【0001】[0001]
【発明の属する技術分野】本発明は、重力の有無に関係
なく、水を電気分解して酸素と水素を取り出して、閉鎖
空間における環境を浄化し、循環させるための環境浄化
循環型水電解装置に関する。より詳細には、宇宙空間や
宇宙船で生命を維持するための酸素や燃料としての水素
を、人間等の排出した二酸化炭素を含む空気から供給す
る環境浄化循環型水電解装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an environmental purification circulation type water electrolysis apparatus for electrolyzing water to take out oxygen and hydrogen to purify and circulate the environment in a closed space regardless of the presence or absence of gravity. Regarding More specifically, the present invention relates to an environmental purification circulation type water electrolysis device that supplies oxygen and hydrogen as fuel for maintaining life in outer space and spacecraft from air containing carbon dioxide discharged from humans.
【0002】[0002]
【従来の技術】有人宇宙船などの閉鎖環境において、生
命を維持するには、酸素の供給及び人間等が排出する二
酸化炭素の除去が問題となる。一定期間閉鎖される環境
においては、生命体等から排出される二酸化炭素をリサ
イクルして酸素を作り出すことが必要となる。二酸化炭
素から酸素を回収する方法としては、ボッシュ反応やサ
バチエ反応(第一反応と第二反応)がある。また、二酸
化炭素を空気から分離する方法としては、水酸化リチウ
ム等により吸収する方法やアミン類により吸収する方法
がある。(例えば、非特許文献1参照)。2. Description of the Related Art In a closed environment such as a manned spacecraft, in order to maintain life, the supply of oxygen and the removal of carbon dioxide emitted by human beings are problems. In an environment that is closed for a certain period of time, it is necessary to recycle carbon dioxide emitted from living organisms to produce oxygen. Methods for recovering oxygen from carbon dioxide include Bosch reaction and Sabatier reaction (first reaction and second reaction). As a method of separating carbon dioxide from air, there are a method of absorbing carbon dioxide with lithium hydroxide and the like and a method of absorbing carbon dioxide with amines. (See, for example, Non-Patent Document 1).
【0003】[0003]
【非特許文献1】「宇宙で生きる」新田慶治ほか、19
94年、オーム社、p34−43[Non-Patent Document 1] "Living in Space" Keiji Nitta et al., 19
 Ohmsha, 1994, p34-43
【0004】また、従来、搭載した水から、酸素と水素
を8:1の質量比で発生させる電解槽をそなえた宇宙船
が知られている(例えば、特許文献2参照)。また、燃
料電池と組み合わせた閉鎖移住空間システムが知られて
いる(例えば、特許文献3参照)。Further, conventionally, there is known a spacecraft provided with an electrolytic cell for generating oxygen and hydrogen at a mass ratio of 8: 1 from mounted water (see, for example, Patent Document 2). Further, a closed migration space system combined with a fuel cell is known (for example, refer to Patent Document 3).
【0005】[0005]
【特許文献2】特開平6―8893号公報(0006段
落)[Patent Document 2] JP-A-6-8893 (paragraph 0006)
【特許文献3】特開平5―262300号公報(002
0段落)[Patent Document 3] Japanese Unexamined Patent Publication No. 5-262300 (002)
 (0 paragraph)
【0006】[0006]
【発明が解決しようとする課題】しかし、従来の、搭載
した水を電気分解する方法では、資源に限りがあり、閉
鎖空間での利用に限界があるという問題があった。燃料
電池との組み合わせにおいても、エントロピーの増大に
より効率が減衰する。However, the conventional methods for electrolyzing the mounted water have a problem that the resources are limited and the utilization in the closed space is limited. Even in combination with a fuel cell, the efficiency decreases due to the increase in entropy.
【0007】さらに、電極に電解液である水を接触させ
て電解すると、陽極及び陰極から泡となって酸素及び水
素が発生するために気体と液体を分離するための気液分
離タンクが必要であるが、無重力状態では液体の中にガ
スが泡となってとどまり、分離することができないとい
う問題があった。Further, when water, which is an electrolytic solution, is brought into contact with the electrodes for electrolysis, bubbles form from the anode and the cathode to generate oxygen and hydrogen, so that a gas-liquid separation tank for separating the gas and the liquid is required. However, there was a problem in the weightless state that gas remained as bubbles in the liquid and could not be separated.
【0008】また、電解質となるイオン交換膜の電気抵
抗を常に低く保つためには、不純物のない高純度の水を
必要とするという問題があった。Further, there is a problem that high-purity water without impurities is required in order to always keep the electric resistance of the ion-exchange membrane as an electrolyte low.
【0009】さらに、陽極で発生したH+イオンは水と
共に陰極に移動し、その水を回収して陽極に戻すため、
水循環回路が複雑になるという問題があった。Further, H+ ions generated at the anode move to the cathode together with water, and the water is recovered and returned to the anode.
 There was a problem that the water circulation circuit became complicated.
【0010】本発明は、かかる問題を鑑みてなされたも
のであり、したがって、本発明の目的は、閉鎖空間にお
いて、無重力下でも、人間等の排出した二酸化炭素を含
む空気から二酸化炭素を除去し、かつ、高純度の酸素と
水素を、液体の水と混じらないように取り出し、空気を
浄化するとともに、燃料である水素を供給できる環境浄
化循環型水電解装置を提供することにある。本発明者ら
は、上記の目的を達成するために鋭意研究を重ねた結
果、試行錯誤の上、本発明を完成するに至った。The present invention has been made in view of the above problems, and therefore an object of the present invention is to remove carbon dioxide from air containing carbon dioxide discharged by humans and the like in a closed space even under zero gravity. Further, it is an object of the present invention to provide an environment-purifying circulation type water electrolysis device that can take out high-purity oxygen and hydrogen so as not to mix with liquid water, purify air, and supply hydrogen as fuel. The present inventors have conducted intensive studies to achieve the above object, and as a result, completed the present invention through trial and error.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
に、本発明の環境浄化循環型水電解装置は、閉鎖空間に
おける環境を浄化し、循環させるための水電解装置であ
って、(ア)閉鎖された生活空間において排出される二
酸化炭素を、ゼオライト若しくは活性炭を吸着剤として
PSA方式で又はアミンを吸着剤としてTSA方式で除
去する、二酸化炭素除去手段、(イ)前記二酸化炭素除
去手段で浄化した乾燥空気を、前記生活空間に供給する
手段、(ウ)前記二酸化炭素除去手段で濃縮された湿潤
二酸化炭素を、冷却して水分と二酸化炭素とに分離する
第一の分離手段、(エ)前記第一の分離手段で分離され
た水分を、タンクに貯めて、ヒータで調温する貯水手
段、(オ)前記貯水手段から水を供給して電解し、水素
と酸素を別々に発生させる水電解手段、(カ)前記水電
解手段から発生させた酸素を前記生活空間に供給する手
段、(キ)前記水電解手段から発生させた水素の一部を
燃料電池に燃料として供給する手段、(ク)前記水電解
手段から発生させた水素の残分を、前記第一の分離手段
で乾燥させた二酸化炭素とサバチエ第一反応をさせて、
メタンと水蒸気を発生させるメタン発生手段、(ケ)前
記メタン発生手段で発生した気体を冷却して、水分とメ
タンに分離する第二の分離手段、(コ)前記第二の分離
手段で分離された水分を前記タンクに供給する手段、
(サ)前記第二の分離手段で乾燥させたメタンを回収す
る手段を有することにより、生活空間の空気中の二酸化
炭素を回収して水の電気分解で得られた水素と反応させ
てメタンに変換させ、同時に得られる水を回収して電気
分解に使用するものである。In order to achieve the above object, an environmental purification circulation type water electrolysis apparatus of the present invention is a water electrolysis apparatus for purifying and circulating the environment in a closed space. ) Carbon dioxide removing means for removing carbon dioxide discharged in a closed living space by PSA method using zeolite or activated carbon as an adsorbent or TSA method using amine as an adsorbent, (a) by the carbon dioxide removing means Means for supplying purified dry air to the living space; (c) first separating means for cooling the wet carbon dioxide concentrated by the carbon dioxide removing means to separate it into water and carbon dioxide; ) Water storage means for storing the water separated by the first separation means in a tank and adjusting the temperature with a heater; (e) Water is supplied from the water storage means for electrolysis to separately generate hydrogen and oxygen. Water electrolysis means, (f) means for supplying oxygen generated by the water electrolysis means to the living space, and (g) means for supplying a part of hydrogen generated by the water electrolysis means as fuel to the fuel cell. , (H) The residue of hydrogen generated from the water electrolysis means is subjected to the Sabatier first reaction with carbon dioxide dried by the first separation means,
 Methane generating means for generating methane and water vapor; (k) Second separating means for cooling the gas generated by the methane generating means to separate into water and methane; (co) Separated by the second separating means Means for supplying water to the tank,
 (A) By having a means for recovering methane dried by the second separation means, carbon dioxide in the air of the living space is recovered and reacted with hydrogen obtained by electrolysis of water to form methane. It is converted and water obtained at the same time is recovered and used for electrolysis.
【0012】ここで、PSA(Pressure  Swing  Adsor
ption)方式とは、圧力スイング吸着方式ともいう。P
SA方式は、吸着剤を充填した吸着塔に加圧されたガス
を供給し特定の気体を吸着剤に吸着させる吸着過程及
び、吸着塔を減圧して吸着した気体を吸着剤から脱離し
吸着剤を再生する脱離過程を繰り返して行う吸着方法で
ある。吸着剤により加圧下で選択吸着された成分は減圧
により脱離させる。Here, PSA (Pressure Swing Adsor)
 The ption) method is also called a pressure swing adsorption method. P
 The SA method is an adsorption process in which a pressurized gas is supplied to an adsorption tower filled with an adsorbent to adsorb a specific gas to the adsorbent, and the adsorbent is desorbed from the adsorbent by depressurizing the adsorption tower. This is an adsorption method in which the desorption process for regenerating is repeated. The components selectively adsorbed under pressure by the adsorbent are desorbed under reduced pressure.
【0013】二酸化炭素をPSA方式で除去するCO2
PSAには、分子ふるいとして機能するゼオライトや活
性炭を吸着剤とするものがある。吸着剤を充填した吸着
塔を2本一組として、一方の吸着塔に空気を送り、加圧
すると水分と二酸化炭素が優先的に吸着される。このと
き、他方の吸着塔は減圧し、吸着した水分と二酸化炭素
を脱離させる。この吸着、脱離動作を一定時間毎に交互
に切り替えることにより連続的に空気中から水分と二酸
化炭素を分離することができる。CO2 for removing carbon dioxide by PSA method
 Some PSAs use zeolite or activated carbon that functions as a molecular sieve as an adsorbent. When two adsorption towers filled with an adsorbent are paired and air is sent to one of the adsorption towers and pressurized, moisture and carbon dioxide are preferentially adsorbed. At this time, the other adsorption tower is depressurized to desorb the adsorbed water and carbon dioxide. By alternately switching the adsorption and desorption operations at regular intervals, it is possible to continuously separate water and carbon dioxide from the air.
【0014】また、TSA(Thermal  Swing  Adsorpti
on)方式とは、温度スイング吸着方式ともいう。TSA
方式は、吸着剤を充填した吸着塔に低温のガスを供給し
特定の気体を吸着剤に吸着させる吸着過程及び、吸着塔
を加熱して吸着した気体を吸着剤から脱離し吸着剤を再
生する脱離過程を繰り返して行う吸着方法である。吸着
剤により低温下で選択吸着された成分は加熱により脱離
させる。In addition, TSA (Thermal Swing Adsorpti
 The on) method is also called a temperature swing adsorption method. TSA
 The method is an adsorption process in which a low temperature gas is supplied to an adsorption tower filled with an adsorbent to adsorb a specific gas to the adsorbent, and the adsorption tower is heated to desorb the adsorbed gas from the adsorbent to regenerate the adsorbent. This is an adsorption method in which the desorption process is repeated. The components selectively adsorbed at a low temperature by the adsorbent are desorbed by heating.
【0015】二酸化炭素をTSA方式で除去するCO2
TSAには、アミン類を吸着剤とするものがある。吸着
剤を充填した吸着塔を2本一組として、一方の吸着塔に
空気を送り、常温において空気中の水分と二酸化炭素が
アミン類と化合して炭酸アミンを作る。このとき、化合
の終了した他方の吸着塔はヒータで100℃程度に加熱
することにより水分と二酸化炭素を脱離させる。化1に
示す、この吸着、脱離動作を一定時間毎に交互に切り替
えることにより連続的に空気中から水分と二酸化炭素を
分離することができる。CO2 for removing carbon dioxide by the TSA method
 Some TSAs use amines as adsorbents. A pair of two adsorption towers filled with an adsorbent is sent to one of the adsorption towers, and water and carbon dioxide in the air combine with amines at room temperature to form amine carbonate. At this time, water and carbon dioxide are desorbed by heating the other adsorption tower after completion of the combination with a heater to about 100 ° C. By alternately switching the adsorption and desorption operations shown in Chemical formula 1 at regular intervals, it is possible to continuously separate water and carbon dioxide from the air.
【0016】[0016]
【化1】[Chemical 1]
【0017】本発明の環境浄化循環型水電解装置は、好
ましくは、前記水電解手段が(ア)前記貯水手段からの
水流入手段及び水回収手段を有する隔室A、(イ)フッ
素樹脂系イオン交換膜、(ウ)水素排出手段を有し、か
つ、スポンジ状陰極を充填した隔室B、(エ)白金、イ
リジウム、ロジウム又はイリジウム−ロジウム合金をメ
ッキしたフッ素樹脂系イオン交換膜、(オ)多孔質チタ
ンに白金メッキした陽極、(カ)酸素排出手段を有する
隔室Cの順にサンドイッチした電解槽である。In the environmental purification circulation type water electrolysis apparatus of the present invention, preferably, the water electrolysis means is (a) a compartment A having water inflow means and water recovery means from the water storage means, and (b) a fluororesin system. Ion exchange membrane, (c) compartment B having hydrogen discharging means and filled with a sponge-like cathode, (d) platinum, iridium, rhodium or iridium-rhodium alloy plated fluororesin ion exchange membrane, E) An electrolytic cell in which a porous platinum-plated anode and (f) a compartment C having an oxygen discharge means are sandwiched in this order.
【0018】また、本発明の環境浄化循環型水電解装置
は、好ましくは、さらに、前記第二の分離手段で回収し
たメタンを燃料として使用する。Further, the environmental purification circulation type water electrolysis apparatus of the present invention preferably further uses methane recovered by the second separation means as a fuel.
【0019】本発明の環境浄化循環型水電解装置は、よ
り好ましくは、さらに、前記第二の分離手段で回収した
メタンからサバチエ第二反応により水素を発生させ、燃
料として使用する。More preferably, the environmental purification circulation type water electrolysis apparatus of the present invention further generates hydrogen from the methane recovered by the second separation means by the Sabatier second reaction and uses it as a fuel.
【0020】[0020]
【実施例】以下、本発明の実施例について、図面を参照
して詳細に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0021】(実施例1)図1は、本発明の実施例1の
構成図である。図1に示したように、本発明の実施例1
の環境浄化循環型水電解装置(1)は、電解槽(1
1)、2台の吸着塔(22a、22b)、第一の除湿器
(16)、第二の除湿器(17)、サバチエ第一反応器
(18)、水タンク(15)及びそれらを接続する配
管、ポンプ類を有する。本発明の実施例1の環境浄化循
環型水電解装置(1)は、かかる構成により、生活空間
の空気中の二酸化炭素を回収して水の電気分解で得られ
た水素と反応させてメタンに変換させ、同時に得られる
水を回収して電気分解に使用するものである。(Embodiment 1) FIG. 1 is a block diagram of Embodiment 1 of the present invention. As shown in FIG. 1, Embodiment 1 of the present invention
 The environmental purification circulation type water electrolysis device (1) of
 1) Two adsorption towers (22a, 22b), first dehumidifier (16), second dehumidifier (17), Sabatier first reactor (18), water tank (15) and connecting them It has pipes and pumps to operate. According to the environmental purification circulation type water electrolysis apparatus (1) of Example 1 of the present invention, carbon dioxide in the air of the living space is recovered by the above configuration and reacted with hydrogen obtained by electrolysis of water to produce methane. It is converted and water obtained at the same time is recovered and used for electrolysis.
【0022】2台の吸着塔(22a、22b)は、閉鎖
された生活空間において排出される二酸化炭素を、排気
回収ポンプ(21)を介して、ゼオライトを吸着剤とし
てPSA方式で除去する二酸化炭素除去手段である。吸
着塔(22a、22b)内には、ゼオライトが充填され
ている。一方の吸着塔が二酸化炭素の除去をしている間
に、他方の吸着塔内のゼオライトが再生されるので、繰
り返し使用することができる。The two adsorption towers (22a, 22b) remove carbon dioxide discharged in the closed living space by the PSA method using zeolite as an adsorbent via the exhaust recovery pump (21). It is a removal means. Zeolite is filled in the adsorption towers (22a, 22b). While one adsorption tower is removing carbon dioxide, the zeolite in the other adsorption tower is regenerated, so that it can be used repeatedly.
【0023】吸着塔(22a、22b)において二酸化
炭素を除去した乾燥空気は、配管によって、生活空間に
供給される。The dry air from which carbon dioxide has been removed in the adsorption towers (22a, 22b) is supplied to the living space by piping.
【0024】吸着塔(22a、22b)において濃縮さ
れた湿潤二酸化炭素は、第一の除湿器(16)に送られ
て、冷却されて水分と二酸化炭素に分離される。The wet carbon dioxide concentrated in the adsorption towers (22a, 22b) is sent to the first dehumidifier (16), cooled and separated into water and carbon dioxide.
【0025】第一の除湿器(16)で除去された水分
は、水回収ポンプ(20)によって、水タンク(15)
に送られて貯められる。The water removed by the first dehumidifier (16) is supplied to the water tank (15) by the water recovery pump (20).
 Sent to and stored.
【0026】水タンク(15)内の水は、電解槽(1
1)に供給されて、電解により、水素と酸素を別々に発
生させる。The water in the water tank (15) is stored in the electrolytic cell (1
 1), hydrogen and oxygen are separately generated by electrolysis.
【0027】電解槽(11)の陽極側において発生した
酸素は配管を介して生活空間に供給される。Oxygen generated on the anode side of the electrolytic cell (11) is supplied to the living space through a pipe.
【0028】電解槽(11)の陰極側において発生した
水素の一部を、配管を通じて、燃料電池に燃料として供
給できる。A part of hydrogen generated on the cathode side of the electrolytic cell (11) can be supplied as fuel to the fuel cell through a pipe.
【0029】電解槽(11)の陰極側において発生した
水素の残分は、第一の除湿器(16)で乾燥させた二酸
化炭素と、サバチエ第一反応器(18)において、化2
のサバチエ第一反応をさせてメタンと水蒸気を発生させ
る。Residual hydrogen generated on the cathode side of the electrolytic cell (11) is converted to carbon dioxide dried in the first dehumidifier (16) and in the Sabatier first reactor (18).
 The Sabatier first reaction is carried out to generate methane and steam.
【0030】[0030]
【化2】[Chemical 2]
【0031】サバチエ第一反応器(18)は、ミキシン
グタンク及び反応管を有する。サバチエ第一反応器(1
8)は、熱電対やヒータにより温度調節できるようにな
っている。二酸化炭素の還元反応は高温ほど反応しやす
くなるが、反応平衡では高温にすると進行が抑制される
ため、300〜350℃の温度条件下で反応させる。The Sabatier first reactor (18) has a mixing tank and a reaction tube. Sabatier First Reactor (1
 In 8), the temperature can be adjusted by a thermocouple or a heater. The carbon dioxide reduction reaction is more likely to occur at higher temperatures, but the reaction equilibrium suppresses the progress at high temperatures, so the reaction is carried out under the temperature condition of 300 to 350 ° C.
【0032】まず、サバチエ第一反応器(18)のミキ
シングタンクにおいて、反応に先立って、水素と二酸化
炭素を予め混合させる。First, hydrogen and carbon dioxide are mixed in advance in the mixing tank of the Sabatier first reactor (18) prior to the reaction.
【0033】ミキシングタンクで混合させた水素と二酸
化炭素は、サバチエ第一反応器(18)の反応管で反応
させる。反応管には触媒が充填され、両端がシリカウー
ルで留めてある。触媒としては、例えば、ルテニウムを
アルミナに担持させたものを用いる。Hydrogen and carbon dioxide mixed in the mixing tank are reacted in the reaction tube of the Sabatier first reactor (18). The reaction tube is filled with the catalyst and both ends are fastened with silica wool. As the catalyst, for example, ruthenium supported on alumina is used.
【0034】さらに、反応により発生した気体、すなわ
ちメタンと水蒸気は、第二の除湿器(17)において、
冷却水で冷却される。ここで、水蒸気が凝縮して、水と
なり、よって水分とメタンに分離される。Further, the gas generated by the reaction, that is, methane and water vapor, is discharged in the second dehumidifier (17).
 It is cooled with cooling water. Here, the water vapor condenses into water and is thus separated into water and methane.
【0035】第二の除湿器(17)で分離された水分
は、水回収ポンプ(20)によって、水タンク(15)
に送られて貯められる。The water separated by the second dehumidifier (17) is supplied to the water tank (15) by the water recovery pump (20).
 Sent to and stored.
【0036】第二の除湿器(17)で乾燥させたメタン
は配管を通じて回収する。Methane dried in the second dehumidifier (17) is recovered through a pipe.
【0037】本発明の実施例1で用いる電解槽(11)
は、隔室A(3)、イオン交換膜(4a)、隔室B
(7)、イオン交換膜(4b)、陽極(8)、隔室C
(10)の順にサンドイッチした電解槽(11)であ
る。気液分離タンクは設けない。水タンク(15)は電
解槽(11)の外側に設けてある。水タンク(15)と
電解槽(11)は、水流入口(2)で繋がっており、さ
らに電解槽(11)で使用済みの水を、水排出口(1
4)から、再度水タンク(15)に戻す構成となってい
る。水タンク(15)内には水が満たしてあり、水はヒ
ータ(12c)で温度調整されている。水タンク(1
5)から電解槽(11)へは水循環ポンプ(13)で水
を供給する。なお、本発明の実施例1の環境浄化循環型
水電解装置(1)は、電解槽(11)を並列又は直列に
複数セル繋げて、より大量の酸素・水素を発生させるこ
とができる。隔室C(10)には、陽極(8)とイオン
交換膜(4b)の接触性向上のために、スポンジ状のN
i−Cr合金が充填してある。Electrolytic cell (11) used in Example 1 of the present invention
 Is compartment A (3), ion exchange membrane (4a), compartment B
 (7), ion exchange membrane (4b), anode (8), compartment C
 It is an electrolytic cell (11) sandwiched in the order of (10). No gas-liquid separation tank is provided. The water tank (15) is provided outside the electrolytic cell (11). The water tank (15) and the electrolyzer (11) are connected by a water inlet (2), and the water used in the electrolyzer (11) is discharged to the water outlet (1).
 From 4), it is configured to be returned to the water tank (15) again. The water tank (15) is filled with water, and the temperature of the water is adjusted by the heater (12c). Water tank (1
 Water is supplied from 5) to the electrolytic cell (11) by a water circulation pump (13). In addition, the environmental purification circulation type | mold water electrolysis apparatus (1) of Example 1 of this invention can connect a plurality of cells of the electrolytic cell (11) in parallel or in series, and can generate a larger amount of oxygen and hydrogen. In the compartment C (10), a sponge-like N is formed in order to improve contact between the anode (8) and the ion exchange membrane (4b).
 It is filled with an i-Cr alloy.
【0038】隔室A(3)には、水流入口(2)が設け
てある。隔室B(7)には、水素排出口(5)が設けて
あり、かつ、スポンジ状の陰極(6)を充填してある。
隔室C(10)には、酸素排出口(9)が設けてある。The compartment A (3) is provided with a water inlet (2). The compartment B (7) is provided with a hydrogen outlet (5) and is filled with a sponge-like cathode (6).
 The compartment C (10) is provided with an oxygen outlet (9).
【0039】陽極(8)には、多孔質チタンに白金をメ
ッキした電極を用いた。陰極(6)には、白金をメッキ
した、スポンジ状の、ニッケル・クロム合金の多孔質電
極を用いた。As the anode (8), an electrode obtained by plating porous titanium with platinum was used. For the cathode (6), a sponge-like porous electrode of nickel-chromium alloy plated with platinum was used.
【0040】また、イオン交換膜(4)として、触媒を
担持させたフッ素樹脂系のイオン交換膜(例えば、デュ
ポン社製のフッ素化ポリオレフィンのスルホン化合物で
あるNAFION(R))を用いた。より具体的には、
フッ素樹脂系のイオン交換膜に、触媒の白金を4〜5m
g/cm2担持させた。その有効膜膜面積は、約200
cm2である。本発明の実施例1においては、フッ素樹
脂系のイオン交換膜として、NAFION(R)  11
7(デュポン社製)を用いた。イオン交換膜にメッキす
る金属は、白金以外に、イリジウム、ロジウム又はイリ
ジウム−ロジウム合金が適する。As the ion exchange membrane (4), a fluororesin type ion exchange membrane supporting a catalyst (for example, NAFION (R) which is a sulfone compound of fluorinated polyolefin manufactured by DuPont) was used. More specifically,
 Fluororesin-based ion exchange membrane with catalyst platinum of 4-5m
 g / cm2 was supported. The effective membrane area is about 200
 cm2 . In Example 1 of the present invention, NAFION® 11 was used as the fluororesin ion exchange membrane.
 7 (manufactured by DuPont) was used. In addition to platinum, iridium, rhodium, or an iridium-rhodium alloy is suitable as the metal to be plated on the ion exchange membrane.
【0041】隔室A(3)に供給された液体の水は、イ
オン交換膜(4a)でブロックされる。本発明に用いる
イオン交換膜(4a)は液体を通過させず、気体のみ通
過させるものである。したがって、水は、イオン交換膜
(4a)を飽和水蒸気として通過し、さらに、スポンジ
状の陰極(6)を通過して移動する。すなわち、イオン
交換膜(4)が水蒸気のみを蒸気圧の高い方から低い方
に移動させる性質を利用し、気体のH2Oをイオン交換
膜(4)を隔てた陰極側に供給して電気分解を起こさせ
て水素と酸素を取り出す。Liquid water supplied to the compartment A (3) is blocked by the ion exchange membrane (4a). The ion exchange membrane (4a) used in the present invention does not allow liquid to pass therethrough but allows only gas to pass therethrough. Therefore, water passes through the ion exchange membrane (4a) as saturated water vapor, and further passes through the sponge-like cathode (6) to move. That is, by utilizing the property that the ion exchange membrane (4) moves only water vapor from the higher vapor pressure to the lower vapor pressure, gaseous H2 O is supplied to the cathode side across the ion exchange membrane (4) to generate electricity. Hydrogen and oxygen are taken out by causing decomposition.
【0042】したがって、水を陽極側から供給せず、ま
たイオン交換膜が液体の水を透過するということがない
ので、従来の環境浄化循環型水電解装置では必要であっ
た、陽極から水素イオンと共に移動する液体の水の処理
が不要である。また、従来の環境浄化循環型水電解装置
では必要であった、気体である水素・酸素と液体状態の
水を分離させるための装置も不要である。Therefore, since water is not supplied from the anode side and the liquid water does not permeate through the ion exchange membrane, hydrogen ions from the anode, which are necessary in the conventional environmental purification circulation type water electrolysis device, are required. No treatment of liquid water traveling with it is required. Further, a device for separating hydrogen / oxygen as a gas and water in a liquid state, which is required in the conventional environmental purification circulation type water electrolysis device, is not required.
【0043】また、適温の水を供給でき、また水をリサ
イクルできる。Further, water at an appropriate temperature can be supplied and the water can be recycled.
【0044】さらに、電解用の水は、水蒸気として循環
して電解されるので、純水でなくても、可能である。Further, since the water for electrolysis is circulated as water vapor to be electrolyzed, it is not necessary to use pure water.
【0045】水循環ポンプ(13)の循環量は1.5〜
2.0L/分で、水の温度を約70℃にしたときの電解
電流は、約20A/セルであった。かかる条件における
ガス発生量は、酸素が約4L/時、水素が8L/時であ
った。The circulation amount of the water circulation pump (13) is 1.5 to
 The electrolytic current at a water temperature of about 70 ° C. at 2.0 L / min was about 20 A / cell. The amount of gas generated under these conditions was about 4 L / hour for oxygen and 8 L / hour for hydrogen.
【0046】本発明の実施例1に用いる吸着塔(22)
に充填されるゼオライトは、分子ふるい作用と静電気的
作用の2つの吸着能力を備えている。Adsorption tower (22) used in Example 1 of the present invention
 The zeolite filled in has two adsorption capacities, a molecular sieving action and an electrostatic action.
【0047】分子ふるい作用に関しては、本発明の実施
例1に用いるゼオライトは、オングストロームオーダ
ー、すなわち0.1nmオーダーの均一な超微細孔を有す
る。この孔は、ゼオライトの結晶表面から、吸着質の存
在する空洞をつなぐ役割をする。したがって、その均一
な超微細孔を通り得る小さい分子径を持つ物質だけが吸
着質の存在する空洞に到達して吸着される。このように
して本発明に用いるゼオライトは、オングストロームオ
ーダーの気体分子を選択的に分離することができる。With respect to the molecular sieving action, the zeolite used in Example 1 of the present invention has uniform ultrafine pores on the order of angstrom, that is, on the order of 0.1 nm. The pores serve to connect the cavities containing the adsorbate from the crystal surface of the zeolite. Therefore, only a substance having a small molecular diameter that can pass through the uniform ultrafine pores reaches the cavity where the adsorbate is present and is adsorbed. In this way, the zeolite used in the present invention can selectively separate gas molecules of angstrom order.
【0048】また、静電気的作用に関しては、本発明に
用いるゼオライトは、空洞に強い電場が存在し、極性物
質を優先的に強力に吸着する。よって、二酸化炭素の濃
度が低い場合にも大きな吸着能力を有する。Regarding the electrostatic action, the zeolite used in the present invention has a strong electric field in the cavity and preferentially strongly adsorbs a polar substance. Therefore, it has a large adsorption ability even when the concentration of carbon dioxide is low.
【0049】二酸化炭素吸着は、吸着塔(22a、22
b)において、吸着過程と脱離過程を交互に繰り返して
行う。各電磁弁は電磁弁コントローラー及びタイマー回
路によって制御される。The carbon dioxide adsorption is carried out by the adsorption tower (22a, 22a
 In b), the adsorption process and the desorption process are alternately repeated. Each solenoid valve is controlled by a solenoid valve controller and a timer circuit.
【0050】まず、三方電磁弁(23c)により、吸着
塔(22a)に回収した生活空間の空気を流す。吸着塔
(22a)を通して、ゼオライトにより水分と二酸化炭
素を除去して形成した二酸化炭素減少空気は三方電磁弁
(23b)を通って乾燥浄化空気として生活空間に戻さ
れる。一方、吸着塔(22b)は、三方電磁弁(23
d)を通して、二酸化炭素減少空気の一部が供給され
る。吸着塔(22b)内を減圧して吸着塔(22b)中
のゼオライトに吸着された二酸化炭素を脱離する。脱離
した二酸化炭素は三方電磁弁(23a)を通して第一の
除湿器(16)に送られる。First, the air in the living space recovered is flowed to the adsorption tower (22a) by the three-way solenoid valve (23c). Through the adsorption tower (22a), the carbon dioxide depleted air formed by removing water and carbon dioxide by zeolite is returned to the living space as dry purified air through the three-way solenoid valve (23b). On the other hand, the adsorption tower (22b) has a three-way solenoid valve (23
 A portion of the carbon dioxide depleted air is supplied through d). The pressure inside the adsorption tower (22b) is reduced to desorb carbon dioxide adsorbed by the zeolite in the adsorption tower (22b). The desorbed carbon dioxide is sent to the first dehumidifier (16) through the three-way solenoid valve (23a).
【0051】次に、三方電磁弁(23c)を切り替え
て、吸着塔(22b)に回収した生活空間の空気を流
す。吸着塔(22b)を通して、ゼオライトにより水分
と二酸化炭素を除去して形成した二酸化炭素減少空気は
三方電磁弁(23b)を通って乾燥浄化空気として生活
空間に戻される。一方、吸着塔(22a)には、三方電
磁弁(23d)を通して、二酸化炭素減少空気の一部が
供給される。吸着塔(22a)内を減圧して、吸着塔
(22a)中のゼオライトに吸着された二酸化炭素を脱
離する。脱離した二酸化炭素は三方電磁弁(23a)を
通して第一の除湿器(16)に送られる。Next, the three-way solenoid valve (23c) is switched to flow the collected living space air into the adsorption tower (22b). Through the adsorption tower (22b), carbon dioxide depleted air formed by removing water and carbon dioxide by zeolite is returned to the living space as dry purified air through the three-way solenoid valve (23b). On the other hand, part of the carbon dioxide depleted air is supplied to the adsorption tower (22a) through the three-way solenoid valve (23d). The pressure in the adsorption tower (22a) is reduced to desorb the carbon dioxide adsorbed by the zeolite in the adsorption tower (22a). The desorbed carbon dioxide is sent to the first dehumidifier (16) through the three-way solenoid valve (23a).
【0052】すなわち、取り入れた外気から、二酸化炭
素を除去するために上記吸着過程と脱離過程を繰り返
し、二酸化炭素減少空気を形成して生活空間に供給する
とともに、二酸化炭素が濃縮された湿潤空気を第一の除
湿器(16)に送ることになる。That is, the above adsorption process and desorption process are repeated in order to remove carbon dioxide from the outside air taken in to form carbon dioxide depleted air and supply it to the living space, and at the same time, moist air enriched with carbon dioxide. Will be sent to the first dehumidifier (16).
【0053】本発明は上記に示した構成であり、資源
は、生活空間から二酸化炭素を含む空気として、常に供
給され、閉鎖空間であっても連続して長期利用ができ
る。したがって、宇宙空間や宇宙船で、排気を利用し
て、生命を維持するための酸素や燃料としての水素を供
給したり、航空機内で酸素を供給したり、燃料電池にエ
ネルギー源として酸素・水素を供給したりすることがで
きる。The present invention has the configuration described above, and the resource is always supplied from the living space as air containing carbon dioxide and can be continuously used for a long time even in a closed space. Therefore, in space and spacecraft, exhaust gas is used to supply oxygen and hydrogen as fuel to maintain life, oxygen in aircraft, and oxygen / hydrogen as an energy source for fuel cells. Can be supplied.
【0054】また、本発明によれば、無重力下において
水を電気分解する場合においても、水素排出口及び酸素
排出口からは気体のみ取り出すことができるので、取り
出し時に気体に水が混入する恐れがない。したがって、
本発明によれば、気液分離タンクがいらない。これは、
コスト面のメリットのみならず、コンパクトで軽量であ
るというメリットがある。宇宙船においてはコンパクト
であることが非常に重要なポイントとなる。Further, according to the present invention, even when water is electrolyzed under zero gravity, only the gas can be taken out from the hydrogen outlet and the oxygen outlet, so that water may be mixed in the gas at the time of taking out. Absent. Therefore,
 According to the present invention, a gas-liquid separation tank is unnecessary. this is,
 Not only the cost advantage, but also the advantage of being compact and lightweight. Compactness is a very important point in spacecraft.
【0055】(実施例2)本発明の実施例2が、図1に
示した本発明の実施例1と異なるのは、吸着剤としてゼ
オライトの代わりに、ゼオライトと同様に分子ふるい機
能を有する活性炭を用いた点である。実施例2において
も、二酸化炭素除去はPSA方式により行う。Example 2 Example 2 of the present invention is different from Example 1 of the present invention shown in FIG. 1 in that activated carbon having a molecular sieving function similar to zeolite is used instead of zeolite as an adsorbent. Is the point using. Also in Example 2, carbon dioxide is removed by the PSA method.
【0056】(実施例3)本発明の実施例3が、図1に
示した本発明の実施例1と異なるのは、吸着剤としてゼ
オライトの代わりにアミンを用い、二酸化炭素除去をP
SA方式ではなくTSA方式で行う点である。本発明の
実施例1と違い、吸着塔(22a、22b)それぞれ
に、ヒータが配置されている。Example 3 Example 3 of the present invention is different from Example 1 of the present invention shown in FIG. 1 in that amine was used as an adsorbent instead of zeolite and carbon dioxide was removed by P
 The point is that the TSA method is used instead of the SA method. Unlike the first embodiment of the present invention, a heater is arranged in each of the adsorption towers (22a, 22b).
【0057】二酸化炭素吸着は、吸着塔(22a、22
b)において、吸着過程と脱離過程を交互に繰り返して
行う。各電磁弁は電磁弁コントローラー及びタイマー回
路によって制御される。The carbon dioxide adsorption is carried out by the adsorption tower (22a, 22a
 In b), the adsorption process and the desorption process are alternately repeated. Each solenoid valve is controlled by a solenoid valve controller and a timer circuit.
【0058】まず、三方電磁弁(23c)により、吸着
塔(22a)に回収した排気を流す。吸着塔(22a)
において常温でアミンにより二酸化炭素と水分を除去し
て形成した二酸化炭素減少空気は、三方電磁弁(23
b)を通って乾燥浄化空気として生活空間に戻される。
一方、吸着塔(22b)は、三方電磁弁(23d)を通
して、二酸化炭素減少空気の一部が供給される。吸着塔
(22b)内を加熱して吸着塔(22b)中のアミンに
吸着された二酸化炭素を脱離する。脱離した二酸化炭素
は三方電磁弁(23a)を通して第一の除湿器(16)
に送られる。First, the collected exhaust gas is flowed to the adsorption tower (22a) by the three-way solenoid valve (23c). Adsorption tower (22a)
 At room temperature, carbon dioxide depleted air formed by removing carbon dioxide and water with amine at room temperature is a three-way solenoid valve (23
 It is returned to the living space as dry purified air through b).
 On the other hand, the adsorption tower (22b) is supplied with part of the carbon dioxide depleted air through the three-way solenoid valve (23d). The inside of the adsorption tower (22b) is heated to desorb carbon dioxide adsorbed by the amine in the adsorption tower (22b). The desorbed carbon dioxide is passed through the three-way solenoid valve (23a) to the first dehumidifier (16).
 Sent to.
【0059】次に、三方電磁弁(22c)の切り替えに
より、吸着塔(22b)に常温の空気を流す。吸着塔
(22b)において常温でアミンにより二酸化炭素と水
分を除去して形成した二酸化炭素減少空気は、三方電磁
弁(23b)を通って乾燥浄化空気として生活空間に戻
される。一方、吸着塔(22a)には、三方電磁弁(2
3d)を通して、二酸化炭素減少空気の一部が供給され
る。吸着塔(22a)内を加熱して、吸着塔(22a)
中のアミンに吸着された二酸化炭素を脱離する。脱離し
た二酸化炭素は三方電磁弁(23a)を通して第一の除
湿器(16)に送られる。Next, by switching the three-way solenoid valve (22c), normal temperature air is flown into the adsorption tower (22b). Carbon dioxide depleted air formed by removing carbon dioxide and water with amine at room temperature in the adsorption tower (22b) is returned to the living space as dry purified air through the three-way solenoid valve (23b). On the other hand, the adsorption tower (22a) has a three-way solenoid valve (2
 Part of the carbon dioxide depleted air is supplied through 3d). By heating the inside of the adsorption tower (22a), the adsorption tower (22a)
 The carbon dioxide adsorbed by the amine inside is desorbed. The desorbed carbon dioxide is sent to the first dehumidifier (16) through the three-way solenoid valve (23a).
【0060】すなわち、取り入れた外気から、二酸化炭
素を除去するために上記吸着過程と脱離過程を繰り返
し、二酸化炭素減少空気を形成して生活空間に供給する
とともに、二酸化炭が濃縮された湿潤空気を第一の除湿
器(16)に送ることになる。That is, the above adsorption process and desorption process are repeated to remove carbon dioxide from the outside air taken in to form carbon dioxide depleted air and supply it to the living space, and at the same time, moist air enriched with carbon dioxide. Will be sent to the first dehumidifier (16).
【0061】(実施例4)本発明の実施例4が、図1に
示した本発明の実施例1と異なるのは、第二の除湿器
(17)において冷却して水分を除去した後のメタンを
燃料として用いる点である。Example 4 Example 4 of the present invention is different from Example 1 of the present invention shown in FIG. 1 in that after cooling in the second dehumidifier (17) to remove water. The point is to use methane as fuel.
【0062】(実施例5)図2は、本発明の実施例5の
構成図である。本発明の実施例5が、本発明の実施例3
と異なるのは、第二の除湿器(17)において冷却して
水分を除去した後のメタンをサバチエ第二反応器(1
9)において、化3のサバチエ反応(第二反応)によ
り、炭素と水素を取り出す点である。取り出した水素は
さらに燃料電池等に供給することができる。本発明の実
施例5においては、アミンによりTSA方式で二酸化炭
素を除去する。本発明の実施例1と違い、吸着塔(22
a、22b)それぞれに、ヒータ(12a、12b)が
配置されている。(Fifth Embodiment) FIG. 2 is a block diagram of a fifth embodiment of the present invention. Embodiment 5 of the present invention is Embodiment 3 of the present invention.
 The difference is that the methane after cooling in the second dehumidifier (17) to remove water is treated with the sabatier second reactor (1
 In 9), carbon and hydrogen are extracted by the Sabatier reaction (second reaction) of Chemical formula 3. The taken out hydrogen can be further supplied to a fuel cell or the like. In Example 5 of the present invention, carbon dioxide is removed by the TSA method with an amine. Unlike the first embodiment of the present invention, the adsorption tower (22
 A heater (12a, 12b) is arranged in each of (a, 22b).
【0063】[0063]
【化3】[Chemical 3]
【0064】[0064]
【発明の効果】本発明の環境浄化循環型水電解装置は、
上述したとおりであるので、閉鎖空間において、無重力
下でも、人間等の排出した二酸化炭素を含む空気から二
酸化炭素を除去し、かつ、高純度の酸素と水素を、液体
の水と混じらないように取り出し、空気を浄化するとと
もに、燃料である水素を供給できる。The environmental purification circulation type water electrolysis apparatus of the present invention comprises:
 As described above, in a closed space, even under zero gravity, remove carbon dioxide from the air containing carbon dioxide discharged by humans, etc., and keep high-purity oxygen and hydrogen from mixing with liquid water. It can be taken out to purify the air and supply hydrogen as fuel.
【図1】本発明の実施例1の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.
【図2】本発明の実施例5の構成図である。FIG. 2 is a configuration diagram of a fifth embodiment of the present invention.
1 環境浄化循環型水電解装置2 水流入口3 隔室A4 イオン交換膜5 水素排出口6 陰極7 隔室B8 陽極9 酸素排出口10 隔室C11 電解槽12 ヒータ13 水循環ポンプ14 水排出口15 水タンク16 第一の除湿器17 第二の除湿器18 サバチエ第一反応器19 サバチエ第二反応器20 水回収ポンプ21 排気回収ポンプ22 吸着塔23 三方電磁弁1 Environmental purification circulation type water electrolysis device2 Water inlet3 compartment A4 Ion exchange membrane5 Hydrogen outlet6 cathode7 Compartment B8 anode9 oxygen outlet10 Compartment C11 Electrolyzer12 heater13 Water circulation pump14 Water outlet15 water tank16 First dehumidifier17 Second dehumidifier18 Sabatier First Reactor19 Sabatier Second Reactor20 Water recovery pump21 Exhaust gas recovery pump22 Adsorption tower23 Three-way solenoid valve
─────────────────────────────────────────────────────フロントページの続き (51)Int.Cl.7 識別記号 FI C07C 1/12 C25B 1/10 C25B 1/10 11/03 11/03 13/08 302 13/08 302 B01D 53/34 135Z (72)発明者 大西 充 東京都調布市深大寺東町7丁目44番地1 独立行政法人 航空宇宙技術研究所内(72)発明者 吉原 正一 東京都調布市深大寺東町7丁目44番地1 独立行政法人 航空宇宙技術研究所内(72)発明者 大森 克徳 東京都調布市深大寺東町7丁目44番地1 独立行政法人 航空宇宙技術研究所内(72)発明者 須賀 長市 東京都新宿区新宿5丁目4番14号 スガ 試験機株式会社内(72)発明者 渡辺 洋二 東京都新宿区新宿5丁目4番14号 スガ 試験機株式会社内 (56)参考文献 特開 平8−133200(JP,A) 特開 平5−262300(JP,A) 特開 平9−141040(JP,A) 特開 昭61−254220(JP,A) 特開 平3−107488(JP,A) 実開 平4−21563(JP,U) FUNKE H,(DASA/Dor nier GmbH) TAN G, (ESTEC),Air Revita lisation System De monstrator Design and Test Results,S AE TECHNICAL PAPER SERIES,1999−01−1956 (58)調査した分野(Int.Cl.7,DB名) B64G 1/48 B01D 53/04 B01D 53/62 C02F 1/46 C25B 1/10 C25B 11/08 C25B 13/08 C07C 1/12─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl.7 Identification symbol FI C07C 1/12 C25B 1/10 C25B 1/10 11/03 11/03 13/08 302 302/08 08 B01D 53/34 135Z ( 72) Inventor Mitsuru Onishi 7-44 Jindaiji Higashi-cho, Chofu-shi, Tokyo 1 Incorporated administrative agency Aerospace Research Institute (72) Inventor Shoichi Yoshihara 7-44 Jindai-ji Higashi-cho, Chofu-shi, Tokyo Aerospace Technology In-lab (72) Inventor Katsunori Omori 7-44 Jindaiji Higashi-cho, Chofu-shi, Tokyo 1 Incorporated administrative agency Aerospace Research Institute (72) Inventor In-house 5-4-1 Shinjuku, Shinjuku-ku, Suga Nagashi Suga Testing Machine Incorporated (72) Inventor Yoji Watanabe 5-4-14 Shinjuku, Shinjuku-ku, Tokyo Suga Test Machine Co., Ltd. (56) Reference JP-A-8-133200 (J , A) JP 5-262300 (JP, A) JP 9-141040 (JP, A) JP 61-254220 (JP, A) JP 3-107488 (JP, A) 4-21563 (JP, U) FUNKE H, (DASA / Dornier GmbH) TAN G, (ESTEC), Air Revitalization System Demonstrators Design RI, PE58-58, RES, TER, RESPETE, CHR, CHR, CHA, RES G, (R) Fields surveyed (Int.Cl.7 , DB name) B64G 1/48 B01D 53/04 B01D 53/62 C02F 1/46 C25B 1/10 C25B 11/08 C25B 13/08 C07C 1/12
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP2003056632AJP3479950B1 (en) | 2003-03-04 | 2003-03-04 | Environmental purification circulation type water electrolysis device | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| JP2003056632AJP3479950B1 (en) | 2003-03-04 | 2003-03-04 | Environmental purification circulation type water electrolysis device | 
| Publication Number | Publication Date | 
|---|---|
| JP3479950B1true JP3479950B1 (en) | 2003-12-15 | 
| JP2004261757A JP2004261757A (en) | 2004-09-24 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| JP2003056632AExpired - Fee RelatedJP3479950B1 (en) | 2003-03-04 | 2003-03-04 | Environmental purification circulation type water electrolysis device | 
| Country | Link | 
|---|---|
| JP (1) | JP3479950B1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2012055785A (en)* | 2010-09-03 | 2012-03-22 | National Institute Of Advanced Industrial Science & Technology | Environment cleaning method using ionic liquid, and apparatus thereof | 
| ITRM20110007A1 (en)* | 2011-01-12 | 2012-07-13 | Andrea Capriccioli | GE.ME.S.I. GENERATION OF METHANE WITH INTRINSIC SAFETY | 
| CN105645529A (en)* | 2016-03-16 | 2016-06-08 | 安简(北京)科技有限公司 | Hydrogen-rich water generator | 
| EP3549875A1 (en)* | 2018-04-06 | 2019-10-09 | Airbus Defence and Space GmbH | Regenerative air renewal system for a manned spacecraft | 
| CN114776547A (en)* | 2022-03-28 | 2022-07-22 | 广州大学 | A fuel-free satellite propulsion device and propulsion method | 
| CN115069173A (en)* | 2022-06-08 | 2022-09-20 | 安徽理工大学 | Molecular sieve catalytic reduction carbon dioxide device | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2009502483A (en) | 2005-07-28 | 2009-01-29 | グローバル リサーチ テクノロジーズ,エルエルシー | Carbon dioxide removal from the air | 
| US9266051B2 (en) | 2005-07-28 | 2016-02-23 | Carbon Sink, Inc. | Removal of carbon dioxide from air | 
| JP2009505904A (en)* | 2005-08-31 | 2009-02-12 | バッテル メモリアル インスティテュート | Power device and oxygen generator | 
| EP1998871A4 (en) | 2006-03-08 | 2010-07-21 | Global Res Technologies Llc | AIR COLLECTOR WITH FUNCTIONALIZED ION EXCHANGE MEMBRANE FOR CAPTURING AMBIENT CO2 | 
| CN104826450B (en) | 2006-10-02 | 2021-08-27 | 碳汇公司 | Extraction of CO from air2Method and apparatus | 
| WO2008131132A1 (en) | 2007-04-17 | 2008-10-30 | Global Research Technologies, Llc | Capture of carbon dioxide (co2) from air | 
| MX2010004398A (en) | 2007-11-05 | 2010-05-20 | Global Res Technologies Llc | Removal of carbon dioxide from air. | 
| EP2212008A1 (en) | 2007-11-20 | 2010-08-04 | Global Research Technologies, LLC | Air collector with functionalized ion exchange membrane for capturing ambient co2 | 
| CA2715874C (en) | 2008-02-19 | 2019-06-25 | Global Research Technologies, Llc | Extraction and sequestration of carbon dioxide | 
| US8999279B2 (en) | 2008-06-04 | 2015-04-07 | Carbon Sink, Inc. | Laminar flow air collector with solid sorbent materials for capturing ambient CO2 | 
| ES2367619B1 (en)* | 2010-04-20 | 2012-09-12 | Westman Worldwide Activities, S.L. | PROCEDURE FOR THE PRODUCTION OF METHANE AND / OR METHANOL. | 
| CN102398684B (en)* | 2010-09-15 | 2014-04-30 | 苏州大学 | Carbon dioxide concentration control system for closed capsule of manned spacecraft | 
| AU2013200983C1 (en)* | 2012-09-19 | 2022-08-11 | Paladin Securities (Australia) Pty Ltd | Hydrogen production | 
| EP2784187A1 (en)* | 2013-03-25 | 2014-10-01 | Helmut-Schmidt-Universität/ Universität der Bundeswehr Hamburg | High efficiency fuel cell | 
| FR3004179B1 (en)* | 2013-04-08 | 2015-05-01 | Commissariat Energie Atomique | METHODS FOR OBTAINING COMBUSTIBLE GAS FROM WATER ELECTROLYSIS (EHT) OR CO-ELECTROLYSIS WITH H2O / CO2 WITHIN THE SAME ENCLOSURE, CATALYTIC REACTOR AND SYSTEM THEREOF | 
| CN104152197B (en)* | 2013-05-14 | 2017-02-08 | 中国科学院大连化学物理研究所 | CO2 enrichment and methanation process and reactor in a confined space | 
| FR3014117B1 (en)* | 2013-12-03 | 2016-01-01 | Commissariat Energie Atomique | METHOD OF OPERATING A SOEC-TYPE STACKED REACTOR TO PRODUCE METHANE CH4 IN THE ABSENCE OF AVAILABLE ELECTRICITY | 
| MX2017009627A (en)* | 2015-01-27 | 2018-02-01 | A King Forrest | Natural gas reactors and methods. | 
| DE102015201751A1 (en)* | 2015-02-02 | 2016-08-04 | Robert Bosch Gmbh | Apparatus and method for regenerating respiratory air | 
| FI130719B1 (en) | 2016-02-18 | 2024-02-08 | Soletair Power Oy | Method and installation for separating and utilising carbon dioxide | 
| US10541413B2 (en)* | 2016-04-11 | 2020-01-21 | Tesla, Inc. | Drying procedure in manufacturing process for cathode material | 
| JP6820550B2 (en)* | 2017-02-09 | 2021-01-27 | エイブル株式会社 | Gas generator | 
| JP2018165388A (en)* | 2017-03-28 | 2018-10-25 | 東京瓦斯株式会社 | Water utilization method and water electrolysis system | 
| JP2018168205A (en)* | 2017-03-29 | 2018-11-01 | 株式会社日立製作所 | Method and facility for producing methane | 
| WO2019161114A1 (en) | 2018-02-16 | 2019-08-22 | Carbon Sink, Inc. | Fluidized bed extractors for capture of co2 from ambient air | 
| JP6848954B2 (en)* | 2018-11-28 | 2021-03-24 | 株式会社豊田中央研究所 | Raw material generator, fuel production equipment, and raw material production method | 
| US20220118146A1 (en)* | 2019-03-07 | 2022-04-21 | KWaterCraft Co., Ltd. | Energy-independent water-based pure air cleaning system using water electrolytic-fuel cell | 
| TR201907838A2 (en)* | 2019-05-23 | 2020-12-21 | Arcelik As | AN OXYGEN GENERATING DEVICE AND METHOD OF OPERATION | 
| JP7432997B2 (en)* | 2019-05-24 | 2024-02-19 | 三菱重工業株式会社 | Composite production system and compound production method | 
| US11091408B2 (en) | 2019-06-12 | 2021-08-17 | Shahar Technology Solutions Ltd. | Integration of carbon dioxide absorption and water electrolysis into methanation | 
| US11713285B2 (en) | 2021-11-17 | 2023-08-01 | Shahar Golan Technology Soultions, Ltd. | Methanation and recovery method, system, and apparatus | 
| Title | 
|---|
| FUNKE H,(DASA/Dornier GmbH) TAN G,(ESTEC),Air Revitalisation System Demonstrator Design and Test Results,SAE TECHNICAL PAPER SERIES,1999−01−1956 | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2012055785A (en)* | 2010-09-03 | 2012-03-22 | National Institute Of Advanced Industrial Science & Technology | Environment cleaning method using ionic liquid, and apparatus thereof | 
| ITRM20110007A1 (en)* | 2011-01-12 | 2012-07-13 | Andrea Capriccioli | GE.ME.S.I. GENERATION OF METHANE WITH INTRINSIC SAFETY | 
| CN105645529A (en)* | 2016-03-16 | 2016-06-08 | 安简(北京)科技有限公司 | Hydrogen-rich water generator | 
| EP3549875A1 (en)* | 2018-04-06 | 2019-10-09 | Airbus Defence and Space GmbH | Regenerative air renewal system for a manned spacecraft | 
| CN114776547A (en)* | 2022-03-28 | 2022-07-22 | 广州大学 | A fuel-free satellite propulsion device and propulsion method | 
| CN115069173A (en)* | 2022-06-08 | 2022-09-20 | 安徽理工大学 | Molecular sieve catalytic reduction carbon dioxide device | 
| Publication number | Publication date | 
|---|---|
| JP2004261757A (en) | 2004-09-24 | 
| Publication | Publication Date | Title | 
|---|---|---|
| JP3479950B1 (en) | Environmental purification circulation type water electrolysis device | |
| JP6473221B2 (en) | System and method for regenerating an absorbent bed for drying compressed wet hydrogen | |
| JP7209623B2 (en) | Apparatus and method for enriching hydrogen isotopes | |
| US11466372B2 (en) | Electrochemical carbon dioxide converter and liquid regenerator | |
| JP2008528285A (en) | Gas separation and compression equipment | |
| CN103619443B (en) | Method for regenerating carbon dioxide absorbing liquid in carbon dioxide recovery method | |
| JP3936867B2 (en) | Selective adsorption and desorption of gases by electrically heated activated carbon fiber fabric elements. | |
| JP7410653B2 (en) | Electrochemical carbon dioxide converter and liquid regenerator | |
| KR20090085082A (en) | Xenon recovery system and recovery device | |
| JP2019035102A (en) | Carbon monoxide production system | |
| JP2024517246A (en) | Systems and methods for capturing carbon dioxide and regenerating capture solution | |
| CN114126734A (en) | Integrated desiccant based cooling and dehumidification | |
| CN115976575B (en) | Small hydrogen production system with drying and purifying functions | |
| JP2004174369A (en) | Gas treatment method and system therefor | |
| JP2000317246A (en) | Ammonia recovery method and recovery device | |
| US9707509B2 (en) | Method of purifying a hydrogen stream using an electrochemical cell | |
| JP5805586B2 (en) | Hydrogen purification apparatus and hydrogen purification method | |
| JP7176027B2 (en) | Carbon dioxide treatment device and method for producing carbon compound | |
| CN220703811U (en) | Electrolytic oxygen production system of solid oxide electrolytic cell | |
| RU2500590C1 (en) | Spacecraft regenerative life support system | |
| JP4501160B2 (en) | How to use ammonia | |
| JP2023050236A (en) | Oxygen production method | |
| JP7441369B1 (en) | Deuterium production equipment | |
| JP3511608B1 (en) | Steam electrolyzer | |
| US20250263854A1 (en) | Separators for Gaseous Products in Oxocarbon Electrolyzers | 
| Date | Code | Title | Description | 
|---|---|---|---|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) | Free format text:JAPANESE INTERMEDIATE CODE: A01 Effective date:20030916 | |
| R150 | Certificate of patent or registration of utility model | Ref document number:3479950 Country of ref document:JP Free format text:JAPANESE INTERMEDIATE CODE: R150 | |
| S111 | Request for change of ownership or part of ownership | Free format text:JAPANESE INTERMEDIATE CODE: R313115 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20071010 Year of fee payment:4 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20081010 Year of fee payment:5 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20091010 Year of fee payment:6 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20091010 Year of fee payment:6 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20101010 Year of fee payment:7 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20101010 Year of fee payment:7 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20111010 Year of fee payment:8 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20111010 Year of fee payment:8 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20121010 Year of fee payment:9 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20121010 Year of fee payment:9 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20121010 Year of fee payment:9 | |
| FPAY | Renewal fee payment (event date is renewal date of database) | Free format text:PAYMENT UNTIL: 20121010 Year of fee payment:9 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| S533 | Written request for registration of change of name | Free format text:JAPANESE INTERMEDIATE CODE: R313533 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| S531 | Written request for registration of change of domicile | Free format text:JAPANESE INTERMEDIATE CODE: R313531 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| S531 | Written request for registration of change of domicile | Free format text:JAPANESE INTERMEDIATE CODE: R313531 | |
| R350 | Written notification of registration of transfer | Free format text:JAPANESE INTERMEDIATE CODE: R350 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| R250 | Receipt of annual fees | Free format text:JAPANESE INTERMEDIATE CODE: R250 | |
| LAPS | Cancellation because of no payment of annual fees |