Movatterモバイル変換


[0]ホーム

URL:


JP3488953B2 - Absorption type simultaneous cooling / heating water supply type heat pump - Google Patents

Absorption type simultaneous cooling / heating water supply type heat pump

Info

Publication number
JP3488953B2
JP3488953B2JP33657594AJP33657594AJP3488953B2JP 3488953 B2JP3488953 B2JP 3488953B2JP 33657594 AJP33657594 AJP 33657594AJP 33657594 AJP33657594 AJP 33657594AJP 3488953 B2JP3488953 B2JP 3488953B2
Authority
JP
Japan
Prior art keywords
condenser
absorber
heat
absorption
source fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33657594A
Other languages
Japanese (ja)
Other versions
JPH08178455A (en
Inventor
教之 西山
秀俊 有馬
敏宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co LtdfiledCriticalSanyo Electric Co Ltd
Priority to JP33657594ApriorityCriticalpatent/JP3488953B2/en
Publication of JPH08178455ApublicationCriticalpatent/JPH08178455A/en
Application grantedgrantedCritical
Publication of JP3488953B2publicationCriticalpatent/JP3488953B2/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式ヒートポンプに係
わり、特に詳しくは空調や給湯などのために冷熱源流体
(例えば、冷水)と温熱源流体(例えば、温水)を同時
に供給することのできる吸収式冷温水同時供給型ヒート
ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump, and more particularly, it is possible to supply a cold heat source fluid (for example, cold water) and a hot heat source fluid (for example, hot water) simultaneously for air conditioning and hot water supply. The present invention relates to an absorption type cold / hot water simultaneous supply type heat pump.

【0002】[0002]

【従来の技術】この種の装置としては、例えば図4に示
した構成の臭化リチウム水溶液を吸収液とする二重効用
吸収式ヒートポンプが周知である。図中1はガス・灯油
などの燃焼装置2を備え、稀液を加熱することによって
冷媒(この場合は水)蒸気を発生させて中間液に濃縮す
る高温再生器、3はこの再生器からの冷媒蒸気で中間液
を加熱して濃液にする低温再生器、4は前記両再生器1
・3からの冷媒蒸気を冷却して凝縮する凝縮器、5は冷
媒分配器6から冷媒液を散布・滴下などして蒸発させる
蒸発器、7はこの蒸発器からの冷媒蒸気を前記低温再生
器3からの濃液に吸収させて器内を低圧に維持する吸収
器、8および9は低温および高温熱交換器で、これらは
中間液管10、濃液管11、吸収液ポンプ12を有する
稀液管13、冷媒導管14、冷媒液管15により接続さ
れて、冷媒と吸収液の循環サイクルを形成している。
2. Description of the Related Art As a device of this type, a double-effect absorption heat pump having an aqueous lithium bromide solution as shown in FIG. 4 is well known. In the figure, 1 is equipped with a combustion device 2 for gas, kerosene, etc., and a high-temperature regenerator for generating a refrigerant (water in this case) vapor by heating a dilute liquid and concentrating it into an intermediate liquid, 3 are from this regenerator. Low-temperature regenerator 4 that heats the intermediate liquid with refrigerant vapor to make it a concentrated liquid
A condenser for cooling and condensing the refrigerant vapor from 3 and 5 an evaporator for evaporating the refrigerant liquid from the refrigerant distributor 6 by spraying, dropping, etc. 7 a low temperature regenerator for the refrigerant vapor from this evaporator Absorbers for absorbing the concentrated liquid from 3 to maintain a low pressure inside the container, 8 and 9 are low temperature and high temperature heat exchangers, which have an intermediate liquid pipe 10, a concentrated liquid pipe 11 and an absorbent liquid pump 12. The liquid pipe 13, the refrigerant pipe 14, and the refrigerant liquid pipe 15 are connected to form a circulation cycle of the refrigerant and the absorbing liquid.

【0003】そして、蒸発器6の内部を経由して配管し
た冷水管16を介して冷房用の冷水と、吸収器7・凝縮
器4の内部を経由して配管した冷却水管17を介して暖
房用や給湯用の温水が同時に供給できるようになってい
る。
[0003] Then, cold water for cooling is provided through a cold water pipe 16 which is provided through the inside of the evaporator 6, and heating is provided through a cooling water pipe 17 which is provided through the inside of the absorber 7 and the condenser 4. Hot water for hot water and hot water can be supplied at the same time.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記構成の臭
化リチウム水溶液を吸収液とした従来の吸収式ヒートポ
ンプにおいては、空調用冷水(7℃程度)の製造と同時
に暖房用あるいは給湯用の温水(45℃程度)を製造す
る場合は、吸収液の結晶化の問題があるため濃度を極端
に高めることが困難であり、このため機器の伝熱面積を
大きく選定する必要があって、コスト高になると云った
問題点があり、この点の解決が課題となっていた。
However, in the conventional absorption heat pump using the aqueous solution of lithium bromide having the above-mentioned constitution, the hot water for heating or hot water supply is produced at the same time as the production of cold water for air conditioning (about 7 ° C.). When manufacturing (about 45 ° C), it is difficult to raise the concentration extremely because of the problem of crystallization of the absorbing liquid, and therefore it is necessary to select a large heat transfer area for the equipment, resulting in high cost. There was a problem that was said to be, and the solution to this point was a problem.

【0005】[0005]

【0006】[0006]

【課題を解決するための手段】本発明は上記した従来技
術の課題を解決するためになされたもので、吸収器・蒸
発器・凝縮器・再生器・熱交換器・吸収液ポンプなどを
配管接続して冷媒と吸収液の循環サイクルを形成し、晶
出限界温度を高める中性塩を複数種含有する水−臭化リ
チウム溶液を吸収液とすると共に、蒸発器からの冷熱源
流体の供給と吸収器・凝縮器からの温熱源流体の供給を
同時に可能とし、さらに温熱源流体が凝縮器・吸収器の
順に熱交換して循環するように設けた第1の構成の吸収
式冷温水同時供給型ヒートポンプと、
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, in which an absorber, an evaporator, a condenser, a regenerator, a heat exchanger, an absorption liquid pump, and the like are piped. A water-lithium bromide solution containing a plurality of neutral salts that raises the crystallization limit temperature is used as an absorption liquid, and a cold heat source fluid is supplied from an evaporator. And the absorption-type cold / hot water of the first configuration, which enables simultaneous supply of the heat-source fluid from the absorber / condenser, and is arranged so that the heat-source fluid circulates by exchanging heat in the order of the condenser / absorber. Supply type heat pump,

【0007】 吸収器・蒸発器・凝縮器・再生器・熱交
換器・吸収液ポンプなどを配管接続して冷媒と吸収液の
循環サイクルを形成し、晶出限界温度を高める中性塩を
複数種含有する水−臭化リチウム溶液を吸収液とすると
共に、蒸発器からの冷熱源流体の供給と吸収器・凝縮器
からの温熱源流体の供給を同時に可能とし、さらに温熱
源流体の略半分が吸収器で熱交換して凝縮器をバイパス
し、残余の略半分が凝縮器で熱交換して吸収器をバイパ
スし循環するように設けた第2の構成の吸収式冷温水同
時供給型ヒートポンプと、を提供することにより、前記
従来技術の課題を解決するものである。
[0007] Plural neutral salts for increasing the crystallization limit temperature by forming a circulation cycle of the refrigerant and the absorbing liquid by connecting pipes of an absorber, an evaporator, a condenser, a regenerator, a heat exchanger, an absorbing liquid pump, etc. A water-lithium bromide solution containing seeds is used as an absorption liquid, and it is possible to supply the cold heat source fluid from the evaporator and the hot heat source fluid from the absorber / condenser at the same time. The second type absorption heat pump for simultaneous supply of cold / hot water, wherein the heat is exchanged by the absorber to bypass the condenser, and the remaining approximately half is exchanged by the condenser to bypass the absorber and circulate. By providing the following, the above-mentioned problems of the prior art are solved.

【0008】[0008]

【0009】[0009]

【作用】第1の構成の吸収式冷温水同時供給型ヒートポ
ンプにおいては、複数の中性塩が添加されて晶出限界温
度が臭化リチウム水溶液のときより上昇可能であるの
で、大気圧力下で吸収液を高濃度に保って行う運転が可
能であり、したがって伝熱面積を減らして装置の小型化
を図ることができる。また、凝縮器内の温度と圧力は、
温熱源流体が吸収器・凝縮器の順に熱交換する従来の吸
収式ヒートポンプほど上昇しないので、再生圧力の低下
と吸収液の高濃度化が図れる。すなわち、大気圧力下の
運転で吸収液濃度を充分に上昇させることが可能であ
り、且つ、複数の中性塩添加により晶出限界温度を臭化
リチウム水溶液のときより上昇させる高濃度運転も可能
であるので、小型化された装置の更なる小型化が図れ
る。
In the absorption-type cold / hot water simultaneous supply type heat pump of the first structure, since a plurality of neutral salts are added and the crystallization limit temperature can be increased more than that of the lithium bromide aqueous solution, it can be kept under atmospheric pressure. It is possible to perform the operation in which the absorption liquid is kept at a high concentration, and therefore the heat transfer area can be reduced and the device can be downsized. Also, the temperature and pressure inside the condenser are
Since the heat source fluid does not rise as much as the conventional absorption heat pump that exchanges heat in the order of the absorber and the condenser, it is possible to reduce the regeneration pressure and increase the concentration of the absorbing liquid. That is, it is possible to sufficiently increase the concentration of the absorbing solution by operating under atmospheric pressure, and it is also possible to perform high-concentration operation in which the crystallization limit temperature is increased by adding a plurality of neutral salts compared to the case of the lithium bromide aqueous solution. Therefore, the miniaturized device can be further miniaturized.

【0010】 また、第2の構成の吸収式冷温水同時供
給型ヒートポンプでも、一般に吸収器で冷媒が吸収液に
吸収される時に生じる発熱量より、凝縮器で冷媒蒸気を
凝縮する為に必要とされる熱量の方が少ないので、凝縮
器内の温度と圧力が温熱源流体の全量を吸収器・凝縮器
の順に熱交換して流れる従来の吸収式ヒートポンプほど
上昇せず、したがってこの場合も再生圧力の低下と吸収
液の高濃度化が図れることから、前記第1の構成の吸収
式冷温水同時供給型ヒートポンプと同様の作用効果によ
り装置の小型化が図れる。
In addition, even in the absorption-type cold / hot water simultaneous supply heat pump of the second configuration, it is generally necessary for the condenser to condense the refrigerant vapor from the calorific value generated when the refrigerant is absorbed by the absorbing liquid in the absorber. Since less heat is generated, the temperature and pressure in the condenser do not rise as much as the conventional absorption heat pump that flows by exchanging the entire amount of the heat source fluid in the order of the absorber and the condenser. Since the pressure can be reduced and the concentration of the absorbing liquid can be increased, the device can be downsized by the same operational effect as the absorption-type cold / hot water simultaneous supply heat pump of the first configuration.

【0011】[0011]

【実施例】以下、本発明を図1〜図3に基づいてさらに
詳しく説明する。これらの図において前記図4の符号と
同一符号で示した部分は、図4によって説明したものと
同様の機能を持つ部分であり、本発明の理解を妨げない
範囲で説明は省略した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to FIGS. In these figures, the parts denoted by the same reference numerals as those in FIG. 4 have the same functions as those described with reference to FIG. 4, and description thereof has been omitted within the range that does not hinder the understanding of the present invention.

【0012】 (実施例1)図1に基づいて本発明の第1の実施例を説明すると、こ
の吸収式冷温水同時供給型ヒートポンプは各機器の配置
・連結などでは前記図4に示した従来の二重効用吸収式
ヒートポンプと殆ど同じ構成であるが、冷却水管17を
流れて図示しない暖房負荷や給湯負荷(以下、暖房負荷
などと云う)に対する仕事で放熱し、例えば40℃に温
度が低下して還流してきた暖房用の温熱源流体、例えば
温水が凝縮器4・吸収器7の順に流入して器内を冷却
し、温水自身の温度を高めて流出するように配管接続す
ると共に、吸収液に従来の単純な臭化リチウム水溶液を
使用するのではなく、晶出限界温度を高めることのでき
る中性塩、例えば沃化リチウム、塩化リチウム、硝酸リ
チウムを臭化リチウム100に対してそれぞれ75、4
1、25の比率(モル比)で添加した水溶液を使用する
構成としたものである。
(First Embodiment) A first embodiment of the present invention will be described with reference to FIG. 1. This absorption-type cold / hot water simultaneous supply heat pump has the conventional structure shown in FIG. Although it has almost the same structure as the double-effect absorption heat pump, it flows through the cooling water pipe 17 and radiates heat by work against a heating load or hot water supply load (hereinafter referred to as a heating load, etc.) not shown, and the temperature drops to, for example, 40 ° C. The warm heat source fluid for heating, which has recirculated, for example, warm water, flows in the order of the condenser 4 and the absorber 7 to cool the inside of the condenser, and the temperature of the warm water itself is increased. Instead of using a conventional simple aqueous solution of lithium bromide, a neutral salt capable of increasing the crystallization limit temperature, such as lithium iodide, lithium chloride, or lithium nitrate, is added to 100 parts of lithium bromide. 5,4
It is configured to use an aqueous solution added at a ratio of 1 to 25 (molar ratio).

【0013】このため、図2に実線にて示した上記第1
の実施例の二重効用吸収式冷温水同時供給型ヒートポン
プにおける晶出限界ラインaは、例えば12℃に温度上
昇して蒸発器5に還流してきた冷房用の冷熱源流体、例
えば冷水を7℃に冷却して冷水管16から図示しない冷
房負荷に供給する一方、40℃に温度低下して凝縮器4
・吸収器7に還流した温水を45℃に加熱して冷却水管
17から図示しない暖房負荷などに供給する時の運転で
比較すると、図2に破線で示した吸収液に臭化リチウム
水溶液を使用した従来の二重効用吸収式ヒートポンプの
晶出限界ラインbよりも、図2に示したように10℃程
度緩和されており、濃溶液濃度と晶出限界ラインa(晶
出限界濃度)との差が拡大し、本発明の方が従来技術よ
り結晶化し難くなっていることが分かる。
For this reason, the first line indicated by the solid line in FIG.
The crystallization limit line a in the double-effect absorption-type cold / hot water simultaneous supply type heat pump according to the embodiment of the present invention is, for example, a cooling heat source fluid for cooling, which has been heated to 12 ° C. and recirculated to the evaporator 5, for example, 7 ° C. While cooling to 40 ° C. and supplying it to the cooling load (not shown) from the cold water pipe 16, the temperature drops to 40 ° C. and the condenser 4
When comparing the operation of heating the warm water refluxed to the absorber 7 to 45 ° C. and supplying it from the cooling water pipe 17 to a heating load (not shown), etc., an aqueous lithium bromide solution is used for the absorbing liquid shown by the broken line in FIG. The crystallization limit line b of the conventional double-effect absorption heat pump is relaxed by about 10 ° C. as shown in FIG. 2, and the concentration of the concentrated solution and the crystallization limit line a (crystallization limit concentration) are It can be seen that the difference increases and that the present invention is more difficult to crystallize than the prior art.

【0014】また、図2に示したサイクル線図からは、
符号Aで実線にて示した本発明の二重効用吸収式冷温水
同時供給型ヒートポンプの方が、符号Bで破線にて示し
た従来の二重効用吸収式ヒートポンプよりも、再生圧力
の低下と高濃度化が図られていることが分かる。したが
って、本発明の吸収式冷温水同時供給型ヒートポンプに
おいては、伝熱面積を減少したり、大気圧力下で吸収液
濃度を充分に上昇させることができることから、従来の
吸収式ヒートポンプよりも装置の小型化が図れる。
From the cycle diagram shown in FIG. 2,
The double-effect absorption cold / hot water simultaneous supply type heat pump of the present invention indicated by the solid line with the symbol A has a lower regeneration pressure than the conventional double-effect absorption heat pump indicated by the dashed line with the symbol B. It can be seen that the concentration is increased. Therefore, in the absorption-type cold / hot-water simultaneous supply heat pump of the present invention, the heat transfer area can be reduced, or the absorption liquid concentration can be sufficiently increased under atmospheric pressure. Can be miniaturized.

【0015】(実施例2)図3に基づいて本発明の第2
の実施例を説明すると、この第2の実施例の吸収式冷温
水同時供給型ヒートポンプは、前記第1の実施例と同一
の溶液を吸収液に用い、冷却水管17を流れて図示しな
い暖房負荷などに対する仕事で放熱し、例えば40℃に
温度低下して還流してきた暖房用の温熱源流体、例えば
温水の略半分が吸収器7に流れて凝縮器4をバイパス
し、残余の略半分が吸収器7をバイパスして凝縮器4に
流れるように構成した二重効用吸収冷温水同時供給型ヒ
ートポンプである。
(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG.
The absorption type cold / hot water simultaneous supply heat pump of the second embodiment uses the same solution as that of the first embodiment as the absorption liquid, and flows through the cooling water pipe 17 to cause a heating load (not shown). For example, about half of the warm heat source fluid for heating, which has recirculated after being cooled to 40 ° C., for example, warm water flows to the absorber 7 to bypass the condenser 4 and the remaining half is absorbed. It is a double-effect absorption cold / hot water simultaneous supply heat pump configured to bypass the vessel 7 and flow to the condenser 4.

【0016】通常、凝縮器4で冷媒蒸気を凝縮する為に
消費される冷熱は、吸収器7で冷媒が吸収液に吸収され
る時に生じる熱量に比較すると半分以下であるので、上
記のように40℃に温度低下して還流してきた温水の略
半分を凝縮器4に流すことにより、温水の全量を吸収器
7・凝縮器4の順に流入させていた従来の二重効用吸収
式ヒートポンプの場合より、凝縮器4内の温度と圧力が
低下する。
Normally, the cold heat consumed for condensing the refrigerant vapor in the condenser 4 is less than half the amount of heat generated when the refrigerant is absorbed in the absorbing liquid in the absorber 7, and therefore, as described above. In the case of the conventional double-effect absorption heat pump in which the entire amount of warm water is made to flow in the order of the absorber 7 and the condenser 4 by flowing approximately half of the warm water that has cooled to 40 ° C and has recirculated to the condenser 4. As a result, the temperature and pressure inside the condenser 4 decrease.

【0017】このため、この第2の実施例の吸収式冷温
水同時供給型ヒートポンプにおいても、再生圧力の低下
と高濃度化が前記第1の実施例の吸収式冷温水同時供給
型ヒートポンプと同様に図れることから、伝熱面積を減
少したり、大気圧力下で吸収液濃度を充分に上昇させる
ことが可能である。したがって、この場合も従来の吸収
式ヒートポンプより装置を小型化することができる。
Therefore, also in the absorption type cold / hot water simultaneous supply type heat pump of the second embodiment, the reduction of regeneration pressure and the increase in concentration are similar to those of the absorption type cold / hot water simultaneous supply type heat pump of the first embodiment. Therefore, it is possible to reduce the heat transfer area and sufficiently increase the concentration of the absorbing solution under atmospheric pressure. Therefore, also in this case, the device can be made smaller than the conventional absorption heat pump.

【0018】なお、本発明は上記実施例に限定されるも
のではないので、特許請求の範囲に記載の趣旨から逸脱
しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiments, various modifications can be made without departing from the spirit of the claims.

【0019】例えば、蒸発器5で冷却して冷房負荷に供
給する冷熱源流体としては、水以外にも低沸点熱媒(フ
ロン)などが使用できるし、凝縮器4・吸収器7で加熱
して暖房負荷などに供給する温熱源流体としても、水以
外に低沸点熱媒(フロン)などが使用できる。
For example, as the cold heat source fluid that is cooled in the evaporator 5 and supplied to the cooling load, a low boiling point heat medium (CFC) or the like can be used in addition to water, and the condenser 4 and the absorber 7 heat it. In addition to water, a low boiling point heat medium (CFC) can also be used as the heat source fluid that is supplied to the heating load.

【0020】また、蒸発器5で冷却して冷房負荷に供給
する冷熱源流体の温度が所定温度(例えば、7℃)にな
るように燃焼装置2の火力を調節するための制御手段、
前記冷熱源流体の温度とは独立して、凝縮器4・吸収器
7で加熱して暖房負荷などに供給する温熱源流体の温度
を所定温度(例えば、45℃)に調節するための配管や
制御手段などは、従来周知の技術がそのまま利用され
る。
Control means for adjusting the heating power of the combustion device 2 so that the temperature of the cold heat source fluid cooled by the evaporator 5 and supplied to the cooling load becomes a predetermined temperature (for example, 7 ° C.),
Pipes for adjusting the temperature of the hot heat source fluid, which is heated by the condenser 4 / absorber 7 and supplied to the heating load, to a predetermined temperature (for example, 45 ° C.), independently of the temperature of the cold heat source fluid, For the control means and the like, conventionally known techniques are used as they are.

【0021】[0021]

【0022】[0022]

【0023】[0023]

【発明の効果】以上説明したように、吸収器・蒸発器・
凝縮器・再生器・熱交換器・吸収液ポンプなどを配管接
続して冷媒と吸収液の循環サイクルを形成し、晶出限界
温度を高める中性塩を複数種含有する水−臭化リチウム
溶液を吸収液とすると共に、蒸発器からの冷熱源流体の
供給と吸収器・凝縮器からの温熱源流体の供給を同時に
可能とし、さらに温熱源流体が凝縮器・吸収器の順に熱
交換して循環するように設けた第1の構成の吸収式冷温
水同時供給型ヒートポンプにおいては、複数の中性塩が
添加されて晶出限界温度が臭化リチウム水溶液のときよ
り上昇可能であるので、大気圧力下で吸収液を高濃度に
保って行う運転が可能であり、したがって伝熱面積を減
らして装置の小型化を図ることができる。
As described above, the absorber / evaporator /
A water-lithium bromide solution containing multiple types of neutral salts that raises the crystallization limit temperature by connecting a condenser, regenerator, heat exchanger, absorption liquid pump, etc. to form a circulation cycle of refrigerant and absorption liquid. It is possible to supply the cold heat source fluid from the evaporator and the hot heat source fluid from the absorber / condenser at the same time, and the heat source fluid exchanges heat in the order of the condenser / absorber. In the absorption-type cold / hot-water simultaneous supply heat pump of the first configuration provided so as to circulate, since a plurality of neutral salts are added and the crystallization limit temperature can be increased more than in the case of the aqueous solution of lithium bromide, the atmosphere It is possible to perform an operation in which the absorption liquid is kept at a high concentration under pressure, and therefore, it is possible to reduce the heat transfer area and downsize the device.

【0024】 また、吸収器・蒸発器・凝縮器・再生器
・熱交換器・吸収液ポンプなどを配管接続して冷媒と吸
収液の循環サイクルを形成し、晶出限界温度を高める中
性塩を複数種含有する水−臭化リチウム溶液を吸収液と
すると共に、蒸発器からの冷熱源流体の供給と吸収器・
凝縮器からの温熱源流体の供給を同時に可能とし、さら
に温熱源流体の略半分が吸収器で熱交換して凝縮器をバ
イパスし、残余の略半分が凝縮器で熱交換して吸収器を
バイパスし循環するように設けた第2の構成の吸収式冷
温水同時供給型ヒートポンプにおいても、一般に吸収器
で冷媒が吸収液に吸収される時に生じる発熱量より、凝
縮器で冷媒蒸気を凝縮する為に必要とされる熱量の方が
少ないので、凝縮器内の温度と圧力が温熱源流体の全量
を吸収器・凝縮器の順に熱交換して流れる従来の吸収式
ヒートポンプほど上昇せず、したがって再生圧力の低下
と高濃度化が図れることから、この場合も前記第1の構
成の吸収式冷温水同時供給型ヒートポンプと同様の理由
で装置の小型化が図れる。
Further, a neutral salt for increasing a crystallization limit temperature by forming a circulation cycle of a refrigerant and an absorption liquid by connecting a pipe to an absorber, an evaporator, a condenser, a regenerator, a heat exchanger, an absorption liquid pump, etc. Water-lithium bromide solution containing multiple types of water is used as the absorption liquid, and the cold heat source fluid is supplied from the evaporator and
It is possible to supply the heat source fluid from the condenser at the same time, and about half of the heat source fluid exchanges heat with the absorber to bypass the condenser, and the remaining half of the heat exchange with the condenser to exchange the absorber. Also in the absorption-type cold / hot water simultaneous supply heat pump of the second configuration provided so as to bypass and circulate, the condenser vapor is generally condensed from the calorific value generated when the refrigerant is absorbed by the absorber in the absorber. Since the amount of heat required for this is smaller, the temperature and pressure in the condenser do not rise as much as the conventional absorption heat pump that flows by exchanging the entire amount of the heat source fluid in the order of the absorber and the condenser. Since the regeneration pressure can be lowered and the concentration can be increased, the device can be downsized also in this case for the same reason as the absorption-type cold / hot water simultaneous supply heat pump of the first configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の説明図である。FIG. 1 is an explanatory diagram of a first embodiment.

【図2】晶出限界ラインなどの説明図である。FIG. 2 is an explanatory diagram of a crystallization limit line and the like.

【図3】実施例2の説明図である。FIG. 3 is an explanatory diagram of a second embodiment.

【図4】従来技術の説明図である。FIG. 4 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1 高温再生器2 燃焼装置3 低温再生器4 凝縮器5 蒸発器7 吸収器8 低温熱交換器9 高温熱交換器10 中間液管11 濃液管12 吸収液ポンプ13 稀液管14 冷媒導管15 冷媒液管16 冷水管17 冷却水管18 冷媒ポンプa (本発明の)晶出限界ラインb (従来技術の)晶出限界ラインA (本発明の)サイクル線図B (従来技術の)サイクル線図1 High temperature regenerator2 Combustion device3 low temperature regenerator4 condenser5 evaporator7 absorber8 low temperature heat exchanger9 High temperature heat exchanger10 Intermediate liquid pipe11 concentrated tube12 Absorption liquid pump13 rare liquid tube14 Refrigerant conduit15 Refrigerant liquid pipe16 Cold water pipe17 Cooling water pipe18 Refrigerant pumpa Crystallization limit line (of the invention)b (Prior art) crystallization limit lineA Cycle diagram (of the invention)B (Prior art) cycle diagram

─────────────────────────────────────────────────────フロントページの続き (72)発明者 山田 敏宏 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭64−85280(JP,A) 特開 平1−198678(JP,A) 実開 平2−134462(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 303 F25B 15/00─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Yamada 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-64-85280 (JP, A) JP Flat 1-198678 (JP, A) Actual flat 2-134462 (JP, U) (58) Fields surveyed (Int.Cl.7 , DB name) F25B 15/00 303 F25B 15/00

Claims (2)

Translated fromJapanese
(57)【特許請求の範囲】(57) [Claims]【請求項1】吸収器・蒸発器・凝縮器・再生器・熱交換
器・吸収液ポンプなどを配管接続して冷媒と吸収液の循
環サイクルを形成し、晶出限界温度を高める中性塩を複
数種含有する水−臭化リチウム溶液を吸収液とすると共
に、蒸発器からの冷熱源流体の供給と吸収器・凝縮器か
らの温熱源流体の供給を同時に可能とし、さらに温熱源
流体が凝縮器・吸収器の順に熱交換して循環することを
特徴とする吸収式冷温水同時供給型ヒートポンプ。
1. A neutral salt which forms a circulation cycle of a refrigerant and an absorbent by connecting an absorber, an evaporator, a condenser, a regenerator, a heat exchanger, an absorbent pump, and the like to a circulating cycle of the refrigerant and the absorbent to raise a crystallization limit temperature. A water-lithium bromide solution containing a plurality of types is used as an absorption liquid, and at the same time, it is possible to supply the cold heat source fluid from the evaporator and the hot heat source fluid from the absorber / condenser, and An absorption-type cold / hot water simultaneous supply heat pump characterized by circulating heat in the order of a condenser and an absorber.
【請求項2】吸収器・蒸発器・凝縮器・再生器・熱交換
器・吸収液ポンプなどを配管接続して冷媒と吸収液の循
環サイクルを形成し、晶出限界温度を高める中性塩を複
数種含有する水−臭化リチウム溶液を吸収液とすると共
に、蒸発器からの冷熱源流体の供給と吸収器・凝縮器か
らの温熱源流体の供給を同時に可能とし、さらに温熱源
流体の略半分が吸収器で熱交換して凝縮器をバイパス
し、残余の略半分が凝縮器で熱交換して吸収器をバイパ
スし循環することを特徴とする吸収式冷温水同時供給型
ヒートポンプ。
2. A neutral salt for increasing a crystallization limit temperature by forming a circulation cycle of a refrigerant and an absorption liquid by connecting a pipe to an absorber, an evaporator, a condenser, a regenerator, a heat exchanger, an absorption liquid pump, and the like. Water-lithium bromide solution containing a plurality of types of as an absorption liquid, it is possible to supply the cold heat source fluid from the evaporator and the hot heat source fluid from the absorber / condenser at the same time. An absorption type cold / hot water simultaneous supply heat pump characterized in that approximately half of the heat is exchanged by an absorber to bypass the condenser, and approximately the other half is heat exchanged by a condenser to bypass the absorber and circulate.
JP33657594A1994-12-261994-12-26 Absorption type simultaneous cooling / heating water supply type heat pumpExpired - Fee RelatedJP3488953B2 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP33657594AJP3488953B2 (en)1994-12-261994-12-26 Absorption type simultaneous cooling / heating water supply type heat pump

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP33657594AJP3488953B2 (en)1994-12-261994-12-26 Absorption type simultaneous cooling / heating water supply type heat pump

Publications (2)

Publication NumberPublication Date
JPH08178455A JPH08178455A (en)1996-07-12
JP3488953B2true JP3488953B2 (en)2004-01-19

Family

ID=18300569

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP33657594AExpired - Fee RelatedJP3488953B2 (en)1994-12-261994-12-26 Absorption type simultaneous cooling / heating water supply type heat pump

Country Status (1)

CountryLink
JP (1)JP3488953B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN111780201A (en)*2020-07-012020-10-16双良节能系统股份有限公司Lithium bromide absorption type heat exchange system with three paths of water supplying heat simultaneously

Also Published As

Publication numberPublication date
JPH08178455A (en)1996-07-12

Similar Documents

PublicationPublication DateTitle
JP2592625B2 (en) Heat absorbing device and method
JPS61119954A (en)Absorption heat pump/refrigeration system
JPS61110852A (en)Absorption heat pump/refrigeration system
JP2011089722A (en)Method and device for refrigeration/air conditioning
JPS61110853A (en)Absorption heat pump/refrigeration system
US4307577A (en)Air conditioning system making use of waste heat
JP3488953B2 (en) Absorption type simultaneous cooling / heating water supply type heat pump
JP5583435B2 (en) Refrigeration and air conditioning method and apparatus
JPH05256535A (en)Sorption heat pump system
KR20080094985A (en) Absorption Chiller with Hot Water
JP2580275B2 (en) Air conditioning system using absorption refrigerator
JPH04268170A (en) Absorption heat pump device
CN115371285B (en)Absorption heat exchange system
JPH04309756A (en)Mixed absorbing liquid and absorption heat exchanger using the same liquid
JPS6113885Y2 (en)
JPS61265463A (en)Method of operating absorption type heat pump
JP2543258B2 (en) Absorption heat source device
CN111895676A (en) a refrigeration system
JP2858921B2 (en) Control device for absorption refrigerator
KR0137580Y1 (en) Liquid refrigerant chiller of absorption chiller, heater
JPS58117976A (en)Absorption heat pump device
JPH07120098A (en)Engine exhaust heat recovery absorption type hot and chilled water generator
JP2002295921A (en) Cooling mechanism
JPS5899661A (en) Engine exhaust heat recovery and absorption type water cooler/heater
JPS5831261A (en)Absorption heat pump

Legal Events

DateCodeTitleDescription
LAPSCancellation because of no payment of annual fees

[8]ページ先頭

©2009-2025 Movatter.jp