have a reverse polarity. Thus, by connecting the LED strings in series, theLED 1 can be driven with a high voltage obtained by adding the drive voltages. In addition, since each LED string is connected in parallel to the electrodes so that the polarities are opposite to each other, even when an AC power source is used as a power source, one of the LED columns always emits light during each cycle of the power source. Therefore, efficient light emission can be performed.
[0023]
FIG. 3 shows a partial plan view of a plurality of LEDs monolithically formed on thesubstrate 10. FIG. 4 is a sectional view taken along the line IV-IV in FIG. In FIG. 3, a p-electrode 22 and an n-electrode 24 are formed on the upper surface of theLED 1 as shown in FIG. The p-electrode 22 and the n-electrode 24 of theadjacent LEDs 1 are connected by anair bridge wiring 28, and a plurality ofLEDs 1 are connected in series.
[0024]
In FIG. 4, eachLED 1 is simply shown for convenience of explanation. That is, only the n-GaN layer 14, the p-GaN layer 20, the p-electrode 22, and the n-electrode 24 are shown. Needless to say, an InGaNlight emitting layer 16 or the like actually exists as shown in FIG. Theair bridge wiring 28 connects thep electrode 22 to then electrode 24 through the air. As a result, it is not necessary to dispose an electrode along the etching groove as compared with a method in which an insulating film is applied to the element surface, an electrode is formed thereon, and the p-electrode 22 and the n-electrode 24 are electrically connected. Therefore, it is possible to avoid the problem that the elements constituting the insulating material are thermally diffused from the wiring breakage or from the insulating film to the n layer and the p layer to deteriorate theLED 1. Theair bridge wiring 28 is used not only between theLEDs 1 but also for connection between theLEDs 1 and an electrode (not shown).
[0025]
Further, as shown in FIG. 4, eachLED 1 is independent from each other and needs to be electrically insulated. For this reason, each LED1 becomes the structure isolate | separated on thesapphire substrate 10. FIG. Since sapphire is itself an insulator, eachLED 1 can be electrically isolated. As described above, by using thesapphire substrate 10 as a resistor for electrically separating the LEDs, it is possible to easily and reliably electrically separate the LEDs.
[0026]
In addition, as a light emitting element, it can also be set to MIS besides LED which has a pn junction.
[0027]
FIG. 5 shows another equivalent circuit diagram of the light emitting device. In the figure, 20LEDs 1 are connected in series to form one LED array, and two LED arrays (total of 40 LEDs) are connected in parallel to the power source. The drive voltage of theLED 1 is set to 5V, and the drive voltage of each LED array is 100V. As in FIG. 2, the two LED arrays are connected in parallel to the power supply so as to have opposite polarities, and either LED array always emits light regardless of the polarity of the power supply.
[0028]
FIG. 6 specifically shows a two-dimensional array. This corresponds to the equivalent circuit diagram of FIG. In the figure, a total of 40LEDs 1 are formed on thesapphire substrate 10, each being divided into two sets of 20 pieces and connected in series by anair bridge wiring 28 to form two LED arrays. More specifically, theLEDs 1 are all the same shape and are the same size, and one LED array is arranged on a straight line of 6, 7, and 7, respectively, from the top. ) And the second row (seven) are formed in opposite directions, and the second row and the third row are also formed in opposite directions. The first row and the second row, and the second row and the third row are arranged apart from each other. This is because the columns of the other LED array are alternately inserted as will be described later. Therightmost LED 1 in the first row and therightmost LED 1 in the second row are connected by anair bridge wiring 28. Theleftmost LED 1 in the second row and theleftmost LED 1 in the third row are also connected by theair bridge wiring 28 to form a zigzag arrangement. Theleftmost LED 1 in the first row is connected to an electrode (pad) 32 formed in the upper left portion of thesubstrate 10 by anair bridge wiring 28, and therightmost LED 1 in the third row is formed in the lower right portion of thesubstrate 10. Anair bridge wiring 28 is connected to the electrode (pad) 32. The two electrodes (pads) 32 are also square with the same shape as theLED 1. The other LED array is formed to be staggered in the gap between the one LED array described above. That is, the other LED array is arranged on a straight line with 7, 7, and 6 from the top, and the first column from the top is formed between the first column and the second column of one LED array. The second column is formed between the second column and the third column of one LED array, and the third column is formed below the third column of the one LED array. The first column and the second column of the other LED array, and the second column and the third column are also formed in opposite directions, and therightmost LED 1 of the first column is the second column. Theleftmost LED 1 in the second row is connected to therightmost LED 1 by theair bridge wiring 28, and theleftmost LED 1 in the second row is connected to theleftmost LED 1 by theair bridge wiring 28 to form a zigzag shape. The leftmost LED in the first column of the other LED array is connected to theelectrode 32 formed in the upper left portion of thesubstrate 10 by theair bridge wiring 28, and therightmost LED 1 in the third column is formed in the lower right portion of thesubstrate 10. Theair bridge wiring 28 is connected to the formedelectrode 32. The polarities of the one LED array and the other LED array with respect to theelectrode 32 are opposite to each other. The overall shape of the light emitting device (chip) is rectangular. It should also be noted that the twoelectrodes 32 to which power is supplied are formed apart from each other in a rectangular diagonal position.
[0029]
FIG. 7 shows a circuit diagram of FIG. It will be apparent that the respective LED arrays are connected in series while being bent in a zigzag manner, and two LED arrays are formed in a zigzag manner between each other. With such an arrangement, a large number ofLEDs 1 can be arranged on thesmall substrate 10. Further, since only twoelectrodes 32 are required for 40LEDs 1, the use efficiency of thesubstrate 10 can be improved in this respect. In addition, when theLEDs 1 are individually formed to separate theLEDs 1, it is necessary to cut and separate the wafer. In the present embodiment, theLEDs 1 can be separated by etching. The interval can be reduced. Thereby, the size of thesapphire substrate 10 can be further reduced. Separation of theLEDs 1 is achieved by etching away regions other than theLED 1 until thesubstrate 10 is reached by using a photoresist, reactive ion etching, and wet etching together. Since each LED array emits light alternately, it is possible to improve the light emission efficiency and heat dissipation characteristics. Further, if the number ofLEDs 1 connected in series is changed, the driving voltage as a whole can also be changed. Moreover, if the area of LED1 is made small, the drive voltage per LED can also be made high. When 20LEDs 1 are connected in series, a light output of about 150 mW can be obtained when driven by a commercial power supply (100 V, 60 Hz). In this case, the drive current is about 20 mA.
[0030]
As can be seen from FIG. 7, when two LED arrays are alternately arranged in a zigzag shape, a crossingportion 34 is inevitably generated in theair bridge wiring 28. For example, when connecting the first column and the second column of the other LED array, it intersects with a wiring portion for connecting the first column and the second column of one LED array. However, since theair bridge wiring 28 of the present embodiment is not bonded to thesubstrate 10 as described above and passes through the air away from thesubstrate 10, the air bridge wirings 28 come into contact with each other at thecrossover portion 34, and are short-circuited. This can be easily avoided. This is one of the advantages of using theair bridge wiring 28. Theair bridge wiring 28 is formed as follows, for example. That is, a 2 μm-thick photoresist is applied to the entire surface, a hole is formed in the shape of the air bridge wiring, and post-baking is performed. On top of this, 10 nm of Ti and 10 nm of Au are deposited in this order by vacuum deposition. Further, a photoresist is again applied to the entire surface with a thickness of 2 μm, and a hole is made only in a portion where the air bridge wiring is formed. Next, Au having a thickness of 3 to 5 μm is attached to the entire surface of the electrode by ion plating (plating) in an electrolytic solution using Ti and Au as electrodes. Thereafter, the sample is immersed in acetone, and the photoresist is dissolved and removed by ultrasonic cleaning to complete theair bridge wiring 28.
[0031]
Thus, by arranging a plurality ofLEDs 1 in a two-dimensional array, it is possible to drive with a high drive voltage, particularly a commercial power supply, while effectively utilizing the substrate area. Various other patterns are possible. In general, the two-dimensional array pattern preferably has the following conditions.
[0032]
(1) It is desirable that the shape and the electrode position of each LED be the same in order to pass a current uniformly to each LED and obtain uniform light emission.
[0033]
(2) In order to cut the wafer into chips, it is desirable that the sides of each LED be straight.
[0034]
(3) In order to improve the light extraction efficiency, in order to use reflection from the periphery using a standard mount, the LED preferably has a planar shape close to a square.
[0035]
(4) The size of the two electrodes (bonding pads) is about 100 μm square, and it is desirable that they are separated from each other.
[0036]
(5) In order to effectively use the wafer area, it is desirable that the proportion of wiring and pads is small.
[0037]
Of course, these are not essential, and for example, it is possible to use a planar shape triangle as the shape of each LED. Even if each LED has a triangular shape, the overall shape can be made substantially square by combining them. Hereinafter, some examples of the two-dimensional array pattern are shown.
[0038]
FIG. 8 shows an example in which a total of sixLEDs 1 are two-dimensionally arranged, and FIG. 9 shows a circuit diagram thereof. The arrangement of FIG. 8 is basically the same as the arrangement of FIG. 6, and the total of six LED arrays are divided into two sets of the same number, and are each composed of three LEDs connected in series. One LED array is arranged in a zigzag shape. From the top, oneLED 1 is formed in the first row, and twoLEDs 1 are formed in the second row. The LEDs in the first row and therightmost LED 1 in the second row are connected in series by theair bridge wiring 28, and the twoLEDs 1 in the second row are also connected in series by theair bridge wiring 28. Electrodes (pads) 32 are formed on the upper left and lower left of thesubstrate 10, the first row ofLEDs 1 are connected to the upperleft electrode 32 by air bridge wiring, and theleftmost LED 1 of the second row is connected to the lower left. Connected to theelectrode 32. The other LED array is also arranged in a zigzag shape. From the top, twoLEDs 1 are formed in the first row, and oneLED 1 is formed in the second row. The first column of the other LED array is formed between the first column and the second column of the one LED array, and the second column of the other LED array is the second column of the one LED array. Formed below the eyes. Therightmost LED 1 in the first row is connected in series to thesecond row LED 1 via theair bridge wiring 28, and the twoLEDs 1 in the first row are also connected in series via theair bridge wiring 28. TheLED 1 at the left end of the first row is connected to the upperleft electrode 32 by theair bridge wiring 28, and theLED 1 in the second row is connected to the lowerleft electrode 32 by theair bridge wiring 28. As can be seen from FIG. 9, also in this example, the two LED arrays are connected to theelectrode 32 in parallel to each other and are connected to have opposite polarities. Therefore, when the AC power is supplied, the two LED arrays emit light alternately.
[0039]
FIG. 10 shows an example in which a total of 14 LEDs are two-dimensionally arranged, and FIG. 11 shows a circuit diagram thereof. A total of 14 LED arrays are divided into 2 sets, each consisting of 7 LEDs connected in series. One LED array is arranged in a zigzag shape, and from the top, threeLEDs 1 are formed in the first row, and fourLEDs 1 are formed in the second row. The leftmost LED in the first row and the leftmost LED1 in the second row are connected in series by anair bridge wiring 28, and the three LEDs in the first row and the fourLEDs 1 in the second row are also connected. Theair bridge wiring 28 is connected in series. Electrodes (pads) 32 are formed on the upper right portion and lower right portion of thesubstrate 10, therightmost LED 1 in the first row is connected to the upperright electrode 32 by an air bridge wiring, and therightmost LED 1 in the second row is on the right Connected to thelower electrode 32. The other LED array is also arranged in a zigzag shape. From the top, fourLEDs 1 are formed in the first row, and threeLEDs 1 are formed in the second row. The first column of the other LED array is formed between the first column and the second column of the one LED array, and the second column of the other LED array is the second column of the one LED array. Formed below the eyes. Theleftmost LED 1 in the first row is connected in series to theleftmost LED 1 in the second row by anair bridge wiring 28. The fourLEDs 1 in the first row and the threeLEDs 1 in the second row are also connected in series. Therightmost LED 1 in the first row is connected to the upperright electrode 32 by anair bridge wiring 28, and therightmost LED 1 in the second row is connected to the lowerright electrode 32 by anair bridge wiring 28. As can be seen from FIG. 11, also in this example, the two LED arrays are connected to theelectrode 32 in parallel with each other and connected to have opposite polarities. Therefore, when the AC power is supplied, the two LED arrays emit light alternately.
[0040]
The common features of the two-dimensional patterns of FIGS. 6, 8, and 10 are that eachLED 1 has a substantially square shape and size, and the two electrodes (pads) are also substantially square and are not formed adjacent to each other. It is a combination of two LED arrays (separately formed), the two LED arrays are bent and formed to cross each other on the chip, and the two LED arrays have opposite polarities Connected to the electrode, and so on.
[0041]
FIG. 12 shows an example in which LEDs having a triangular planar shape are two-dimensionally arranged, and FIG. 13 shows a circuit diagram thereof. In FIG. 12, a total of sixLEDs 1a, 1b, 1c, 1d, 1e, and 1f are formed so that the planar shape thereof is a triangular shape. TheLED 1a and theLED 1e are arranged so as to be substantially square with two facing one side of the triangle, and theLEDs 1b and 1f are arranged so as to be substantially square with two facing each other. Further, theLED 1d and theelectrode 32 are connected to face each other, and theLED 1c and theelectrode 32 are connected to face each other. The twoelectrodes 32 have a triangular shape in the same manner as the LED, and are arranged so as to be substantially square. The opposing sides of the LEDs constitute an n-electrode 24, that is, the two opposing LEDs share the n-electrode 24. The LED and theelectrode 32 are also n-electrode connected. Also in this arrangement, a total of six LEDs are divided into two sets as in the example described above. One LED array is an array composed ofLED 1a,LED 1b, andLED 1c. Thep electrode 22 of theLED 1a is connected to theelectrode 32 by anair bridge wiring 28, and then electrode 24 is connected to thep electrode 22 of theLED 1b and theair bridge wiring 28. Connected. The n-electrode 24 of theLED 1 b is connected to the p-electrode 22 of theLED 1 c by anair bridge wiring 28. Then electrode 24 of theLED 1 c is connected to theelectrode 32. The other LED array is composed ofLED 1d,LED 1e, andLED 1f. Theelectrode 32 and thep electrode 22 of theLED 1f are connected by anair bridge wiring 28, and then electrode 24 of theLED 1f is connected bya p electrode 22 of theLED 1e and anair bridge wiring 28. Then, then electrode 24 of theLED 1 e and thep electrode 22 of theLED 1 d are connected by anair bridge wiring 28, and then electrode 24 of theLED 1 d is connected to theelectrode 32.
[0042]
In FIG. 13, theLED 1a constituting one LED array and the n electrode of theLED 1e constituting the other LED array are connected, and theLED 1b constituting the one LED array and the n electrode of theLED 1f constituting the other LED array. Note also that is connected. By sharing some n-electrodes of the two sets of LED arrays, circuit wiring can be reduced. Also in this example, the two LED arrays are connected in parallel to theelectrode 32 and are connected to have opposite polarities. In addition, each LED has the same shape and size, and each LED is opposed to one side and theelectrode 32 is also formed in a triangular shape, so that the LEDs and electrodes can be formed at a high density to reduce the necessary substrate area. it can.
[0043]
FIG. 14 shows another example in which LEDs having a triangular planar shape are two-dimensionally arranged, and FIG. 15 shows a circuit diagram thereof. In this example, a total of 16LEDs 1a to 1r are two-dimensionally formed.LEDs 1a and 1j, 1b and 1k, 1c and 1m, 1d and 1n, 1e and 1p, 1f and 1q, 1g and 1r face each other on one side of the triangle. An n-electrode 24 is commonly formed on the opposite sides. Further, theLED 1i and theelectrode 32 face each other, and theLED 1h and theelectrode 32 face each other. One LED array is composed ofLEDs 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, and the other LED array is composed ofLEDs 1r, 1q, 1p, 1n, 1m, 1k, 1j, 1i. Then electrode 24 of theLED 1b is connected to thep electrode 22 of theLED 1c by theair bridge wiring 28, and then electrode 24 of theLED 1e is also connected to thep electrode 22 of theLED 1f by theair bridge wiring 28. Then electrode 24 of the LED 1q is also connected to thep electrode 22 of theLED 1p by theair bridge wiring 28, and then electrode 24 of theLED 1m is also connected to thep electrode 22 of theLED 1k by theair bridge wiring 28. In FIG. 14, a crossover portion is generated as in FIG. 12, but a short circuit can be avoided by theair bridge wiring 28. Also in this example, necessary wiring is reduced by making somen electrodes 24 of the two sets of LED arrays have a common structure. Also in this example, the two LED arrays are connected in parallel to theelectrodes 32 with opposite polarities, and can be driven by alternating current. Although FIG. 12 shows a case of a total of 6 LEDs and FIG. 14 shows a case of a total of 16 LEDs, other numbers of LEDs can be similarly two-dimensionally arranged. The applicant of the present application has also created a light emitting device in which 38 LEDs are two-dimensionally arranged.
[0044]
Although the case of AC driving has been described above, it goes without saying that DC driving is also possible. In this case, the LED array may be connected in the forward direction according to the polarity direction of the DC power supply, instead of connecting the LED array to the electrodes so as to have opposite polarities. High voltage driving is possible by connecting a plurality of LEDs in series. Hereinafter, the case of direct current drive will also be described.
[0045]
FIG. 16 shows an example in which two LEDs are connected in series, and FIG. 17 shows a circuit diagram thereof. EachLED 1 has a rectangular planar shape, and the two LEDs are connected by anair bridge wiring 28. Theelectrode 32 is formed in the vicinity of eachLED 1, and theelectrode 32 and theLED 1 form a rectangular region. That is, theelectrode 32 occupies a part of the rectangular area, and theLED 1 is formed in another area of the rectangular area.
[0046]
FIG. 18 shows an example in which a total of four LEDs are two-dimensionally arranged, and FIG. 19 shows a circuit diagram thereof. LED1 of FIG. 16 is divided | segmented into two, and each is connected in parallel. It can also be said that two sets of LED arrays composed of two LEDs are connected in a forward direction in parallel. TheLEDs 1a and 1b constitute one LED array, and theLEDs 1c and 1d constitute another LED array.LED 1a andLED 1c share thep electrode 22 andn electrode 24, andLED 1b andLED 1d also share thep electrode 22 andn electrode 24. According to this configuration, there is an effect that the current becomes uniform as compared with FIG.
[0047]
FIG. 20 shows an example in which a total of three LEDs are two-dimensionally arranged, and FIG. 21 shows a circuit diagram thereof. TheLEDs 1a, 1b and 1c are not the same shape, and anelectrode 32 is formed on a part of theLED 1a. Then electrode 24 of theLED 1a and the p electrode of theLED 1b are connected by anair bridge wiring 28 that straddles theLED 1b. By devising the shape and arrangement of each LED, the appearance of the entire light emitting device (chip) can be substantially square even with three LEDs.
[0048]
FIG. 22 shows an example in which a total of six LEDs are two-dimensionally arranged, and FIG. 23 shows a circuit diagram thereof. EachLED 1a-1f is the same shape and the same size. TheLEDs 1a to 1f are connected in series. TheLEDs 1a to 1c are arranged on a straight line, and theLEDs 1d to 1f are arranged on another straight line. TheLED 1c and theLED 1d are connected by anair bridge wiring 28. Also in this example, the overall shape of the chip can be made substantially square.
[0049]
FIG. 24 shows an example in which a total of five LEDs are two-dimensionally arranged, and FIG. 25 shows a circuit diagram thereof. TheLEDs 1a to 1e have the same shape (rectangular shape) and the same size. Also in this example, the overall shape can be made substantially square.
[0050]
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various change is possible. In particular, the pattern in the case where a plurality of light emitting elements (LEDs, etc.) are two-dimensionally arranged is possible in addition to the patterns described above. In this case, the electrodes are shared between adjacent light emitting elements to reduce wiring, the overall shape is square or rectangular, a plurality of sets of light emitting element arrays are connected in parallel to the electrodes, and plural in the case of AC drive. It is preferable that the sets of light emitting element arrays have opposite polarities, the plurality of sets of light emitting element arrays are combined in a zigzag manner, and the like.
[0051]
26 to 31 illustrate some of these modifications. FIG. 26 shows a two-dimensional arrangement in the case of AC driving, in which a total of 40 LEDs are arranged. FIG. 27 is a circuit diagram thereof. The difference from FIG. 6 is that some of the two sets of LED arrays share the n-electrode 24 (see FIG. 5). For example, then electrode 24 of the LED located second from the right end of the first column of one LED array (indicated by α in the figure) is the LED (β in the figure) located at the right end of the first column of the other LED array. And the n-electrode 24 shown in FIG. In addition, theair bridge wiring 28 in the edge part (gamma part in a figure) of a LED array is formed in common, without making it cross.
[0052]
FIG. 28 shows a two-dimensional arrangement in the case of AC driving, in which a total of 14 LEDs are arranged. FIG. 29 is a circuit diagram thereof. A difference from FIG. 10 is that some of the two sets of LED arrays share the n-electrode 24. For example, then electrode 24 of the leftmost LED (indicated by α in the figure) of the first column of one LED array is the second LED from the right end of the first column of the other LED array (indicated by β in the figure). )N electrode 24. In addition, theair bridge wiring 28 at the end (γ portion in the figure) is formed in common.
[0053]
FIG. 30 shows a two-dimensional arrangement in the case of AC driving, in which a total of six LEDs are arranged. FIG. 31 is a circuit diagram thereof. Also in this example, theair bridge wiring 28 at the end portion (γ portion) is formed in common. In this configuration as well, it can be said that then electrode 24 in one LED array and then electrode 24 in the other LED array are shared.
[0054]
【The invention's effect】
As described above, according to the present invention, it is possible to drive and emit light with a high driving voltage.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of a light emitting element (LED).
FIG. 2 is an equivalent circuit diagram of the light emitting device.
FIG. 3 is a plan view of two LEDs.
4 is a cross-sectional view taken along the line IV-IV in FIG.
FIG. 5 is another equivalent circuit diagram of the light emitting device.
FIG. 6 is an explanatory diagram in which 40 LEDs are two-dimensionally arranged.
7 is a circuit diagram of FIG. 6. FIG.
FIG. 8 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
9 is a circuit diagram of FIG. 8. FIG.
FIG. 10 is an explanatory diagram in which 14 LEDs are two-dimensionally arranged.
11 is a circuit diagram of FIG.
FIG. 12 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
FIG. 13 is a circuit diagram of FIG.
FIG. 14 is an explanatory diagram in which 16 LEDs are two-dimensionally arranged.
FIG. 15 is a circuit diagram of FIG. 14;
FIG. 16 is an explanatory diagram in which two LEDs are arranged.
FIG. 17 is a circuit diagram of FIG. 16;
FIG. 18 is an explanatory diagram in which four LEDs are two-dimensionally arranged.
FIG. 19 is a circuit diagram of FIG. 18;
FIG. 20 is an explanatory diagram in which three LEDs are two-dimensionally arranged.
FIG. 21 is a circuit diagram of FIG. 20;
FIG. 22 is an explanatory diagram in which six LEDs are two-dimensionally arranged.
FIG. 23 is a circuit diagram of FIG. 22;
FIG. 24 is an explanatory diagram in which five LEDs are two-dimensionally arranged.
25 is a circuit diagram of FIG. 24. FIG.
FIG. 26 is another explanatory diagram of a two-dimensional arrangement.
FIG. 27 is a circuit diagram of FIG. 26;
FIG. 28 is an explanatory diagram of another two-dimensional arrangement.
29 is a circuit diagram of FIG. 28. FIG.
FIG. 30 is another explanatory diagram of two-dimensional arrangement.
31 is a circuit diagram of FIG. 30. FIG.
[Explanation of symbols]
10 substrate (wafer), 12 u-GaN layer, 14 n-type GaN layer, 16 InGaN light emitting layer, 18 AlGaN layer, 20 p-GaN layer, 22 p-electrode, 24 n-electrode.

Claims (1)

Translated fromJapanese
絶縁基板上に複数のGaN系発光ダイオード素子を形成してなる発光装置であって、前記複数の発光ダイオード素子は前記絶縁基板上に二次元配置され、
前記複数の発光ダイオード素子は同数ずつ第1の組と第2の組に分けられ、第1の組と第2の組はそれぞれジグザグ状に互い違いに配置され、第1の組と第2の組は2個の交流電源用電極に互いに反対極性となるように並列接続され、
前記第1の組を構成する発光ダイオード素子のうちの、少なくとも、端部に位置する発光ダイオード素子を除くいずれかの発光ダイオード素子の負電極と、前記第2の組を構成する発光ダイオード素子のうちの、前記いずれかの発光ダイオード素子に隣接する発光ダイオード素子の負電極とが共有されて電気的に接続されることを特徴とする発光装置。
A light emitting device in which a plurality of GaN-based light emitting diode elements are formed on aninsulating substrate ,wherein the plurality of light emitting diode elements are two-dimensionally arranged on the insulating substrate,
The plurality of light emitting diode elements are divided into the first group and the second group by the same number, and the first group and the second group are alternately arranged in a zigzag shape, and the first group and the second group are arranged. Are connected in parallel to the two AC power supply electrodes so as to have opposite polarities,
Of the light emitting diode elements constituting the first group, at least the negative electrode of any one of the light emitting diode elements excluding the light emitting diode element located at the end, and the light emitting diode elements constituting the second group A light emitting device, wherein a negative electrode of a light emitting diode element adjacent to any one of the light emitting diode elements is shared and electrically connected .
JP2002249957A2002-04-122002-08-29 Light emitting deviceExpired - LifetimeJP3822545B2 (en)

Priority Applications (37)

Application NumberPriority DateFiling DateTitle
JP2002249957AJP3822545B2 (en)2002-04-122002-08-29 Light emitting device
CNB038206226ACN100421266C (en)2002-08-292003-08-28Light emitting device having a plurality of light emitting elements
KR20057002667AKR100697803B1 (en)2002-08-292003-08-28 Light emitting device having a plurality of light emitting elements
EP20090000561EP2101355A1 (en)2002-08-292003-08-28Light-emitting device having light-emitting elements
PCT/JP2003/010922WO2004023568A1 (en)2002-08-292003-08-28Light-emitting device having light-emitting elements
RU2005103616ARU2295174C2 (en)2002-08-292003-08-28Light-emitting device incorporating light-emitting components (alternatives)
ES03794115TES2362407T3 (en)2002-08-292003-08-28 LIGHTING ISSUER DEVICE PROVIDED BY LIGHTING ISSUING DIODES.
EP09014624.2AEP2154722B1 (en)2002-08-292003-08-28Light-emitting device having light-emitting diodes
CNB2007101029609ACN100570883C (en)2002-08-292003-08-28 Lighting device with multiple light emitting elements
EP07118916.1AEP1892764B1 (en)2002-08-292003-08-28Light-emitting device having light-emitting diodes
EP18150767.4AEP3389094A1 (en)2002-08-292003-08-28Light-emitting device having light-emitting elements
AT03794115TATE500616T1 (en)2002-08-292003-08-28 LIGHT EMITTING COMPONENT WITH LIGHT EMITTING DIODES
EP09014623.4AEP2154721B1 (en)2002-08-292003-08-28Light-emitting device having light-emitting diodes
EP20090014620EP2157609A3 (en)2002-08-292003-08-28Light-emitting device having light-emitting diodes
EP20030794115EP1553641B1 (en)2002-08-292003-08-28Light-emitting device having light-emitting diodes
EP20090014625EP2149907A3 (en)2002-08-292003-08-28Light-emitting device having light-emitting diodes
EP20090014622EP2149906A3 (en)2002-08-292003-08-28Light-emitting device having light-emitting diodes
EP20090014621EP2149905A3 (en)2002-08-292003-08-28Light-emitting device having light-emitting diodes
DE60336252TDE60336252D1 (en)2002-08-292003-08-28 LIGHT-EMITTING COMPONENT WITH LIGHT-EMITTING DIODES
US10/525,998US7417259B2 (en)2002-08-292003-08-28Light-emitting device having light-emitting elements
TW92123908ATWI280672B (en)2002-08-292003-08-29Light-emitting device having light-emitting elements
US11/705,205US7956367B2 (en)2002-08-292007-02-12Light-emitting device having light-emitting elements connected in series
US12/060,693US8129729B2 (en)2002-08-292008-04-01Light emitting device having light emitting elements and an air bridge line
US12/139,927US7897982B2 (en)2002-08-292008-06-16Light emitting device having common N-electrode
US12/352,296US8084774B2 (en)2002-08-292009-01-12Light emitting device having light emitting elements
US12/352,280US7615793B2 (en)2002-08-292009-01-12AC driven light—emitting device
US12/352,271US7569861B2 (en)2002-08-292009-01-12Light emitting device having light emitting elements
US12/352,240US8097889B2 (en)2002-08-292009-01-12Light emitting device having light emitting elements with a shared electrode
US12/478,456US7667237B2 (en)2002-08-292009-06-04Light emitting device having light emitting elements
US12/479,380US7646031B2 (en)2002-08-292009-06-05Light emitting device having light emitting elements
US12/652,518US8680533B2 (en)2002-08-292010-01-05Light-emitting device having light-emitting elements with a shared electrode
US12/958,947US8735918B2 (en)2002-08-292010-12-02Light-emitting device having light-emitting elements with polygonal shape
US13/584,140US20120305951A1 (en)2002-08-292012-08-13Light-emitting device having light-emitting elements
US13/610,819US8735911B2 (en)2002-08-292012-09-11Light emitting device having shared electrodes
US13/890,878US9947717B2 (en)2002-08-292013-05-09Light-emitting device having light-emitting elements and electrode spaced apart from the light emitting element
US14/583,476US20150108497A1 (en)2002-08-292014-12-26Light-emitting device having light-emitting elements
US15/430,440US20170154922A1 (en)2002-08-292017-02-10Light-emitting device having an array of light-emitting elements

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
JP20021107602002-04-12
JP2002249957AJP3822545B2 (en)2002-04-122002-08-29 Light emitting device

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
JP2006117739ADivisionJP4195041B2 (en)2002-04-122006-04-21 Light emitting device

Publications (2)

Publication NumberPublication Date
JP2004006582A JP2004006582A (en)2004-01-08
JP3822545B2true JP3822545B2 (en)2006-09-20

Family

ID=30446964

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2002249957AExpired - LifetimeJP3822545B2 (en)2002-04-122002-08-29 Light emitting device

Country Status (1)

CountryLink
JP (1)JP3822545B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2008211255A (en)*2002-04-122008-09-11Seoul Semiconductor Co LtdLight-emitting device
US7667237B2 (en)2002-08-292010-02-23Seoul Semiconductor Co., Ltd.Light emitting device having light emitting elements
WO2011099771A3 (en)*2010-02-122011-12-29Seoul Opto Device Co., Ltd.Light emitting diode chip having distributed bragg reflector and method of fabricating the same
KR101448153B1 (en)2008-06-252014-10-08삼성전자주식회사 A multi-chip package for a light-emitting diode and a light-emitting diode

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7213942B2 (en)2002-10-242007-05-08Ac Led Lighting, L.L.C.Light emitting diodes for high AC voltage operation and general lighting
BRPI0507223A (en)*2004-02-252007-06-19Michael Miskin ac led light and methods and ac led targeting apparatus
KR100655894B1 (en)2004-05-062006-12-08서울옵토디바이스주식회사 Wavelength conversion light emitting device with excellent color temperature and color rendering
KR100658700B1 (en)2004-05-132006-12-15서울옵토디바이스주식회사 Light emitting device combining RGB light emitting element and phosphor
KR100665299B1 (en)2004-06-102007-01-04서울반도체 주식회사 Emitting material
US8308980B2 (en)2004-06-102012-11-13Seoul Semiconductor Co., Ltd.Light emitting device
JP4841550B2 (en)2004-06-302011-12-21ソウル オプト デバイス カンパニー リミテッド LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND LIGHT EMITTING DEVICE USING THE SAME
TW200501464A (en)2004-08-312005-01-01Ind Tech Res InstLED chip structure with AC loop
KR101216938B1 (en)2004-10-282012-12-31서울반도체 주식회사Luminous element having arrayed cells and method of manufacturing thereof and luminous apparatus using the same
JP2008523637A (en)2004-12-142008-07-03ソウル オプト−デバイス カンパニー リミテッド Light emitting device having a plurality of light emitting cells and package mounting the same
KR101138974B1 (en)2005-01-072012-04-25서울옵토디바이스주식회사Luminous element and method of manufacturing thereof
US7221044B2 (en)2005-01-212007-05-22Ac Led Lighting, L.L.C.Heterogeneous integrated high voltage DC/AC light emitter
KR101138944B1 (en)*2005-01-262012-04-25서울옵토디바이스주식회사Light emitting device having a plurality of light emitting cells connected in series and method of fabricating the same
US7535028B2 (en)2005-02-032009-05-19Ac Led Lighting, L.Lc.Micro-LED based high voltage AC/DC indicator lamp
KR101142939B1 (en)2005-02-232012-05-10서울반도체 주식회사 Light emitting device
DE102005009060A1 (en)*2005-02-282006-09-07Osram Opto Semiconductors Gmbh Module with radiation-emitting semiconductor bodies
CN100464111C (en)*2005-03-042009-02-25吕大明AC LED lighting lamp
JP5059739B2 (en)2005-03-112012-10-31ソウル セミコンダクター カンパニー リミテッド Light emitting diode package having an array of light emitting cells connected in series
KR101248513B1 (en)*2005-03-292013-04-04서울반도체 주식회사High flux led lamp mounting a led having an array of light emitting cells coupled in series
JP4995432B2 (en)*2005-05-182012-08-08ローム株式会社 Semiconductor light emitting device
US8476648B2 (en)2005-06-222013-07-02Seoul Opto Device Co., Ltd.Light emitting device and method of manufacturing the same
US8188687B2 (en)*2005-06-282012-05-29Seoul Opto Device Co., Ltd.Light emitting device for AC power operation
KR100599012B1 (en)2005-06-292006-07-12서울옵토디바이스주식회사 Light Emitting Diode Having Thermally Conductive Substrate And Method Of Manufacturing The Same
KR100608920B1 (en)2005-06-302006-08-03서울옵토디바이스주식회사 Wiring shape of light emitting device in which a plurality of light emitting cells are arranged
KR100616415B1 (en)*2005-08-082006-08-29서울옵토디바이스주식회사 AC light emitting device
US8901575B2 (en)2005-08-092014-12-02Seoul Viosys Co., Ltd.AC light emitting diode and method for fabricating the same
KR100758541B1 (en)2005-08-222007-09-13서울옵토디바이스주식회사 Light emitting diodes having light emitting cells arranged in a matrix and a method of manufacturing the same
KR100634307B1 (en)*2005-08-102006-10-16서울옵토디바이스주식회사 Light emitting device and manufacturing method thereof
JP5193048B2 (en)*2005-09-302013-05-08ソウル オプト デバイス カンパニー リミテッド Light emitting device having vertically stacked light emitting diodes
KR100721454B1 (en)*2005-11-102007-05-23서울옵토디바이스주식회사 Light emitting device for alternating current having photonic crystal structure and method for manufacturing same
KR101258397B1 (en)2005-11-112013-04-30서울반도체 주식회사Copper-Alkaline-Earth-Silicate mixed crystal phosphors
JP4728788B2 (en)*2005-12-052011-07-20ローム株式会社 Semiconductor light emitting device
KR101158073B1 (en)*2005-12-132012-06-22서울옵토디바이스주식회사Light emitting device having arrayed cells
KR101055772B1 (en)2005-12-152011-08-11서울반도체 주식회사 Light emitting device
TW200739952A (en)2005-12-222007-10-16Rohm Co LtdLight emitting device and illumination instrument
KR101203138B1 (en)2006-01-122012-11-20서울옵토디바이스주식회사Luminous device and the method therefor
KR100875443B1 (en)2006-03-312008-12-23서울반도체 주식회사 Light emitting device
JP2007281081A (en)*2006-04-042007-10-25Rohm Co Ltd Semiconductor light emitting device
JP4736926B2 (en)*2006-04-212011-07-27パナソニック電工株式会社 EL lighting panel
KR101258227B1 (en)2006-08-292013-04-25서울반도체 주식회사Light emitting device
KR100765240B1 (en)*2006-09-302007-10-09서울옵토디바이스주식회사 LED package having light emitting cells of different sizes and light emitting device using the same
KR101158079B1 (en)2006-12-222012-07-20서울옵토디바이스주식회사A luminous element having numerous cells
DE112007002696T5 (en)2006-12-262009-11-05Seoul Opto Device Co. Ltd., Ansan Light emitting device
EP2111640B1 (en)2007-01-222019-05-08Cree, Inc.Fault tolerant light emitter and method of fabricating the same
TWI440210B (en)2007-01-222014-06-01Cree Inc Illumination device using external interconnection array of light-emitting device and manufacturing method thereof
KR20110110867A (en)*2007-03-132011-10-07서울옵토디바이스주식회사 AC LED
KR100974923B1 (en)2007-03-192010-08-10서울옵토디바이스주식회사 Light emitting diode
KR100856230B1 (en)2007-03-212008-09-03삼성전기주식회사 Light emitting device, manufacturing method and monolithic light emitting diode array
KR100872248B1 (en)2007-06-112008-12-05삼성전기주식회사 AC drive light emitting device
KR100843402B1 (en)2007-06-222008-07-03삼성전기주식회사 LED drive circuit and LED array device
RU2467051C2 (en)2007-08-222012-11-20Сеул Семикондактор Ко., Лтд.Luminophores based on nonstoichiometric tetragonal silicates of copper and alkali-earth metal and method for production thereof
KR101055769B1 (en)2007-08-282011-08-11서울반도체 주식회사 Light-emitting device adopting non-stoichiometric tetra-alkaline earth silicate phosphor
KR100889956B1 (en)*2007-09-272009-03-20서울옵토디바이스주식회사 AC Light Emitting Diode
KR100928259B1 (en)2007-10-152009-11-24엘지전자 주식회사 Light emitting device and manufacturing method thereof
KR101423723B1 (en)2007-10-292014-08-04서울바이오시스 주식회사Light emitting diode package
WO2009088084A1 (en)2008-01-112009-07-16Rohm Co., Ltd.Semiconductor light emitting device
KR100956224B1 (en)2008-06-302010-05-04삼성엘이디 주식회사 LED drive circuit and LED array device
KR101025972B1 (en)2008-06-302011-03-30삼성엘이디 주식회사 AC drive light emitting device
KR101603773B1 (en)*2009-01-072016-03-17서울바이오시스 주식회사Light emitting diode having plurality of light emitting cells
WO2010050694A2 (en)*2008-10-292010-05-06서울옵토디바이스주식회사Light emitting diode
KR101017395B1 (en)2008-12-242011-02-28서울옵토디바이스주식회사 Light emitting device having a plurality of light emitting cells and method of manufacturing same
KR101557362B1 (en)2008-12-312015-10-08서울바이오시스 주식회사 A light emitting device having a plurality of non-polar light emitting cells and a method of manufacturing the same
KR101533817B1 (en)2008-12-312015-07-09서울바이오시스 주식회사 A light emitting device having a plurality of non-polar light emitting cells and a method of manufacturing the same
DE102009030205A1 (en)2009-06-242010-12-30Litec-Lp Gmbh Phosphors with Eu (II) -doped silicate luminophores
KR101055762B1 (en)2009-09-012011-08-11서울반도체 주식회사 Light-emitting device employing a light-emitting material having an oxyosilicate light emitter
KR101138975B1 (en)*2009-09-152012-04-25서울옵토디바이스주식회사Ac light emitting diode having full-wave lihgt emitting cell and half-wave light emitting cell
US9324691B2 (en)*2009-10-202016-04-26Epistar CorporationOptoelectronic device
DE102009051129A1 (en)2009-10-282011-06-01Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
KR101203139B1 (en)*2010-01-062012-11-20서울옵토디바이스주식회사Luminous element having arrayed cells
EP2367203A1 (en)*2010-02-262011-09-21Samsung LED Co., Ltd.Semiconductor light emitting device having multi-cell array and method for manufacturing the same
WO2011115361A2 (en)*2010-03-152011-09-22서울옵토디바이스주식회사Light-emitting device having a plurality of light-emitting cells
TWI446527B (en)*2010-07-022014-07-21Epistar Corp Optoelectronic component
US9171883B2 (en)*2010-08-302015-10-27Epistar CorporationLight emitting device
JP2012054447A (en)*2010-09-022012-03-15Seiwa Electric Mfg Co LtdSemiconductor light-emitting element, light-emitting device, lighting unit, and display unit
US9070851B2 (en)2010-09-242015-06-30Seoul Semiconductor Co., Ltd.Wafer-level light emitting diode package and method of fabricating the same
JP2011055007A (en)*2010-12-132011-03-17Seoul Opto Devices Co LtdAc-driven light emitting diode
KR101259998B1 (en)*2011-03-312013-05-06서울옵토디바이스주식회사Light emitting diode
KR101106139B1 (en)*2011-04-042012-01-20서울옵토디바이스주식회사 Flip bonded light emitting diode having an extended metal reflective layer and a method of manufacturing the same
KR101115538B1 (en)*2011-04-042012-02-28서울옵토디바이스주식회사Luminous device and the method therefor
KR101115540B1 (en)*2011-06-302012-02-28서울옵토디바이스주식회사Light emitting diode package
KR101221336B1 (en)*2011-07-122013-01-21서울옵토디바이스주식회사Light emitting device and method of fabricating the same
JP2013048163A (en)*2011-08-292013-03-07Seiwa Electric Mfg Co LtdSemiconductor light-emitting element, light-emitting device and semiconductor light-emitting element manufacturing method
KR101229835B1 (en)*2012-03-082013-02-04서울옵토디바이스주식회사Luminous element having arrayed cells and Method for manufacturing the same and Luminous device using the same
KR101308129B1 (en)*2012-04-272013-09-12서울옵토디바이스주식회사Light emitting device and method of fabricating the same
KR101205529B1 (en)2012-06-202012-11-27서울옵토디바이스주식회사A light emitting device having a plurality of light emitting cells and Menufacturing method thereof
US9171826B2 (en)2012-09-042015-10-27Micron Technology, Inc.High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
KR102006389B1 (en)2013-03-142019-08-02삼성전자주식회사Light emitting device package and light emitting apparatus
WO2015063947A1 (en)*2013-11-012015-05-07星和電機株式会社Semiconductor light-emitting element and light-emitting device
TWI614920B (en)2014-05-192018-02-11晶元光電股份有限公司 Photoelectric element and method of manufacturing same
JP6529223B2 (en)*2014-06-302019-06-12晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric parts
AT516416B1 (en)*2014-10-212019-12-15Zkw Group Gmbh Printed circuit board with a plurality of electronic components arranged on the printed circuit board in at least one group
CN205944139U (en)2016-03-302017-02-08首尔伟傲世有限公司Ultraviolet ray light -emitting diode spare and contain this emitting diode module
CN109686730B (en)*2019-01-232024-01-05苏州弘磊光电有限公司LAMP LED capable of being used in AC-DC hybrid mode
JP6843916B2 (en)*2019-05-142021-03-17晶元光電股▲ふん▼有限公司Epistar Corporation Photoelectric parts
JP7014973B2 (en)2019-08-282022-02-02日亜化学工業株式会社 Luminescent device
JP7319551B2 (en)*2020-03-312023-08-02日亜化学工業株式会社 light emitting device
JP7223046B2 (en)*2021-02-242023-02-15晶元光電股▲ふん▼有限公司 photoelectric components
JP2023107148A (en)*2022-01-212023-08-02旭化成エレクトロニクス株式会社Infrared light-emitting device
JP2023130977A (en)2022-03-082023-09-21スタンレー電気株式会社Semiconductor light emitting element, semiconductor light emitting device and semiconductor light emitting device module
CN114857511B (en)*2022-04-112024-02-20厦门普为光电科技有限公司Light emitting diode
JP2023172069A (en)2022-05-232023-12-06スタンレー電気株式会社Semiconductor light-emitting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS59206873A (en)*1983-05-111984-11-22株式会社東芝 light emitting display device
JPH0716001B2 (en)*1986-05-211995-02-22日本電気株式会社 Field effect transistor and method of manufacturing the same
JPH0786691A (en)*1993-09-141995-03-31Sony CorpLight emitting device
JP2000068555A (en)*1998-08-192000-03-03Hitachi Ltd Lighting system
JP2001150718A (en)*1999-11-262001-06-05Kyocera Corp Light emitting element array
JP3659098B2 (en)*1999-11-302005-06-15日亜化学工業株式会社 Nitride semiconductor light emitting device
JP2001307506A (en)*2000-04-172001-11-02Hitachi Ltd White light emitting device and lighting equipment
JP2001351789A (en)*2000-06-022001-12-21Toshiba Lighting & Technology Corp LED driver

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2008211255A (en)*2002-04-122008-09-11Seoul Semiconductor Co LtdLight-emitting device
US7667237B2 (en)2002-08-292010-02-23Seoul Semiconductor Co., Ltd.Light emitting device having light emitting elements
US7897982B2 (en)2002-08-292011-03-01Seoul Semiconductor Co., Ltd.Light emitting device having common N-electrode
US7956367B2 (en)2002-08-292011-06-07Seoul Semiconductor Co., Ltd.Light-emitting device having light-emitting elements connected in series
US8129729B2 (en)2002-08-292012-03-06Seoul Semiconductor Co., Ltd.Light emitting device having light emitting elements and an air bridge line
US8680533B2 (en)2002-08-292014-03-25Seoul Semiconductor Co., Ltd.Light-emitting device having light-emitting elements with a shared electrode
US8735918B2 (en)2002-08-292014-05-27Seoul Semiconductor Co., Ltd.Light-emitting device having light-emitting elements with polygonal shape
US8735911B2 (en)2002-08-292014-05-27Seoul Semiconductor Co., Ltd.Light emitting device having shared electrodes
US9947717B2 (en)2002-08-292018-04-17Seoul Semiconductor Co., Ltd.Light-emitting device having light-emitting elements and electrode spaced apart from the light emitting element
KR101448153B1 (en)2008-06-252014-10-08삼성전자주식회사 A multi-chip package for a light-emitting diode and a light-emitting diode
WO2011099771A3 (en)*2010-02-122011-12-29Seoul Opto Device Co., Ltd.Light emitting diode chip having distributed bragg reflector and method of fabricating the same

Also Published As

Publication numberPublication date
JP2004006582A (en)2004-01-08

Similar Documents

PublicationPublication DateTitle
JP3822545B2 (en) Light emitting device
JP4939584B2 (en) Light emitting device
CN100570883C (en) Lighting device with multiple light emitting elements
JP4195041B2 (en) Light emitting device
JP4949211B2 (en) Light emitting device

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20041015

A871Explanation of circumstances concerning accelerated examination

Free format text:JAPANESE INTERMEDIATE CODE: A871

Effective date:20050408

A975Report on accelerated examination

Free format text:JAPANESE INTERMEDIATE CODE: A971005

Effective date:20050421

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20050426

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20050621

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20060221

A521Request for written amendment filed

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20060421

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20060530

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20060622

R150Certificate of patent or registration of utility model

Ref document number:3822545

Country of ref document:JP

Free format text:JAPANESE INTERMEDIATE CODE: R150

Free format text:JAPANESE INTERMEDIATE CODE: R150

S111Request for change of ownership or part of ownership

Free format text:JAPANESE INTERMEDIATE CODE: R313113

R350Written notification of registration of transfer

Free format text:JAPANESE INTERMEDIATE CODE: R350

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100630

Year of fee payment:4

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100630

Year of fee payment:4

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100630

Year of fee payment:4

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110630

Year of fee payment:5

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120630

Year of fee payment:6

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120630

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120630

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20130630

Year of fee payment:7

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp