Movatterモバイル変換


[0]ホーム

URL:


JP3818204B2 - Radar equipment - Google Patents

Radar equipment
Download PDF

Info

Publication number
JP3818204B2
JP3818204B2JP2002109532AJP2002109532AJP3818204B2JP 3818204 B2JP3818204 B2JP 3818204B2JP 2002109532 AJP2002109532 AJP 2002109532AJP 2002109532 AJP2002109532 AJP 2002109532AJP 3818204 B2JP3818204 B2JP 3818204B2
Authority
JP
Japan
Prior art keywords
signal
radar
time
change point
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002109532A
Other languages
Japanese (ja)
Other versions
JP2003302463A (en
Inventor
順志 宇津
浩一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso CorpfiledCriticalDenso Corp
Priority to JP2002109532ApriorityCriticalpatent/JP3818204B2/en
Publication of JP2003302463ApublicationCriticalpatent/JP2003302463A/en
Application grantedgrantedCritical
Publication of JP3818204B2publicationCriticalpatent/JP3818204B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Landscapes

Description

Translated fromJapanese

【0001】
【発明の属する技術分野】
本発明は、パルス状のレーダ波を送受信してターゲットの検出を行うレーダ装置に関する。
【0002】
【従来の技術】
従来より、レーダ波を送受信してターゲットを検出するレーダ装置の一つとして、パルス方式のレーダ装置(以下「パルスレーダ」と称する)が知られている。
【0003】
ここで図3は、パルスレーダ100の一般的な構成を表すブロック図である。
図3に示すように、パルスレーダは、送信アンテナ11,スイッチ12,発振器13からなる送信部110と、受信アンテナ21,ローノイズアンプ22,ミキサ23,ローカル発振器24,IFアンプ25,検波器26,コンパレータ29からなる受信部120と、パルス発生器31,時間差計測回路32からなる制御部130とにより構成されている。
【0004】
そして、送信部110では、制御部130のパルス発生器31が発生させた送信パルス信号Psに従ってスイッチ12が作動し、その送信パルス信号Psのパルス幅の期間だけ、発振器13が生成した高周波信号を送信アンテナ11に供給することにより、送信アンテナ11にパルス状のレーダ波を送信させる。
【0005】
また、受信部120では、受信アンテナ21が受信したレーダ波の受信信号を、ローノイズアンプ22が増幅し、これをローカル発振器24からのローカル信号とミキサ23にて混合することにより、中間周波数帯の信号(IF信号)にダウンコンバートする。そのIF信号を、IFアンプ25にて増幅した後、検波器26が包絡線検波を行うことで復調し、更にこの復調した信号をコンパレータ29にて波形整形することで受信パルス信号Prを生成する。
【0006】
また、制御部130では、パルス発生器31が、送信パルス信号Psを送信部110に供給すると共に時間差計測回路32にも供給し、時間差計測回路32は、パルス発生器31からの送信パルス信号Psと、受信部120からの受信パルス信号Prとの時間差を、レーダ波がターゲットまでの距離を往復するのに要した往復時間として計測する。
【0007】
そして、この往復時間の計測結果tから、次式(1)を用いてターゲットまでの距離Rを求めている。
R=C・(t−t0)/2 (1)
但し、Cは光速でC=3×108m/s、t0は回路内の信号遅延である。
【0008】
【発明が解決しようとする課題】
ところで、パルスレーダを、例えば、周辺監視用車載レーダとして使用する場合は、衝突判定を行う必要があるため、高い距離分解能(少なくとも数十cm)が必要とされる。そして、パルスレーダでは、レーダ波(送信パルス信号Ps)のパルス幅を短くするほど距離分解能を高めることができるが、その一方で、パルス幅を短くするほどレーダ波の占有帯域幅は増大する。例えば、10cm程度の距離分解能を得ようとすると、その占有帯域幅は数GHzにも達する。
【0009】
これに対して、特定小電力無線局移動体検知センサ用無線設備に関する規格(ARIB STD−T73)では、このような車載レーダに適用される24GHz帯での帯域条件が76MHz以下となっている。
つまり、この帯域条件を満たそうとすると、距離分解能が数mオーダーとなってしまい、車載レーダ等、高い分解能を必要とする用途には、使用することができないという問題があった。
【0010】
即ち、二つのターゲットが存在し、各ターゲットまでの距離差が距離分解能より短い場合、図4に示すように、これらのターゲットからの反射波は、送信パルス信号Psのパルス幅より短い時間間隔で受信され、その受信信号を検波器26にて復調してなる復調信号は、各ターゲットからの信号が互いに重なり合ったものとなる。そして、この信号を、コンパレータ29にて波形整形すると、パルス幅の大きい単一の受信パルス信号Prが生成され、遅れて受信した反射波の受信タイミングが消失してしまい、その反射元となったターゲットの距離を検出できないのである。
【0011】
本発明は、上記問題点を解決するために、パルス状のレーダ波を送受信することにより、ターゲットの距離を検出するレーダ装置において、レーダ波の占有帯域幅を増大させることなく、距離分解能を向上させることを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するための発明である請求項1記載のレーダ装置では、送受信手段が、入力された送信パルス信号に従ってパルス状のレーダ波を送信し、受信したレーダ波に基づく復調信号を生成すると、変化点検出手段が、その復調信号の信号レベルの変化点を検出し、計時手段が、送信パルス信号によるレーダ波の送信タイミングから、変化点検出手段にて検出された変化点までの時間を計測する。そして、時間データ抽出手段が、その計測結果の中を、送信パルス信号のパルス幅だけ時間差を有するもの同士で組合せ、組み合わされた一対の計測結果のうち値の小さい方を、ターゲットまでのレーダ波の往復時間を表す時間データとして抽出する。
【0013】
つまり、送信パルス信号のパルス幅より短い間隔で受信された二つのレーダ波に基づく復調信号は、二つのパルスを合成した波形を有しており、先に受信したレーダ波の受信タイミングで信号が立ち上がり、後で受信したレーダ波の受信タイミングで信号レベルが変化し、その後、先に受信したレーダ波の消失タイミングで信号レベルが再び変化し、後で受信したレーダ波の消失タイミングで信号が立ち下がる。
【0014】
このように、復調信号の信号レベルが変化する変化点には、両レーダ波の受信タイミングが含まれているため、計時手段に、これらの変化点のタイミングで計測を行わせることにより、距離分解能以下の距離差にある複数のターゲットの距離を個々に検出することが可能となる。
【0015】
従って、本発明のレーダ装置によれば、レーダ波のパルス幅を短くしてレーダ波の占有帯域幅を増大させることなく、実質的な距離分解能を向上させることができる
【0016】
なお、復調信号は、各パルスの立ち上がりエッジと立ち下がりエッジにて変化点が現れるため、対になる相手のない孤立した変化点はノイズであると考えられるが、本発明のレーダ装置によれば、時間データ抽出手段がこれを除去するため、時間データの信頼性を向上させることができる。
【0017】
また、変化点検出手段としては、例えば請求項記載のように、微分回路を用いることができる。
【0018】
【発明の実施の形態】
以下に本発明の実施形態を図面と共に説明する。
図1は、本発明が適用された周辺監視用車載レーダ(以下単に「レーダ装置」という)の構成を示すブロック図である。なお、本実施形態のレーダ装置は、図3に示す従来装置とは、一部構成が異なっているだけであるため、同一の構成部分については同一符号を付して説明を省略し、構成の相異する部分を中心に説明する。
【0019】
本実施形態のレーダ装置1は、図1に示すように、送信アンテナ11,スイッチ12,発振器13からなる送信部10と、受信アンテナ21,ローノイズアンプ22,ミキサ23,ローカル発振器24,IFアンプ25,検波器26,微分回路27,トリガ信号生成回路28からなる受信部20と、パルス発生器31,時間差計測回路32,往復時間選択部33からなる制御部30とにより構成されている。
【0020】
つまり、従来装置100と比較して、受信部20では、コンパレータ29の代わりに微分回路27,トリガ信号生成回路28が設けられ、制御部30では、往復時間選択部33が追加されている。
そして、図2に示すように、受信部20では、検波器26によって復調された復調信号を、微分回路27が微分することにより、復調信号の信号レベルが瞬時的に変化する変化点を表す微分信号を生成し、トリガ信号生成回路28が、この微分信号が表す変化点のタイミング毎に信号レベルが反転するトリガ信号を生成する。
【0021】
このトリガ信号に基づき、制御部30の時間差計測回路32では、送信パルス信号Psの立ち上がりエッジから、トリガ信号の信号レベルが反転する各エッジ(即ち、復調信号の変化点)までの時間(T1〜T4)をそれぞれ測定し、その測定結果に基づき、往復時間選択部33は、各測定結果を、両者の時間差が送信パルス信号Psのパルス幅とほぼ同じとなるようなもの同士で組み合わせ、その組み合わせた一対の測定時間のうち値の小さい方を、レーダ波がターゲットまでの距離を往復するのに要した往復時間を表す時間データとして抽出する。
【0022】
即ち、図2では、T1とT3、T2とT4が組み合わされ、そのうち値の小さいT1,T2が、時間データとして抽出されることになる。
以上説明したように、本実施形態のレーダ装置1では、レーダ波の受信信号(IF信号)を復調してなる復調信号を、単純に波形整形するのではなく、復調信号の信号レベルが変化する変化点を抽出し、この変化点のタイミングで、時間の計測を行うようにされている。つまり、複数のレーダ波が重なり合って受信された時には、レーダ波の重なりが始まったタイミング(即ち、後で受信したレーダ波の受信タイミング)や重なりが終わったタイミング(即ち、先に受信したレーダ波が消滅したタイミング)も、この変化点として検出される。
【0023】
このように、本実施形態のレーダ装置1によれば、複数のレーダ波が重なり合って受信されたとしても、各レーダ波の受信タイミングを個別に抽出でき、それぞれについて時間測定を行うことが可能なため、レーダ波(送信パルス信号Ps)のパルス幅を短くすることなく、実質的な距離分解能を向上させることができる。
【0024】
しかも本実施形態のレーダ装置1では、送信パルス信号Psのパルス幅分の時間差を有する測定結果を組み合わせることにより、組み合わせる相手のない孤立したタイミングがノイズとして除去されるため、時間データの信頼性を向上させることができる。
【0025】
なお、本実施形態において、トリガ信号生成回路28は、微分信号のタイミングで信号レベルが反転するトリガ信号を生成しているが、例えば、図2(f)に示すように、微分信号を整流して波形整形することで生成される信号を、トリガ信号としてもよい。但し、この場合、時間差計測回路32は、トリガ信号の立ち上がりエッジのみを時間差計測に用いるように構成する必要がある。
【0026】
また、上記実施形態において、送信部10及び受信部20の受信アンテナ21〜検波器26までの構成が送受信手段、微分回路27,トリガ信号生成回路28が変化点検出手段、時間差計測回路32が計時手段、往復時間選択部33が時間データ抽出手段に相当する。
【図面の簡単な説明】
【図1】 実施形態のレーダ装置の構成を表すブロック図である。
【図2】 主要部の動作を説明するためのタイミング図である。
【図3】 従来装置の構成を表すブロック図である。
【図4】 従来装置の問題点を説明するためのタイミング図である。
【符号の説明】
1…レーダ装置、10…送信部、11…送信アンテナ、12…スイッチ、13…発振器、20…受信部、21…受信アンテナ、22…ローノイズアンプ、23…ミキサ、24…ローカル発振器、25…IFアンプ、26…検波器、27…微分回路、28…トリガ信号生成回路、28…波形整形回路、29…コンパレータ、30…制御部、31…パルス発生器、32…時間差計測回路、33…往復時間選択部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radar apparatus that detects a target by transmitting and receiving pulsed radar waves.
[0002]
[Prior art]
Conventionally, a pulse-type radar device (hereinafter referred to as “pulse radar”) is known as one of radar devices that detect a target by transmitting and receiving radar waves.
[0003]
Here, FIG. 3 is a block diagram showing a general configuration of the pulse radar 100.
As shown in FIG. 3, the pulse radar includes atransmission unit 110 including a transmission antenna 11, a switch 12, and an oscillator 13, areception antenna 21, alow noise amplifier 22, amixer 23, alocal oscillator 24, anIF amplifier 25, adetector 26, The receiving unit 120 includes acomparator 29, and a control unit 130 includes apulse generator 31 and a timedifference measuring circuit 32.
[0004]
In thetransmission unit 110, the switch 12 operates in accordance with the transmission pulse signal Ps generated by thepulse generator 31 of the control unit 130, and the high-frequency signal generated by the oscillator 13 is generated only during the period of the pulse width of the transmission pulse signal Ps. By supplying the transmission antenna 11, the transmission antenna 11 is caused to transmit a pulsed radar wave.
[0005]
Further, in the receiving unit 120, the radar signal received by thereceiving antenna 21 is amplified by thelow noise amplifier 22 and mixed with the local signal from thelocal oscillator 24 by themixer 23, so that the intermediate frequency band is obtained. Down-convert to signal (IF signal). After the IF signal is amplified by theIF amplifier 25, thedetector 26 demodulates the signal by performing envelope detection, and the demodulated signal is shaped by thecomparator 29 to generate the received pulse signal Pr. .
[0006]
In the control unit 130, thepulse generator 31 supplies the transmission pulse signal Ps to thetransmission unit 110 and also to the timedifference measurement circuit 32, and the timedifference measurement circuit 32 transmits the transmission pulse signal Ps from thepulse generator 31. And the time difference between the received pulse signal Pr from the receiving unit 120 and the time required for the radar wave to travel back and forth the distance to the target.
[0007]
And the distance R to a target is calculated | required from the measurement result t of this round-trip time using following Formula (1).
R = C · (t−t0) / 2 (1)
However, C is the speed of light, C = 3 × 108 m / s, and t0 is a signal delay in the circuit.
[0008]
[Problems to be solved by the invention]
By the way, when the pulse radar is used as, for example, an on-vehicle radar for periphery monitoring, it is necessary to perform a collision determination, and thus high distance resolution (at least several tens of centimeters) is required. In the pulse radar, the distance resolution can be increased as the pulse width of the radar wave (transmission pulse signal Ps) is shortened, while the occupied bandwidth of the radar wave is increased as the pulse width is shortened. For example, when trying to obtain a distance resolution of about 10 cm, the occupied bandwidth reaches several GHz.
[0009]
On the other hand, in the standard (ARIB STD-T73) regarding the radio equipment for the specific low power radio station mobile object detection sensor, the band condition in the 24 GHz band applied to such an in-vehicle radar is 76 MHz or less.
In other words, if this band condition is satisfied, the distance resolution is on the order of several meters, and there is a problem that it cannot be used for applications that require high resolution such as in-vehicle radar.
[0010]
That is, when there are two targets and the distance difference to each target is shorter than the distance resolution, the reflected waves from these targets are transmitted at a time interval shorter than the pulse width of the transmission pulse signal Ps as shown in FIG. A demodulated signal that is received and demodulated by thedetector 26 is a signal in which signals from each target overlap each other. When this signal is shaped by thecomparator 29, a single reception pulse signal Pr having a large pulse width is generated, and the reception timing of the reflected wave received late is lost, which becomes the reflection source. The target distance cannot be detected.
[0011]
In order to solve the above problems, the present invention improves the distance resolution without increasing the occupied bandwidth of the radar wave in the radar device that detects the target distance by transmitting and receiving pulsed radar waves. The purpose is to let you.
[0012]
[Means for Solving the Problems]
In the radar apparatus according toclaim 1, which is an invention for achieving the above object, the transmitting / receiving means transmits a pulsed radar wave according to the input transmission pulse signal and generates a demodulated signal based on the received radar wave. The change point detecting means detects the change point of the signal level of the demodulated signal, and the time measuring means calculates the time from the transmission timing of the radar wave by the transmission pulse signal to the change point detected by the change point detecting means. measure. Then, the time data extracting meanscombines the measurement results with those having a time difference by the pulse width of the transmission pulse signal, and the smaller of the pair of measurement results is added to the radar waveto the target. Itis extractedas time data representing the round-trip time.
[0013]
That is, the demodulated signal based on two radar waves received at an interval shorter than the pulse width of the transmission pulse signal has a waveform obtained by combining the two pulses, and the signal is received at the reception timing of the previously received radar wave. The signal level changes at the reception timing of the radar wave that was received later, and then the signal level changed again at the disappearance timing of the radar wave that was received earlier, and the signal rises at the disappearance timing of the radar wave that was received later. Go down.
[0014]
In this way, the change point where the signal level of the demodulated signal changes includes the reception timing of both radar waves, so that the time resolution is measured at the timing of these change points, so that the distance resolution It becomes possible to individually detect the distances of a plurality of targets having the following distance difference.
[0015]
Therefore, according to the radar apparatus of the present invention, it is possible to improve the substantial distance resolution without shortening the pulse width of the radar wave and increasing the occupied bandwidth of the radar wave.
[0016]
In the demodulated signal, change points appear at the rising edge and falling edge of each pulse. Therefore, it is considered that an isolated change point with no counterpart is a noise,but according to the radar apparatus of the present invention, Since the time data extraction means removes this, the reliability ofthe time data can be improved.
[0017]
As the change point detecting means, for example, a differentiating circuit can be used as described inclaim2 .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of an on-vehicle monitoring radar (hereinafter simply referred to as “radar device”) to which the present invention is applied. Note that the radar apparatus of this embodiment is only partially different from the conventional apparatus shown in FIG. 3, and therefore, the same components are denoted by the same reference numerals and the description thereof is omitted. The description will focus on the differences.
[0019]
As shown in FIG. 1, theradar apparatus 1 according to this embodiment includes atransmission unit 10 including a transmission antenna 11, a switch 12, and an oscillator 13, areception antenna 21, alow noise amplifier 22, amixer 23, alocal oscillator 24, and anIF amplifier 25. , Adetector 26, adifferentiation circuit 27, a trigger signal generation circuit 28, and acontrol unit 30 including apulse generator 31, a timedifference measurement circuit 32, and a round trip time selection unit 33.
[0020]
That is, as compared with the conventional apparatus 100, the receivingunit 20 is provided with adifferentiation circuit 27 and a trigger signal generation circuit 28 instead of thecomparator 29, and thecontrol unit 30 is added with a round trip time selection unit 33.
As shown in FIG. 2, in the receivingunit 20, the demodulated signal demodulated by thedetector 26 is differentiated by the differentiatingcircuit 27, so that a differential point representing a change point at which the signal level of the demodulated signal changes instantaneously. A signal is generated, and the trigger signal generation circuit 28 generates a trigger signal whose signal level is inverted at each change point timing represented by the differential signal.
[0021]
Based on this trigger signal, the timedifference measuring circuit 32 of thecontrol unit 30 has a time (T1 to T1) from the rising edge of the transmission pulse signal Ps to each edge where the signal level of the trigger signal is inverted (ie, the changing point of the demodulated signal). T4) is measured, and based on the measurement results, the round-trip time selection unit 33 combines the measurement results with those whose time difference is substantially the same as the pulse width of the transmission pulse signal Ps. The smaller value of the pair of measurement times is extracted as time data representing the round trip time required for the radar wave to travel back and forth the distance to the target.
[0022]
That is, in FIG. 2, T1 and T3 and T2 and T4 are combined, and T1 and T2 having a small value are extracted as time data.
As described above, in theradar apparatus 1 of the present embodiment, the demodulated signal obtained by demodulating the received signal (IF signal) of the radar wave is not simply waveform-shaped, but the signal level of the demodulated signal changes. A change point is extracted, and time is measured at the timing of the change point. That is, when a plurality of radar waves are received in an overlapping manner, the timing at which the radar waves overlap (ie, the reception timing of the radar wave received later) and the timing at which the overlap ends (ie, the radar wave received earlier). Is also detected as this change point.
[0023]
Thus, according to theradar apparatus 1 of the present embodiment, even when a plurality of radar waves are received in an overlapping manner, the reception timing of each radar wave can be individually extracted, and time measurement can be performed for each of them. Therefore, substantial distance resolution can be improved without shortening the pulse width of the radar wave (transmission pulse signal Ps).
[0024]
Moreover, in theradar apparatus 1 of the present embodiment, by combining measurement results having a time difference corresponding to the pulse width of the transmission pulse signal Ps, isolated timing with no partner to be combined is removed as noise, so the reliability of time data is improved. Can be improved.
[0025]
In the present embodiment, the trigger signal generation circuit 28 generates a trigger signal whose signal level is inverted at the timing of the differential signal. For example, as shown in FIG. The signal generated by shaping the waveform may be used as a trigger signal. However, in this case, the timedifference measurement circuit 32 needs to be configured to use only the rising edge of the trigger signal for time difference measurement.
[0026]
Moreover, in the said embodiment, the structure from the receiving antenna 21-thedetector 26 of thetransmission part 10 and the receivingpart 20 is a transmission / reception means, thedifferentiation circuit 27, the trigger signal generation circuit 28 is a change point detection means, and the timedifference measurement circuit 32 is a time measuring. The round trip time selector 33 corresponds to time data extraction means.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a radar apparatus according to an embodiment.
FIG. 2 is a timing chart for explaining the operation of the main part.
FIG. 3 is a block diagram showing a configuration of a conventional apparatus.
FIG. 4 is a timing diagram for explaining problems of the conventional device.
[Explanation of symbols]
DESCRIPTION OFSYMBOLS 1 ... Radar apparatus, 10 ... Transmission part, 11 ... Transmission antenna, 12 ... Switch, 13 ... Oscillator, 20 ... Reception part, 21 ... Reception antenna, 22 ... Low noise amplifier, 23 ... Mixer, 24 ... Local oscillator, 25 ...IF Amplifier 26Reference detector 27 Differential circuit 28 Trigger signal generation circuit 28Waveform shaping circuit 29Comparator 30Control unit 31Pulse generator 32 Time difference measurement circuit 33 Round trip time Selection part.

Claims (2)

Translated fromJapanese
送信パルス信号の入力によりパルス状のレーダ波を送信し、レーダ波を受信すると、その受信信号を復調してなる復調信号を生成する送受信手段と、
該送受信手段が生成する復調信号の信号レベルの変化点を検出する変化点検出手段と、
前記送信パルス信号によるレーダ波の送信タイミングから、前記変化点検出手段が検出した各変化点までの時間を計測する計時手段と、
該計時手段での計測結果を、前記送信パルス信号のパルス幅だけ時間差を有するもの同士で組合せ、組み合わされた一対の計測結果のうち値の小さい方を、ターゲットまでのレーダ波の往復時間を表す時間データとして抽出する時間データ抽出手段と、
を備えることを特徴とするレーダ装置。
Transmitting and receiving means for transmitting a pulsed radar wave by inputting a transmission pulse signal and generating a demodulated signal obtained by demodulating the received signal when receiving the radar wave;
Change point detection means for detecting a change point of the signal level of the demodulated signal generated by the transmission / reception means;
Time measuring means for measuring the time from the transmission timing of the radar wave by the transmission pulse signal to each change point detected by the change point detection means;
The measurement results of the time measuring meansare combined with those having a time difference by the pulse width of the transmission pulse signal, and the smaller value of the paired measurement results represents the round trip time of the radar waveto the target. Time data extracting meansfor extracting as time data;
A radar apparatus comprising:
前記変化点検出手段は、微分回路からなることを特徴とする請求項1記載のレーダ装置。It said change point detection means, according to claim1 Symbol placement of a radar system characterized by comprising the differentiating circuit.
JP2002109532A2002-04-112002-04-11 Radar equipmentExpired - Fee RelatedJP3818204B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP2002109532AJP3818204B2 (en)2002-04-112002-04-11 Radar equipment

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP2002109532AJP3818204B2 (en)2002-04-112002-04-11 Radar equipment

Publications (2)

Publication NumberPublication Date
JP2003302463A JP2003302463A (en)2003-10-24
JP3818204B2true JP3818204B2 (en)2006-09-06

Family

ID=29392971

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP2002109532AExpired - Fee RelatedJP3818204B2 (en)2002-04-112002-04-11 Radar equipment

Country Status (1)

CountryLink
JP (1)JP3818204B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP4443939B2 (en)*2004-01-132010-03-31日本信号株式会社 Reception time measuring device and distance measuring device using the same
US7492311B2 (en)2004-02-242009-02-17Tdk CorporationPulse wave radar device
JP4994023B2 (en)*2006-12-252012-08-08富士重工業株式会社 Pulse radar, automotive radar and landing assist radar
KR100971773B1 (en)*2009-11-132010-07-21엘아이지넥스원 주식회사Signal discriminating method of elint receiver
US10451713B2 (en)*2016-09-162019-10-22Analog Devices, Inc.Interference handling in time-of-flight depth sensing
JP7039309B2 (en)*2018-02-072022-03-22株式会社東芝 Radar and guidance system

Also Published As

Publication numberPublication date
JP2003302463A (en)2003-10-24

Similar Documents

PublicationPublication DateTitle
CA1332458C (en)Distance and level measuring system
JP4492628B2 (en) Interference judgment method, FMCW radar
JP4854003B2 (en) Ranging system
US5115242A (en)In-furnace slag level measuring apparatus
US20060066485A1 (en)Wireless tracking system based upon phase differences
JP4302746B2 (en) Combined mode radar device
JP2008122137A (en) Radar equipment
JP3818204B2 (en) Radar equipment
JP2008089505A (en) Radar equipment
JP4630735B2 (en) Radio station distance measurement method
JP3611115B2 (en) Ranging device and radar device equipped with the ranging device
JP2006226847A (en) Wireless sensing device and wireless sensing method
JP2017173114A (en) Distance measuring system and distance measuring method
JP4937805B2 (en) RADIO COMMUNICATION DEVICE AND DISTANCE MEASURING METHOD IN RADIO COMMUNICATION DEVICE
JP3619811B2 (en) Pulse radar equipment
JP2019194627A (en)Radar signal processor and radar device
JP2016125945A (en)Radar signal processor and radar device
JP2000171556A (en) Radar equipment for vehicles
JP2006125947A (en)Radar system
KR100643939B1 (en) Radar device and radar distance measuring method
JP4609742B2 (en) Subsurface radar exploration device and exploration data collection method
JP2003222673A (en) Distance measuring device and distance measuring method
JP2006275658A (en)Pulse-wave radar device
JPH11183613A (en) Radar equipment for vehicles
JP2962983B2 (en) CW Doppler measurement radar device

Legal Events

DateCodeTitleDescription
A621Written request for application examination

Free format text:JAPANESE INTERMEDIATE CODE: A621

Effective date:20040608

A977Report on retrieval

Free format text:JAPANESE INTERMEDIATE CODE: A971007

Effective date:20051003

A131Notification of reasons for refusal

Free format text:JAPANESE INTERMEDIATE CODE: A131

Effective date:20060207

A521Written amendment

Free format text:JAPANESE INTERMEDIATE CODE: A523

Effective date:20060329

TRDDDecision of grant or rejection written
A01Written decision to grant a patent or to grant a registration (utility model)

Free format text:JAPANESE INTERMEDIATE CODE: A01

Effective date:20060523

A61First payment of annual fees (during grant procedure)

Free format text:JAPANESE INTERMEDIATE CODE: A61

Effective date:20060605

R150Certificate of patent (=grant) or registration of utility model

Free format text:JAPANESE INTERMEDIATE CODE: R150

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090623

Year of fee payment:3

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100623

Year of fee payment:4

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100623

Year of fee payment:4

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110623

Year of fee payment:5

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110623

Year of fee payment:5

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120623

Year of fee payment:6

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120623

Year of fee payment:6

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20130623

Year of fee payment:7

FPAYRenewal fee payment (prs date is renewal date of database)

Free format text:PAYMENT UNTIL: 20140623

Year of fee payment:8

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp