Movatterモバイル変換


[0]ホーム

URL:


JP3431033B2 - Semiconductor fabrication method - Google Patents

Semiconductor fabrication method

Info

Publication number
JP3431033B2
JP3431033B2JP29463393AJP29463393AJP3431033B2JP 3431033 B2JP3431033 B2JP 3431033B2JP 29463393 AJP29463393 AJP 29463393AJP 29463393 AJP29463393 AJP 29463393AJP 3431033 B2JP3431033 B2JP 3431033B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
solution
film
silicon film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29463393A
Other languages
Japanese (ja)
Other versions
JPH07130652A (en
Inventor
久 大谷
昭治 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co LtdfiledCriticalSemiconductor Energy Laboratory Co Ltd
Priority to JP29463393ApriorityCriticalpatent/JP3431033B2/en
Priority to TW083109844Aprioritypatent/TW264575B/zh
Priority to US08/329,644prioritypatent/US5643826A/en
Priority to CNB991069544Aprioritypatent/CN1143362C/en
Priority to CN94112820Aprioritypatent/CN1054943C/en
Priority to KR1019940028037Aprioritypatent/KR100273827B1/en
Priority to EP01116025Aprioritypatent/EP1158580A3/en
Priority to EP94307986Aprioritypatent/EP0651431B1/en
Priority to DE69430097Tprioritypatent/DE69430097T2/en
Priority to US08/430,623prioritypatent/US5923962A/en
Publication of JPH07130652ApublicationCriticalpatent/JPH07130652A/en
Priority to US08/633,307prioritypatent/US6335541B1/en
Priority to US08/928,514prioritypatent/US6285042B1/en
Priority to KR1019970069468Aprioritypatent/KR100273831B1/en
Priority to CNB981209785Aprioritypatent/CN1149639C/en
Priority to KR1020000013017Aprioritypatent/KR100297315B1/en
Priority to KR1020000013018Aprioritypatent/KR100273833B1/en
Priority to US10/026,802prioritypatent/US6998639B2/en
Application grantedgrantedCritical
Publication of JP3431033B2publicationCriticalpatent/JP3431033B2/en
Priority to US11/322,660prioritypatent/US20060131583A1/en
Priority to US12/219,026prioritypatent/US7998844B2/en
Priority to US13/209,861prioritypatent/US20120034766A1/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Landscapes

Description

Translated fromJapanese
【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は結晶性を有する半導体の
作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a crystalline semiconductor.

【0002】[0002]

【従来の技術】薄膜半導体を用いた薄膜トランジスタ
(以下TFT等)が知られている。このTFTは、基板
上に薄膜半導体を形成し、この薄膜半導体を用いて構成
されるものである。このTFTは、各種集積回路に利用
されているが、特にアクティブマトリックス型の液晶表
示装置の各画素の設けられたスイッチング素子、周辺回
路部分に形成されるドライバー素子として注目されてい
る。
2. Description of the Related Art A thin film transistor (hereinafter referred to as TFT) using a thin film semiconductor is known. This TFT is formed by forming a thin film semiconductor on a substrate and using this thin film semiconductor. This TFT is used in various integrated circuits, and is particularly attracting attention as a switching element provided in each pixel of an active matrix type liquid crystal display device and a driver element formed in a peripheral circuit portion.

【0003】TFTに利用される薄膜半導体としては、
非晶質珪素膜を用いることが簡便であるが、その電気的
特性が低いという問題がある。TFTの特性向上を得る
ためには、結晶性を有するシリコン薄膜を利用するばよ
い。結晶性を有するシリコン膜は、多結晶シリコン、ポ
リシリコン、微結晶シリコン等と称されている。この結
晶性を有するシリコン膜を得るためには、まず非晶質珪
素膜を形成し、しかる後に加熱によって結晶化さればよ
い。
As a thin film semiconductor used for TFT,
Although it is easy to use an amorphous silicon film, there is a problem in that its electrical characteristics are low. In order to improve the characteristics of the TFT, a crystalline silicon thin film may be used. A crystalline silicon film is referred to as polycrystalline silicon, polysilicon, microcrystalline silicon, or the like. In order to obtain this crystalline silicon film, an amorphous silicon film may first be formed and then crystallized by heating.

【0004】しかしながら、加熱による結晶化は、加熱
温度が600℃以上の温度で10時間以上の時間を掛け
ることが必要であり、基板としてガラス基板を用いるこ
とが困難であるという問題がある。例えばアクティブ型
の液晶表示装置に用いられるコーニング7059ガラス
はガラス歪点が593℃であり、基板の大面積化を考慮
した場合、600℃以上の加熱には問題がある。
However, crystallization by heating requires heating at a temperature of 600 ° C. or higher for 10 hours or longer, which makes it difficult to use a glass substrate as a substrate. For example, Corning 7059 glass used in an active type liquid crystal display device has a glass strain point of 593 ° C., and there is a problem in heating at 600 ° C. or higher in consideration of increasing the area of a substrate.

【0005】〔発明の背景〕本発明者らの研究によれ
ば、非晶質珪素膜の表面にニッケルやパラジウム、さら
には鉛等の元素を微量に堆積させ、しかる後に加熱する
ことで、550℃、4時間程度の処理時間で結晶化を行
なえることが判明している。
BACKGROUND OF THE INVENTION According to the research conducted by the present inventors, a small amount of elements such as nickel, palladium, and lead are deposited on the surface of an amorphous silicon film, and then heated to 550. It has been found that crystallization can be performed in a treatment time of about 4 hours at ℃.

【0006】上記のような微量な元素(結晶化を助長す
る触媒元素)を導入するには、プラズマ処理や蒸着、さ
らにはイオン注入を利用すればよい。プラズマ処理と
は、平行平板型のプラズマCVD装置において、電極と
して触媒元素を含んだ材料を用い、水素等の雰囲気でプ
ラズマを生じさせることによって非晶質珪素膜に触媒元
素の添加を行なう方法である。
In order to introduce such a trace amount of elements (catalyst elements that promote crystallization), plasma treatment, vapor deposition, or ion implantation may be used. Plasma treatment is a method of adding a catalytic element to an amorphous silicon film by generating plasma in an atmosphere of hydrogen or the like using a material containing a catalytic element as an electrode in a parallel plate plasma CVD apparatus. is there.

【0007】しかしながら、上記のような元素が半導体
中に多量に存在していることは、これら半導体を用いた
装置の信頼性や電気的安定性を阻害するものであり好ま
しいことではない。
However, the presence of a large amount of the above-mentioned elements in the semiconductor impairs the reliability and electrical stability of the device using these semiconductors and is not preferable.

【0008】即ち、上記のニッケル等の結晶化を助長す
る元素(触媒元素)は、非晶質珪素を結晶化させる際に
は必要であるが、結晶化した珪素中には極力含まれない
ようにすることが望ましい。この目的を達成するには、
触媒元素として結晶性珪素中で不活性な傾向が強いもの
を選ぶと同時に、結晶化に必要な触媒元素の量を極力少
なくし、最低限の量で結晶化を行なう必要がある。そし
てそのためには、上記触媒元素の添加量を精密に制御し
て導入する必要がある。
That is, the above-mentioned element (catalyst element) that promotes crystallization, such as nickel, is necessary when crystallizing amorphous silicon, but the crystallized silicon should not be included as much as possible. Is desirable. To achieve this goal,
It is necessary to select a catalyst element that has a strong tendency to be inactive in crystalline silicon, at the same time reduce the amount of the catalyst element necessary for crystallization as much as possible, and perform crystallization with the minimum amount. For that purpose, it is necessary to precisely control the amount of the catalyst element added and to introduce it.

【0009】また、ニッケルを触媒元素とした場合、非
晶質珪素膜を成膜し、ニッケル添加をプラズマ処理法に
よって行ない結晶性珪素膜を作製し、その結晶化過程等
を詳細に検討したところ以下の事項が判明した。(1)プラズマ処理によってニッケルを非晶質珪素膜上
に導入した場合、熱処理を行なう以前に既に、ニッケル
は非晶質珪素膜中のかなりの深さの部分まで侵入してい
る。(2)結晶の初期核発生は、ニッケルを導入した表面か
ら発生している。(3)蒸着法でニッケルを非晶質珪素膜上に成膜した場
合であっても、プラズマ処理を行なった場合と同様に結
晶化が起こる。
When nickel is used as a catalyst element, an amorphous silicon film is formed, nickel is added by a plasma treatment method to form a crystalline silicon film, and the crystallization process and the like are examined in detail. The following matters were found. (1) When nickel is introduced into the amorphous silicon film by the plasma treatment, nickel has already penetrated to a considerable depth in the amorphous silicon film before the heat treatment. (2) The initial nucleation of crystals occurs from the surface into which nickel is introduced. (3) Even when nickel is formed on the amorphous silicon film by the vapor deposition method, crystallization occurs as in the case of performing the plasma treatment.

【0010】上記事項から、プラズマ処理によって導入
されたニッケルが全て効果的に機能していないというこ
とが結論される。そして、「必要なのは非晶質珪素膜の
表面近傍に極微量のニッケルが導入されればよい」とい
うことが結論される。
From the above it is concluded that all the nickel introduced by the plasma treatment is not functioning effectively. Then, it is concluded that "what is necessary is to introduce a very small amount of nickel into the vicinity of the surface of the amorphous silicon film."

【0011】非晶質珪素膜の表面近傍のみに極微量のニ
ッケルを導入する方法、言い換えるならば、非晶質珪素
膜の表面近傍のみ結晶化を助長する触媒元素を極微量導
入する方法としては、蒸着法を挙げることができるが、
蒸着法は制御性が悪く、触媒元素の導入量を厳密に制御
することが困難であるという問題がある。
As a method of introducing a very small amount of nickel only in the vicinity of the surface of the amorphous silicon film, in other words, a very small amount of a catalyst element that promotes crystallization only in the vicinity of the surface of the amorphous silicon film is introduced. , Vapor deposition method can be mentioned,
The vapor deposition method has poor controllability and has a problem that it is difficult to strictly control the introduction amount of the catalyst element.

【発明が解決しようとする課題】本発明は、触媒元素を
用いた600℃以下の熱処理による結晶性を有する薄膜
珪素半導体の作製において、(1)触媒元素の量を制御して導入する。(2)生産性の高い方法とする。といった要求を満たすことを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, in the production of a thin film silicon semiconductor having crystallinity by heat treatment using a catalytic element at 600 ° C. or lower, (1) the catalytic element is introduced while controlling its amount. (2) Use a method with high productivity. The purpose is to meet such requirements.

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を満
足するために以下の構成を用いることを主要な構成とす
る。「触媒元素を含む溶液を非晶質珪素膜表面に塗布し、こ
のことによって、触媒元素の導入を行なう」
SUMMARY OF THE INVENTION The present invention mainly uses the following constitution in order to satisfy the above object. "A solution containing a catalytic element is applied to the surface of the amorphous silicon film, and thereby the catalytic element is introduced."

【0013】上記構成は以下の基本的な有意性を有す
る。(a)溶液中における触媒元素濃度は、予め厳密に制御
することが可能である。(b)溶液と非晶質珪素膜の表面とが接触していれば、
触媒元素の非晶質珪素への導入量は、溶液中における触
媒元素の濃度によって決まる。(c)非晶質珪素膜の表面に吸着する触媒元素が主に結
晶化に寄与することとなるので、必要最小限度の濃度で
触媒元素を導入できる。
The above configuration has the following basic significance. (A) The concentration of the catalyst element in the solution can be strictly controlled beforehand. (B) If the solution is in contact with the surface of the amorphous silicon film,
The amount of the catalytic element introduced into the amorphous silicon depends on the concentration of the catalytic element in the solution. (C) Since the catalytic element adsorbed on the surface of the amorphous silicon film mainly contributes to crystallization, the catalytic element can be introduced at the required minimum concentration.

【0014】非晶質珪素膜上に結晶化を助長する元素を
含有させた溶液を塗布する方法としては、溶液として硝
酸塩、酢酸塩、硫酸塩の水溶液を用いる方法を挙げるこ
とができる。この場合、非晶質珪素膜に直接上記溶液を
塗布すると、溶液が弾かれてしまうので、100Å以下
の薄い酸化膜をまず形成し、その上に触媒元素を含有さ
せた溶液を塗布することで、均一に溶液を塗布すること
ができる。また、界面活性剤の如き材料を溶液中に添加
する方法により濡れを改善する方法も有効である。
As a method of applying a solution containing an element which promotes crystallization to the amorphous silicon film, a method of using an aqueous solution of nitrate, acetate or sulfate as the solution can be mentioned. In this case, if the above solution is applied directly to the amorphous silicon film, the solution will be repelled, so by forming a thin oxide film of 100 Å or less first and applying the solution containing the catalytic element on it. The solution can be applied uniformly. A method of improving wetting by adding a material such as a surfactant to the solution is also effective.

【0015】また、溶液としてオクチル酸塩やトルエン
溶液を用いることで、非晶質珪素膜表面に直接塗布する
ことができる。この場合にはレジスト塗布の際に使用さ
れている密着剤の如き材料を予め塗布することは有効で
ある。しかし塗布量が多過ぎる場合には逆に非晶質珪素
中への触媒元素の添加を妨害してしまうために注意が必
要である。
Further, by using an octylate or toluene solution as the solution, the solution can be directly applied to the surface of the amorphous silicon film. In this case, it is effective to pre-apply a material such as an adhesive used when applying the resist. However, if the coating amount is too large, the addition of the catalytic element into the amorphous silicon will be hindered, and therefore caution must be exercised.

【0016】溶液に含ませる触媒元素の量は、その溶液
の種類にも依存するが、概略の傾向としてはニッケル量
として溶液に対して200ppm以下、好ましくは50
ppm以下(重量換算)とすることが望ましい。これ
は、結晶化終了後における膜中のニッケル濃度や耐フッ
酸性に鑑みて決められる値である。
The amount of the catalytic element contained in the solution depends on the type of the solution, but the general tendency is that the amount of nickel is 200 ppm or less, preferably 50, with respect to the solution.
It is desirable to set it to ppm or less (weight conversion). This is a value determined in consideration of the nickel concentration in the film and the hydrofluoric acid resistance after completion of crystallization.

【0017】また、触媒元素を含んだ溶液を選択的に塗
布することにより、結晶成長を選択的に行なうことがで
きる。特にこの場合、溶液が塗布されなかった領域に向
かって、溶液が塗布された領域から珪素膜の面に平行な
方向に結晶成長を行なすことができる。この珪素膜の面
に平行な方向に結晶成長が行なわれた領域を本明細書中
においては横方向に結晶成長した領域ということとす
る。
Further, the crystal growth can be selectively carried out by selectively applying the solution containing the catalytic element. Particularly, in this case, crystal growth can be performed in the direction parallel to the surface of the silicon film from the area where the solution is applied, toward the area where the solution is not applied. In the present specification, a region in which crystal growth is performed in a direction parallel to the surface of the silicon film is referred to as a lateral crystal growth region.

【0018】またこの横方向に結晶成長が行なわれた領
域は、触媒元素の濃度を低いことが確かめられている。
半導体装置の活性層領域として、結晶性珪素膜を利用す
ることは有用であるが、活性層領域中における不純物の
濃度は一般に低い方が好ましい。従って、上記横方向に
結晶成長が行なわれた領域を用いて半導体装置の活性層
領域を形成することはデバイス作製上有用である。
It has been confirmed that the concentration of the catalytic element is low in the region where the crystal growth is carried out in the lateral direction.
Although it is useful to use a crystalline silicon film as the active layer region of the semiconductor device, it is generally preferable that the concentration of impurities in the active layer region is low. Therefore, forming the active layer region of the semiconductor device by using the region in which the crystal growth is performed in the lateral direction is useful for device fabrication.

【0019】本発明においては、触媒元素としてニッケ
ルを用いた場合に最も顕著な効果を得ることができる
が、その他利用できる触媒元素の種類としては、好まし
くはNi、Pd、Pt、Cu、Ag、Au、In、S
、P、As、Sbを利用することができる。また、VI
II族元素、IIIb、IVb、Vb元素から選ばれた一種または
複数種類の元素を利用することもできる。
In the present invention, the most prominent effect can be obtained when nickel is used as the catalyst element, but other types of catalyst element that can be used are preferably Ni, Pd, Pt, Cu and Ag. Au, In, S
n, P , As, and Sb can be used. Also, VI
It is also possible to use one or more kinds of elements selected from the group II elements, IIIb, IVb, and Vb elements.

【0020】[0020]

【実施例】〔実施例1〕[Example] [Example 1]

【0021】本実施例では、ガラス基板上の結晶性を有
する珪素膜を形成する例を示す。まず図1を用いて、触
媒元素(ここではニッケルを用いる)を導入するところ
までを説明する。本実施例においては、基板としてコー
ニング7059ガラスを用いる。またその大きさは10
0mm×100mmとする。
This embodiment shows an example of forming a crystalline silicon film on a glass substrate. First, referring to FIG. 1, description will be made up to the point where a catalyst element (here, nickel is used) is introduced. In this embodiment, Corning 7059 glass is used as the substrate. The size is 10
The size is 0 mm × 100 mm.

【0022】まず、非晶質珪素膜をプラズマCVD法や
LPCVD法によってアモルファス状のシリコン膜を1
00〜1500Å形成する。ここでは、プラズマCVD
法によって非晶質珪素膜12を1000Åの厚さに成膜
する。(図1(A))
First, an amorphous silicon film is formed into an amorphous silicon film by plasma CVD or LPCVD.
It forms from 00 to 1500Å. Here, plasma CVD
The amorphous silicon film 12 is formed to a thickness of 1000 Å by the method. (Fig. 1 (A))

【0023】そして、汚れ及び自然酸化膜を取り除くた
めにフッ酸処理を行い、その後酸化膜13を10〜50
Åに成膜する。汚れが無視できる場合には、この工程を
省略しても良いことは言うまでもなく、酸化膜13の代
わりに自然酸化膜をそのまま用いれば良い。なお、この
酸化膜13は極薄のため正確な膜厚は不明であるが、2
0Å程度であると考えられる。ここでは酸素雰囲気中で
のUV光の照射により酸化膜13を成膜する。成膜条件
は、酸素雰囲気中においてUVを5分間照射することに
おって行なった。この酸化膜13の成膜方法としては、
熱酸化法を用いるのでもよい。また過酸化水素による処
理によるものでもよい。
Then, a hydrofluoric acid treatment is performed to remove dirt and a natural oxide film, and then the oxide film 13 is removed by 10 to 50.
Deposit on Å. Needless to say, this step may be omitted if the stain can be ignored, and a natural oxide film may be used as it is instead of the oxide film 13. Since the oxide film 13 is extremely thin, the exact film thickness is unknown.
It is considered to be about 0Å. Here, the oxide film 13 is formed by irradiation with UV light in an oxygen atmosphere. The film formation was performed by irradiating UV for 5 minutes in an oxygen atmosphere. As a method of forming the oxide film 13,
A thermal oxidation method may be used. Alternatively, treatment with hydrogen peroxide may be used.

【0024】この酸化膜13は、後のニッケルを含んだ
酢酸塩溶液を塗布する工程で、非晶質珪素膜の表面全体
に酢酸塩溶液を行き渡らせるため、即ち濡れ性の改善の
為のものである。例えば、非晶質珪素膜の表面に直接酢
酸塩溶液を塗布した場合、非晶質珪素が酢酸塩溶液を弾
いてしまうので、非晶質珪素膜の表面全体にニッケルを
導入することができない。即ち、均一な結晶化を行うこ
とができない。
The oxide film 13 is provided to spread the acetate solution over the entire surface of the amorphous silicon film in the later step of applying the acetate solution containing nickel, that is, for improving the wettability. Is. For example, when the acetate solution is directly applied to the surface of the amorphous silicon film, the amorphous silicon repels the acetate solution, so that nickel cannot be introduced to the entire surface of the amorphous silicon film. That is, uniform crystallization cannot be performed.

【0025】つぎに、酢酸塩溶液中にニッケルを添加し
た酢酸塩溶液を作る。ニッケルの濃度は100ppmと
する。そしてこの酢酸塩溶液を非晶質珪素膜12上の酸
化膜13の表面に2ml滴下し、この状態を5分間保持
する。そしてスピナーを用いてスピンドライ(2000
rpm、60秒)を行う。(図1(C)、(D))
Next, an acetate solution is prepared by adding nickel to the acetate solution. The concentration of nickel is 100 ppm. Then, 2 ml of this acetate solution is dropped on the surface of the oxide film 13 on the amorphous silicon film 12, and this state is maintained for 5 minutes. Then spin dry (2000
rpm, 60 seconds). (Fig. 1 (C), (D))

【0026】酢酸溶液中におけるニッケルの濃度は、1
0ppm以上であれば実用になる。また溶液としては、
塩酸塩、硝酸塩、硫酸塩を用いることができる。また、
有機系のオクチル酸塩やトルエン溶液を用いることもで
きる。この場合は、酸化膜13は不要であり、直接非晶
質珪素膜上に触媒元素を導入することができる。
The concentration of nickel in the acetic acid solution is 1
When it is 0 ppm or more, it becomes practical. As a solution,
Hydrochloride, nitrate and sulfate can be used. Also,
It is also possible to use an organic octylate or toluene solution. In this case, the oxide film 13 is unnecessary and the catalyst element can be directly introduced onto the amorphous silicon film.

【0027】上記溶液の塗布の後、5分間その状態を保
持させる。この保持させる時間によっても、最終的に珪
素膜12中に含まれるニッケルの濃度を制御することが
できるが、最も大きな制御因子は溶液の濃度である。
After the application of the above solution, the state is maintained for 5 minutes. The concentration of nickel contained in the silicon film 12 can be finally controlled also by the holding time, but the largest control factor is the concentration of the solution.

【0028】そして、加熱炉において、窒素雰囲気中に
おいて550度、4時間の加熱処理を行う。この結果、
基板11上に形成された結晶性を有する珪素薄膜12を
得ることができる。
Then, in a heating furnace, heat treatment is performed at 550 ° C. for 4 hours in a nitrogen atmosphere. As a result,
It is possible to obtain the crystalline silicon thin film 12 formed on the substrate 11.

【0029】上記の加熱処理は450度以上の温度で行
うことができるが、温度が低いと加熱時間を長くしなけ
らばならず、生産効率が低下する。また、550度以上
とすると基板として用いるガラス基板の耐熱性の問題が
表面化してしまう。
The above heat treatment can be performed at a temperature of 450 ° C. or higher, but if the temperature is low, the heating time must be lengthened and the production efficiency will be reduced. Further, if the temperature is 550 ° C. or more, the problem of heat resistance of the glass substrate used as the substrate is exposed.

【0030】〔実施例2〕本実施例は、実施例1に示す
作製方法において、1200Åの酸化珪素膜を選択的に
設け、この酸化珪素膜をマスクとして選択的にニッケル
を導入する例である。
[Embodiment 2] This embodiment is an example in which a 1200 Å silicon oxide film is selectively provided in the manufacturing method shown in Embodiment 1 and nickel is selectively introduced using this silicon oxide film as a mask. .

【0031】図2に本実施例における作製工程の概略を
示す。まず、ガラス基板(コーニング7059、10c
m角)上にマスクとなる酸化珪素膜21を1000Å以
上、ここでは1200Åの厚さに成膜する。この酸化珪
素膜21の膜厚については、発明者等の実験によると5
00Åでも問題がないことを確認しており、膜質が緻密
であれば更に薄くても良いと思われる。
FIG. 2 shows an outline of the manufacturing process in this embodiment. First, the glass substrate (Corning 7059, 10c
A silicon oxide film 21 serving as a mask is formed on the (m square) to a thickness of 1000 Å or more, here 1200 Å. The film thickness of the silicon oxide film 21 is 5 according to experiments by the inventors.
It has been confirmed that there is no problem even with 00Å, and if the film quality is dense, it may be possible to make it thinner.

【0032】そして通常のフォトリソパターニング工程
によって、必要とするパターンに酸化珪素膜21をパー
ニングする。そして、酸素雰囲気中における紫外線の照
射で薄い酸化珪素膜20を成膜する。この酸化珪素膜2
0の作製は、酸素雰囲気中でUV光を5分間照射するこ
とによって行なわれる。なおこの酸化珪素膜20の厚さ
は20〜50Å程度と考えられる(図2(B))。尚、
この濡れ性を改善するための酸化珪素膜については、溶
液とパターンのサイズが合致した場合には、マスクの酸
化珪素膜の親水性のみによっても丁度よく添加される場
合がある。しかしながらこの様な例は特殊であり、一般
的には酸化珪素膜20を使用したほうが安全である。
Then, the silicon oxide film 21 is patterned into a required pattern by a normal photolithographic patterning process. Then, a thin silicon oxide film 20 is formed by irradiation of ultraviolet rays in an oxygen atmosphere. This silicon oxide film 2
Production of 0 is performed by irradiating UV light for 5 minutes in an oxygen atmosphere. The thickness of the silicon oxide film 20 is considered to be about 20 to 50Å (FIG. 2 (B)). still,
The silicon oxide film for improving the wettability may be added just by the hydrophilicity of the silicon oxide film of the mask only when the size of the solution and the pattern match. However, such an example is special, and it is generally safer to use the silicon oxide film 20.

【0033】この状態において、実施例1と同様に10
0ppmのニッケルを含有した酢酸塩溶液を5ml滴下
(10cm角基板の場合)する。またこの際、スピナー
で50rpmで10秒のスピンコートを行い、基板表面
全体に均一な水膜を形成させる。さらにこの状態で、5
分間保持した後スピナーを用いて2000rpm、60
秒のスピンドライを行う。なおこの保持は、スピナー上
において0〜100rpmの回転をさせながら行なって
もよい。(図2(C))
In this state, as in the first embodiment, 10
5 ml of an acetate solution containing 0 ppm of nickel is dropped (in the case of a 10 cm square substrate). At this time, spin coating is performed with a spinner at 50 rpm for 10 seconds to form a uniform water film on the entire surface of the substrate. In this state, 5
After holding for 2 minutes, using a spinner, 2000 rpm, 60
Perform a second spin dry. This holding may be performed while rotating the spinner at 0 to 100 rpm. (Fig. 2 (C))

【0034】そして550度(窒素雰囲気)、4時間の
加熱処理を施すことにより、非晶質珪素膜12の結晶化
を行う。この際、ニッケルが導入された部分22の領域
から23で示されるように、ニッケルが導入されなった
領域へと横方向に結晶成長が行われる。
Then, the amorphous silicon film 12 is crystallized by performing heat treatment at 550 ° C. (nitrogen atmosphere) for 4 hours. At this time, crystal growth is performed in the lateral direction from the region of the portion 22 into which nickel has been introduced to the region into which nickel has not been introduced, as indicated by 23.

【0035】この23で示される横方向への結晶成長の
距離(μm)と、酢酸塩溶液中に含有されるニッケル濃
度(ppm)との関係を図3に示す。なお、図3に示さ
れるデータにおいては、ニッケルを含有する酢酸塩を塗
布した後の保持時間を5分間とした。
The relationship between the lateral crystal growth distance (μm) indicated by 23 and the nickel concentration (ppm) contained in the acetate solution is shown in FIG. In the data shown in FIG. 3, the holding time after applying the nickel-containing acetate was set to 5 minutes.

【0036】図3を見れば分かるように、ニッケル濃度
を100ppm以上とすることによって、25μm以上
の成長距離を得ることができる。
As can be seen from FIG. 3, the growth distance of 25 μm or more can be obtained by setting the nickel concentration to 100 ppm or more.

【0037】また、酢酸溶液中に含まれるニッケルの濃
度が10ppmであっても、10μm程度の横方向成長
を得られることが予想される。
Further, it is expected that lateral growth of about 10 μm can be obtained even when the concentration of nickel contained in the acetic acid solution is 10 ppm.

【0038】図3に示すのは、ニッケルを含有する酢酸
塩を塗布した後の保持時間を5分間とした場合である
が、この保持時間によっても横成長距離は変化する。
FIG. 3 shows the case where the holding time after applying the nickel-containing acetate is set to 5 minutes, and the lateral growth distance also changes depending on this holding time.

【0039】例えば、ニッケル濃度が100ppmの場
合において、保持時間を1分以下とした場合には、保持
時間が長い程、横方向への結晶成長を長くすることがで
きる。しかし、保持時間を1分以上とした場合には、僅
かづつ成長距離が長くなるだけで、顕著な違いを得るこ
とができない。
For example, when the nickel concentration is 100 ppm and the holding time is 1 minute or less, the longer the holding time is, the longer the crystal growth in the lateral direction can be. However, if the holding time is set to 1 minute or more, the growth distance is gradually increased, and a remarkable difference cannot be obtained.

【0040】また、ニッケル濃度を50ppmとした場
合においては、保持時間が5分までは、その時間が横方
向への結晶成長距離に比例するが、5分以上では飽和す
る傾向が見られる。
When the nickel concentration is 50 ppm, the holding time is up to 5 minutes, which time is proportional to the crystal growth distance in the lateral direction, but tends to be saturated at 5 minutes or more.

【0041】なお以上の条件において保持時間をさらに
長くすると僅かづつであるが、さらに横方向への結晶成
長距離を大きくすることができる。尚、これらの保持時
間は温度が変化するとその平衡に到達する時間が大きく
変わるため、温度を管理する必要があることを付加して
おく。また、熱処理時間の温度を高くする、あるいは熱
処理時間を長くすることによっても全体として横方向へ
の結晶成長を大きくすることができる。
Under the above-mentioned conditions, if the holding time is further lengthened, the crystal growth distance in the lateral direction can be further increased, although it slightly increases. It should be added that these holding times need to be controlled because the time required to reach the equilibrium changes greatly when the temperature changes. Further, the crystal growth in the lateral direction can be increased as a whole by increasing the temperature of the heat treatment time or lengthening the heat treatment time.

【0042】図4と図5は、ニッケルを100ppm含
有した酢酸塩溶液を用いてニッケルを導入し、550
℃、4時間の熱処理において、結晶化を行った場合の結
晶化後における珪素膜中のニッケル濃度をSIMS(2
次イオン質量分析)によって調べたデータである。
FIG. 4 and FIG. 5 show that 550 is obtained by introducing nickel using an acetate solution containing 100 ppm of nickel.
In the case where crystallization is performed by heat treatment at 4 ° C. for 4 hours, the nickel concentration in the silicon film after crystallization is measured by SIMS (2
These are the data examined by secondary ion mass spectrometry).

【0043】図4は、図2の22の領域、即ちニッケル
が直接導入された領域におけるニッケルの濃度を示す。
また図5は、図2の23で示されるように22の領域か
ら横方向に結晶成長した領域におけるニッケルの濃度で
ある。
FIG. 4 shows the concentration of nickel in the region 22 of FIG. 2, that is, the region where nickel was directly introduced.
Further, FIG. 5 shows the concentration of nickel in the region where the crystal is grown laterally from the region 22 as shown by 23 in FIG.

【0044】図4と図5を見れば分かるように、横方向
成長した領域のニッケル濃度は、直接ニッケルを導入し
た領域に比較してその濃度が約1桁小さいことが分か
る。
As can be seen from FIGS. 4 and 5, the nickel concentration in the laterally grown region is about one digit lower than that in the region into which nickel is directly introduced.

【0045】また、直接ニッケルを導入した領域であっ
ても、酢酸塩溶液中におけるニッケルの濃度を10pp
mとすれば、結晶化させた珪素膜中におけるニッケル濃
度を1018cm-3レベルに抑えられることが分かる
Even in the region where nickel is directly introduced, the nickel concentration in the acetate solution is 10 pp.
It can be seen that, when m, the nickel concentration in the crystallized silicon film can be suppressed to the level of 1018 cm-3.

【0046】そしてこのことから、酢酸溶液中における
ニッケル濃度を10ppmとし、加熱処理温度を550
℃以上、加熱処理時間を4時間以上とした場合における
結晶性珪素膜の横成長領域のニッケル濃度は1017cm
-3レベル以下に抑えられることが結論される。
From this fact, the nickel concentration in the acetic acid solution was set to 10 ppm, and the heat treatment temperature was set to 550
The nickel concentration in the lateral growth region of the crystalline silicon film is 1017 cm when the heat treatment time is 4 ° C. or higher and the heat treatment time is 4 hours or longer.
-It is concluded that it can be suppressed below the-3 level.

【0047】本実施例で示したような方法によって形成
された結晶珪素膜は、耐フッ酸性が良好であるという特
徴がある。本発明者らによる知見によれば、ニッケルを
プラズマ処理で導入し、結晶化させた結晶性珪素膜は、
耐フッ酸性が低い。
The crystalline silicon film formed by the method shown in this embodiment is characterized in that it has good hydrofluoric acid resistance. According to the findings by the present inventors, a crystalline silicon film obtained by crystallizing nickel by plasma treatment is
Low hydrofluoric acid resistance.

【0048】例えば、結晶性珪素膜上にゲイト絶縁膜や
層間絶縁膜として機能する酸化珪素膜を形成し、しかる
後に電極の形成のために穴開け工程を経て、電極を形成
をする作業が必要とされる場合がある。このような場
合、酸化珪素膜をバッファフッ酸によって除去する工程
が普通採用される。しかしながら、結晶性珪素膜の耐フ
ッ酸性が低い場合、酸化珪素膜のみを取り除くことは困
難であり、結晶性珪素膜をもエッチングしてしまうとい
う問題がある。
For example, it is necessary to form a silicon oxide film functioning as a gate insulating film or an interlayer insulating film on a crystalline silicon film, and then perform a hole forming process to form an electrode and then form an electrode. It may be said that. In such a case, a process of removing the silicon oxide film with buffer hydrofluoric acid is usually adopted. However, when the hydrofluoric acid resistance of the crystalline silicon film is low, it is difficult to remove only the silicon oxide film, and there is a problem that the crystalline silicon film is also etched.

【0049】しかしながら、結晶性珪素膜が耐フッ酸性
を有している場合、酸化珪素膜と結晶性珪素膜のエンチ
ッングレートの違い(選択比)を大きくとることができ
るので、酸化珪素膜のみを選択的の除去でき、作製工程
上極めて有意なものとなる。
However, when the crystalline silicon film has a hydrofluoric acid resistance, a large difference (selection ratio) between the etching rates of the silicon oxide film and the crystalline silicon film can be obtained, so that the silicon oxide film. Only this can be selectively removed, which is extremely significant in the manufacturing process.

【0050】〔実施例3〕本実施例は、本発明の方法を
利用して作製した結晶性珪素膜を用いて、アクティブマ
トリックス型の液晶表示装置の各画素部分に設けられる
TFTを作製する例を示す。なお、TFTの応用範囲と
しては、液晶表示装置のみではなく、一般に言われる薄
膜集積回路に利用できることはいうまでもない。
[Embodiment 3] This embodiment is an example of manufacturing a TFT provided in each pixel portion of an active matrix type liquid crystal display device by using a crystalline silicon film manufactured by using the method of the present invention. Indicates. It is needless to say that the application range of the TFT is not limited to the liquid crystal display device but can be applied to a generally-known thin film integrated circuit.

【0051】図6に本実施例の作製工程の概要を示す。
まずガラス基板上に下地の酸化珪素膜(図示せず)を2
000Åの厚さに成膜する。この酸化珪素膜は、ガラス
基板からの不純物の拡散を防ぐために設けられる。
FIG. 6 shows an outline of the manufacturing process of this embodiment.
First, an underlying silicon oxide film (not shown) is formed on the glass substrate by 2
Form a film with a thickness of 000Å. This silicon oxide film is provided to prevent the diffusion of impurities from the glass substrate.

【0052】そして、非晶質珪素膜を実施例1と同様な
方法で1000Åの厚さに成膜する。そして、自然酸化
膜を取り除くためのフッ酸処理の後、薄い酸化膜20を
20Å程度の厚さに酸素雰囲気でのUV光の照射によっ
て成膜する。
Then, an amorphous silicon film is formed to a thickness of 1000 Å by the same method as in the first embodiment. After the hydrofluoric acid treatment for removing the natural oxide film, a thin oxide film 20 is formed to a thickness of about 20Å by UV light irradiation in an oxygen atmosphere.

【0053】そして10ppmのニッケルを含有した酢
酸塩溶液を塗布し、5分間保持し、スピナーを用いてス
ピンドライを行う。その後バッファフッ酸によって酸化
珪素膜20と21を取り除き、550度、4時間の加熱
によって、珪素膜100を結晶化させる。(ここまでは
実施例1に示した作製方法と同じ)
Then, an acetate solution containing 10 ppm of nickel is applied, held for 5 minutes, and spin-dried using a spinner. After that, the silicon oxide films 20 and 21 are removed by buffer hydrofluoric acid, and the silicon film 100 is crystallized by heating at 550 ° C. for 4 hours. (Up to this point, it is the same as the manufacturing method shown in Example 1)

【0054】次に、結晶化した珪素膜をパターニングし
て、島状の領域104を形成する。この島状の領域10
4はTFTの活性層を構成する。そして、厚さ200〜
1500Å、ここでは1000Åの酸化珪素105を形
成する。この酸化珪素膜はゲイト絶縁膜としても機能す
る。(図6(A))
Next, the crystallized silicon film is patterned to form island regions 104. This island area 10
Reference numeral 4 constitutes an active layer of the TFT. And thickness 200 ~
The silicon oxide 105 of 1500 Å, here 1000 Å, is formed. This silicon oxide film also functions as a gate insulating film. (Fig. 6 (A))

【0055】上記酸化珪素膜105の作製には注意が必
要である。ここでは、TEOSを原料とし、酸素ととも
に基板温度150〜600℃、好ましくは300〜45
0℃で、RFプラズマCVD法で分解・堆積した。TE
OSと酸素の圧力比は1:1〜1:3、また、圧力は
0.05〜0.5torr、RFパワーは100〜25
0Wとした。あるいはTEOSを原料としてオゾンガス
とともに減圧CVD法もしくは常圧CVD法によって、
基板温度を350〜600℃、好ましくは400〜55
0℃として形成した。成膜後、酸素もしくはオゾンの雰
囲気で400〜600℃で30〜60分アニールした。
Attention must be paid to the production of the silicon oxide film 105. Here, TEOS is used as a raw material, and the substrate temperature is 150 to 600 ° C., preferably 300 to 45, together with oxygen.
It was decomposed and deposited at 0 ° C. by the RF plasma CVD method. TE
The pressure ratio of OS and oxygen is 1: 1 to 1: 3, the pressure is 0.05 to 0.5 torr, and the RF power is 100 to 25.
It was set to 0W. Alternatively, by using TEOS as a raw material together with ozone gas by a low pressure CVD method or a normal pressure CVD method,
The substrate temperature is 350 to 600 ° C., preferably 400 to 55
It was formed as 0 ° C. After the film formation, annealing was performed at 400 to 600 ° C. for 30 to 60 minutes in an atmosphere of oxygen or ozone.

【0056】この状態でKrFエキシマーレーザー(波
長248nm、パルス幅20nsec)あるいはそれと
同等な強光を照射することで、シリコン領域104の結
晶化を助長さえてもよい。特に、赤外光を用いたRTA
(ラピットサーマルアニール)は、ガラス基板を加熱せ
ずに、珪素のみを選択的に加熱することができ、しかも
珪素と酸化珪素膜との界面における界面準位を減少させ
ることができるので、絶縁ゲイト型電界効果半導体装置
の作製においては有用である。
In this state, the KrF excimer laser (wavelength 248 nm, pulse width 20 nsec) or strong light equivalent thereto may be irradiated to promote crystallization of the silicon region 104. In particular, RTA using infrared light
(Rapid thermal annealing) can selectively heat only silicon without heating the glass substrate, and can reduce the interface state at the interface between the silicon and the silicon oxide film. It is useful in the fabrication of a field effect semiconductor device.

【0057】その後、厚さ2000Å〜1μmのアルミ
ニウム膜を電子ビーム蒸着法によって形成して、これを
パターニングし、ゲイト電極106を形成する。アルミ
ニウムにはスカンジウム(Sc)を0.15〜0.2重
量%ドーピングしておいてもよい。次に基板をpH≒
7、1〜3%の酒石酸のエチレングリコール溶液に浸
し、白金を陰極、このアルミニウムのゲイト電極を陽極
として、陽極酸化を行う。陽極酸化は、最初一定電流で
220Vまで電圧を上げ、その状態で1時間保持して終
了させる。本実施例では定電流状態では、電圧の上昇速
度は2〜5V/分が適当である。このようにして、厚さ
1500〜3500Å、例えば、2000Åの陽極酸化
物109を形成する。(図6(B))
After that, an aluminum film having a thickness of 2000 Å to 1 μm is formed by electron beam evaporation, and this is patterned to form a gate electrode 106. The aluminum may be doped with scandium (Sc) in an amount of 0.15 to 0.2% by weight. Next, set the substrate pH
It is immersed in an ethylene glycol solution of 7 to 1 to 3% tartaric acid, and anodization is performed using platinum as a cathode and this aluminum gate electrode as an anode. The anodization is completed by first raising the voltage to 220 V with a constant current and then maintaining that state for 1 hour. In the present embodiment, in the constant current state, it is appropriate that the voltage rising rate is 2 to 5 V / min. In this way, the anodic oxide 109 having a thickness of 1500 to 3500Å, for example 2000Å, is formed. (Fig. 6 (B))

【0058】その後、イオンドーピング法(プラズマド
ーピング法ともいう)によって、各TFTの島状シリコ
ン膜中に、ゲイト電極部をマスクとして自己整合的に不
純物(燐)を注入した。ドーピングガスとしてはフォス
フィン(PH3 )を用いた。ドーズ量は、1〜4×10
15cm-2とする。
After that, an impurity (phosphorus) was self-alignedly injected into the island-shaped silicon film of each TFT by an ion doping method (also referred to as a plasma doping method) using the gate electrode portion as a mask. Phosphine (PH3 ) was used as the doping gas. The dose amount is 1 to 4 × 10
15 cm-2 .

【0059】さらに、図6(C)に示すようにKrFエ
キシマーレーザー(波長248nm、パルス幅20ns
ec)を照射して、上記不純物領域の導入によって結晶
性の劣化した部分の結晶性を改善させる。レーザーのエ
ネルギー密度は150〜400mJ/cm2 、好ましく
は200〜250mJ/cm2 である。こうして、N型
不純物(燐)領域108、109を形成する。これらの
領域のシート抵抗は200〜800Ω/□であった。
Further, as shown in FIG. 6C, a KrF excimer laser (wavelength 248 nm, pulse width 20 ns) is used.
ec) is applied to improve the crystallinity of the portion where the crystallinity is deteriorated by the introduction of the impurity region. The energy density of the laser is 150 to 400 mJ / cm2 , preferably 200 to 250 mJ / cm2 . Thus, the N-type impurity (phosphorus) regions 108 and 109 are formed. The sheet resistance in these regions was 200 to 800 Ω / □.

【0060】この工程において、レーザーを用いるかわ
りに、フラッシュランプを使用して短時間に1000〜
1200℃(シリコンモニターの温度)まで上昇させ、
試料を加熱する、いわゆるRTA(ラピッド・サーマル
・アニール)(RTP、ラピット・サーマル・プロセス
ともいう)を用いてもよい。
In this step, instead of using a laser, a flash lamp is used, and 1000 to
Raise it to 1200 ° C (silicon monitor temperature),
So-called RTA (Rapid Thermal Annealing) (RTP, also called rapid thermal process) for heating the sample may be used.

【0061】その後、全面に層間絶縁物110として、
TEOSを原料として、これと酸素とのプラズマCVD
法、もしくはオゾンとの減圧CVD法あるいは常圧CV
D法によって酸化珪素膜を厚さ3000Å形成する。基
板温度は250〜450℃、例えば、350℃とする。
成膜後、表面の平坦性を得るため、この酸化珪素膜を機
械的に研磨する。さらに、スパッタ法によってITO被
膜を堆積し、これをパターニングして画素電極111と
する。(図6(D))
After that, an interlayer insulator 110 is formed on the entire surface.
Plasma CVD with TEOS as raw material and oxygen
Method, low pressure CVD method with ozone, or atmospheric pressure CV
A silicon oxide film having a thickness of 3000 Å is formed by the D method. The substrate temperature is 250 to 450 ° C., for example 350 ° C.
After the film formation, this silicon oxide film is mechanically polished to obtain the flatness of the surface. Further, an ITO film is deposited by the sputtering method and patterned to form the pixel electrode 111. (Figure 6 (D))

【0062】そして、層間絶縁物110をエッチングし
て、図1(E)に示すようにTFTのソース/ドレイン
にコンタクトホールを形成し、クロムもしくは窒化チタ
ンの配線112、113を形成し、配線113は画素電
極111に接続させる。
Then, the inter-layer insulator 110 is etched to form contact holes in the source / drain of the TFT as shown in FIG. 1E, wirings 112 and 113 of chromium or titanium nitride are formed, and the wiring 113 is formed. Is connected to the pixel electrode 111.

【0063】プラズマ処理を用いてニッケルを導入した
結晶性珪素膜は、酸化珪素膜に比較してバッファフッ酸
に対する選択性が低いので、上記コンタクトホールの形
成工程において、エッチングされてしまうことが多かっ
た。
Since the crystalline silicon film into which nickel is introduced by the plasma treatment has a lower selectivity for buffer hydrofluoric acid than the silicon oxide film, it is often etched in the contact hole forming step. It was

【0064】しかし、本実施例のように10ppmの低
濃度で水溶液を用いてニッケルを導入した場合には、耐
フッ酸性が高いので、上記コンタクトホールの形成が安
定して再現性よく行なうことができる。
However, when nickel is introduced using an aqueous solution at a low concentration of 10 ppm as in the present embodiment, the hydrofluoric acid resistance is high, so that the formation of the contact hole can be performed stably and with good reproducibility. it can.

【0065】最後に、水素中で300〜400℃で0.
1〜2時間アニールして、シリコンの水素化を完了す
る。このようにして、TFTが完成する。そして、同時
に作製した多数のTFTをマトリクス状に配列せしめて
アクティブマトリクス型液晶表示装置として完成する。
Finally, in hydrogen at 300 to 400 ° C.
Anneal for 1-2 hours to complete hydrogenation of silicon. In this way, the TFT is completed. Then, a large number of TFTs manufactured at the same time are arranged in a matrix to complete an active matrix liquid crystal display device.

【0066】本実施例の構成を採用した場合、活性層中
に存在するニッケルの濃度は、1×1018cm-3程度あ
るいはそれ以下であると考えられる。
When the structure of this embodiment is adopted, the concentration of nickel present in the active layer is considered to be about 1 × 1018 cm-3 or less.

【0067】本実施例においては、ニッケルを導入した
部分を結晶化させた例を示したが、実施例2に示すよう
にニッケルを選択的に導入し、その部分から横方向(基
板に平行な方向)に結晶成長した領域を用いて電子デバ
イスを形成してもよい。この場合、デバイスの活性層領
域におけるニッケル濃度をさらに低くすることができ、
デバイスの電気的安定性や信頼性の上から極めて好まし
い構成とすることができる。
In this embodiment, an example was shown in which the portion into which nickel was introduced was crystallized. However, as shown in Example 2, nickel was introduced selectively, and from that portion in the lateral direction (parallel to the substrate). The electronic device may be formed by using the region in which the crystal is grown in the (direction). In this case, the nickel concentration in the active layer region of the device can be further reduced,
An extremely preferable configuration can be obtained from the viewpoint of electrical stability and reliability of the device.

【0068】[0068]

【効果】ニッケルの導入方法として、溶液を用いること
によって、ニッケルの濃度を精密に制御して添加できる
ようになり、結晶性珪素膜を用いた信頼性の高い電子デ
バイスを提供できる。
[Effect] By using a solution as a method for introducing nickel, the nickel concentration can be precisely controlled and added, and a highly reliable electronic device using a crystalline silicon film can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の工程を示すFIG. 1 shows a process of an example.

【図2】 実施例の工程を示す。FIG. 2 shows a process of an example.

【図3】 溶液中のニッケル濃度と横方向への結晶成長
距離との関係を示す。
FIG. 3 shows the relationship between the nickel concentration in the solution and the crystal growth distance in the lateral direction.

【図4】 ニッケルが導入された領域のニッケル濃度を
示す。
FIG. 4 shows nickel concentration in a region where nickel is introduced.

【図5】 ニッケルが導入された領域から横方向に結晶
した領域におけるニッケル濃度を示す。
FIG. 5 shows a nickel concentration in a region crystallized in a lateral direction from a region into which nickel is introduced.

【図6】 実施例の作製工程を示す。FIG. 6 shows a manufacturing process of an example.

【符号の説明】[Explanation of symbols]

11・・・・ガラス基板12・・・・非晶質珪素膜13・・・・酸化珪素膜14・・・・ニッケルを含有した酢酸溶液膜15・・・・ズピナー21・・・・マスク用酸化珪素膜20・・・・酸化珪素膜11・・・・ガラス基板104・・・活性層105・・・酸化珪素膜106・・・ゲイト電極109・・・酸化物層108・・・ソース/ドレイン領域109・・・ドレイン/ソース領域110・・・層間絶縁膜(酸化珪素膜)111・・・画素電極(ITO)112・・・電極113・・・電極11 ... Glass substrate12 ... Amorphous silicon film13 ··· Silicon oxide film14 ... Acetic acid solution film containing nickel15 ... Zpiner21..Silicon oxide film for mask20 ... Silicon oxide film11 ... Glass substrate104 ... Active layer105 ... Silicon oxide film106 ... Gate electrode109 ... Oxide layer108 ... Source / drain region109 ... Drain / source region110 ... Interlayer insulating film (silicon oxide film)111 ... Pixel electrode (ITO)112 ... Electrode113 ... Electrode

─────────────────────────────────────────────────────フロントページの続き (56)参考文献 特開 平3−280420(JP,A) 特開 平2−140915(JP,A) 特開 平5−67635(JP,A) 特開 昭63−142807(JP,A) 特開 昭64−74754(JP,A) 特開 平2−20059(JP,A) 米国特許5147826(US,A) Appl.Phys.Lett.,55 (7),p.660−662 (58)調査した分野(Int.Cl.7,DB名) H01L 21/20─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-3-280420 (JP, A) JP-A-2-140915 (JP, A) JP-A-5-67635 (JP, A) JP-A-63- 142807 (JP, A) JP 64-74754 (JP, A) JP 2-20059 (JP, A) US Pat. No. 5147826 (US, A) Appl. Phys. Lett. , 55 (7), p. 660-662 (58) Fields investigated (Int.Cl.7 , DB name) H01L 21/20

Claims (20)

Translated fromJapanese
(57)【特許請求の範囲】(57) [Claims]【請求項1】 非晶質珪素膜上に酸化膜を形成し、前記酸化膜上に、非晶質珪素の結晶化を助長する元素を
含有させた溶液を塗布し、前記非晶質珪素膜を加熱処理することにより結晶化させ
ることを特徴とする半導体作製方法。
1. An amorphous silicon film is formed on the amorphous silicon film, and a solution containing an element that promotes crystallization of the amorphous silicon is applied on the oxide film. A method for manufacturing a semiconductor, which comprises crystallizing by heat treatment.
【請求項2】 非晶質珪素膜上に厚さ10nm以下の酸
化膜を形成し、前記酸化膜上に、非晶質珪素の結晶化を助長する元素を
含む溶液を塗布し、前記非晶質珪素膜を加熱処理することにより結晶化させ
ることを特徴とする半導体作製方法。
2. An oxide film having a thickness of 10nm or less is formed on the amorphous silicon film, and a solution containing an element that promotes crystallization of the amorphous silicon is applied onto the oxide film. A method for manufacturing a semiconductor, comprising crystallizing a crystalline silicon film by heat treatment.
【請求項3】 非晶質珪素膜上に酸化膜を形成し、前記酸化膜上に非晶質珪素の結晶化を助長する元素を含
む溶液を滴下し、スピナーを用いて不要な前記溶液を除去し、前記非晶質珪素膜を加熱処理することにより結晶化させ
ることを特徴とする半導体作製方法。
3. An oxide film is formed on an amorphous silicon film, a solution containing an element that promotes crystallization of amorphous silicon is dropped on the oxide film, and the unnecessary solution is removed by using a spinner. A method of manufacturing a semiconductor, which comprises removing the amorphous silicon film and crystallizing the amorphous silicon film by heat treatment.
【請求項4】 請求項1乃至3のいずれか1項におい
て、前記非晶質珪素膜表面をフッ酸で洗浄した後、前記
酸化膜を形成することを特徴とする半導体作製方法。
4. The semiconductor manufacturing method according to claim 1, wherein the oxide film is formed after cleaning the surface of the amorphous silicon film with hydrofluoric acid.
【請求項5】 請求項1乃至4のいずれか1項におい
て、前記非晶質珪素膜表面へ紫外光を照射することで、前記
酸化膜を形成することを特徴とする半導体作製方法。
5. The semiconductor manufacturing method according to claim 1, wherein the oxide film is formed by irradiating the surface of the amorphous silicon film with ultraviolet light.
【請求項6】 請求項1乃至4のいずれか1項におい
て、前記非晶質珪素の表面を過酸化水素水で処理すること
で、前記酸化膜を形成することを特徴とする半導体作製
方法。
6. The semiconductor manufacturing method according to claim 1, wherein the oxide film is formed by treating the surface of the amorphous silicon with a hydrogen peroxide solution.
【請求項7】 非晶質珪素膜上に、開口を有するマスク
を形成し、前記マスクが存在する状態で、前記マスクの開口部分の
前記非晶質珪素膜表面に、酸化膜を形成し、前記マスク膜を介して、前記酸化膜表面に非晶質珪素の
結晶化を助長する元素を含む溶液を塗布し、前記非晶質珪素膜を加熱処理することにより、前記非晶
質珪素膜を結晶化させることを特徴とする半導体作製方
法。
7. A mask having an opening is formed on the amorphous silicon film, and an oxide film is formed on the surface of the amorphous silicon film in the opening portion of the mask in the state where the mask exists. A solution containing an element that promotes crystallization of amorphous silicon is applied to the surface of the oxide film through the mask film, and the amorphous silicon film is heat-treated to form the amorphous silicon film. A method for manufacturing a semiconductor, which comprises crystallizing.
【請求項8】 請求項において、前記マスクは酸化珪
素でなることを特徴とする半導体作製方法。
8. The method for manufacturing a semiconductor according to claim7 , wherein the mask is made of silicon oxide.
【請求項9】 請求項又はにおいて、前記マスクを介して前記非晶質珪素膜表面へ紫外光を照
射することで、前記酸化膜を形成することを特徴とする
半導体作製方法。
9. The method of claim7 or8, by irradiating ultraviolet light to the amorphous silicon film surface through the mask, the semiconductor manufacturing method characterized by forming the oxide film.
【請求項10】 請求項乃至のいずれか1項におい
て、スピナーを用いて、前記溶液を塗布することを特徴とす
る半導体作製方法。
10. A any one of claims7 to9, using a spinner, a semiconductor manufacturing method characterized by applying the solution.
【請求項11】 請求項乃至10のいずれか1項にお
いて、前記溶液を塗布し所定の時間経過した後、不要な前記溶
液を除去し、前記非晶質珪素膜を加熱処理して結晶化す
ることを特徴とする半導体作製方法。
11. The any one of claims7 to10, wherein after the solution has passed the coated predetermined time, removing unnecessary the solution, crystallization by heat treating the amorphous silicon film A method for manufacturing a semiconductor, comprising:
【請求項12】 請求項1において、前記所定の時間を変化させることによって、結晶化され
た珪素膜に含まれる前記元素の濃度を制御することを特
徴とする半導体作製方法。
12. The method of claim 11, by varying the predetermined time, the semiconductor manufacturing method characterized by controlling the concentration of the element contained in the crystallized silicon film.
【請求項13】 請求項1又は1において、スピナーを用いて、不要な前記溶液を除去することを特
徴とする半導体作製方法。
13. The method of claim 11 or 12, a semiconductor manufacturing method characterized by using a spinner, removing unnecessary the solution.
【請求項14】 請求項1乃至1のいずれか1項にお
いて、前記溶液中の前記元素の濃度は50ppm以下であるこ
とを特徴とする半導体作製方法。
14. The any one of claims 1 to 13, a semiconductor manufacturing method, wherein the concentration of the element in the solution is 50ppm or less.
【請求項15】 請求項1乃至1のいずれか1項にお
いて、前記溶液中の前記元素の濃度は10ppm以上であるこ
とを特徴とする半導体作製方法。
15. The any one of claims 1 to 14, the semiconductor manufacturing method, wherein the concentration of the element in the solution is 10ppm or more.
【請求項16】 請求項1乃至1のいずれか1項にお
いて、前記溶液中の前記元素の濃度を変化させることによっ
て、結晶化された珪素膜に含まれる前記元素の濃度を制
御することを特徴とする半導体作製方法。
16. The any one of claims 1 to 15, by varying the concentration of the element in the solution, to control the concentration of the element contained in the crystallized silicon film A characteristic semiconductor manufacturing method.
【請求項17】 請求項1乃至1のいずれか1項にお
いて、前記溶液は、前記元素としてNiを含む溶液であること
を特徴とする半導体作製方法。
17. any one of claims 1 to 16, wherein the solution is a semiconductor manufacturing method which is a solution containing Ni as the element.
【請求項18】 請求項1乃至1のいずれか1項にお
いて、前記溶液は、前記元素としてNiを含むニッケル酢酸塩
の水溶液であることを特徴とする半導体作製方法。
18. The any one of claims 1 to 16, wherein the solution is a semiconductor manufacturing method is characterized in that an aqueous solution of nickel acetate containing Ni as the element.
【請求項19】 請求項1乃至1のいずれか1項にお
いて、前記溶液は、前記元素としてNi、Pd、Ptから選ば
れた一種または複数種類の元素を含む溶液であることを
特徴とする半導体作製方法。
19. any one of claims 1 to 16, wherein the solution is characterized in that as the element Ni, Pd, a solution containing one or more kinds of elements selected from Pt Semiconductor manufacturing method.
【請求項20】 請求項19において、前記溶液は、前記元素の酢酸塩、硝酸塩又は硫酸塩の水
溶液であることを特徴とする半導体作製方法。
20. Themethod for manufacturing a semiconductor according to claim19 , wherein the solution is an aqueous solution of acetate, nitrate or sulfate of the element.
JP29463393A1993-10-291993-10-29 Semiconductor fabrication methodExpired - LifetimeJP3431033B2 (en)

Priority Applications (20)

Application NumberPriority DateFiling DateTitle
JP29463393AJP3431033B2 (en)1993-10-291993-10-29 Semiconductor fabrication method
TW083109844ATW264575B (en)1993-10-291994-10-24
US08/329,644US5643826A (en)1993-10-291994-10-25Method for manufacturing a semiconductor device
CNB991069544ACN1143362C (en)1993-10-291994-10-28 Method for manufacturing semiconductor device
CN94112820ACN1054943C (en)1993-10-291994-10-28 Method for manufacturing semiconductor device
KR1019940028037AKR100273827B1 (en)1993-10-291994-10-29 Semiconductor devices
EP01116025AEP1158580A3 (en)1993-10-291994-10-31Method of crystallizing a silicon layer
EP94307986AEP0651431B1 (en)1993-10-291994-10-31Method of crystallizing a silicon layer
DE69430097TDE69430097T2 (en)1993-10-291994-10-31 Process for crystallizing a silicon layer
US08/430,623US5923962A (en)1993-10-291995-04-28Method for manufacturing a semiconductor device
US08/633,307US6335541B1 (en)1993-10-291996-04-15Semiconductor thin film transistor with crystal orientation
US08/928,514US6285042B1 (en)1993-10-291997-09-12Active Matry Display
KR1019970069468AKR100273831B1 (en)1993-10-291997-12-17 Manufacturing Method of Semiconductor Device
CNB981209785ACN1149639C (en)1993-10-291998-10-12Semiconductor device
KR1020000013017AKR100297315B1 (en)1993-10-292000-03-15A method for manufacturing a semiconductor device
KR1020000013018AKR100273833B1 (en)1993-10-292000-03-15A semiconductor device
US10/026,802US6998639B2 (en)1993-10-292001-12-27Method for manufacturing a semiconductor device
US11/322,660US20060131583A1 (en)1993-10-292006-01-03Method for manufacturing a semiconductor device
US12/219,026US7998844B2 (en)1993-10-292008-07-15Method for manufacturing a semiconductor device
US13/209,861US20120034766A1 (en)1993-10-292011-08-15Method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP29463393AJP3431033B2 (en)1993-10-291993-10-29 Semiconductor fabrication method

Related Child Applications (2)

Application NumberTitlePriority DateFiling Date
JP2001210092ADivisionJP3672850B2 (en)2001-07-112001-07-11 Integrated circuit fabrication method
JP2001210091ADivisionJP3672849B2 (en)2001-07-112001-07-11 Integrated circuit fabrication method

Publications (2)

Publication NumberPublication Date
JPH07130652A JPH07130652A (en)1995-05-19
JP3431033B2true JP3431033B2 (en)2003-07-28

Family

ID=17810294

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP29463393AExpired - LifetimeJP3431033B2 (en)1993-10-291993-10-29 Semiconductor fabrication method

Country Status (1)

CountryLink
JP (1)JP3431033B2 (en)

Families Citing this family (313)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH10135137A (en)*1996-10-311998-05-22Semiconductor Energy Lab Co Ltd Crystalline semiconductor fabrication method
JPH10228248A (en)1996-12-091998-08-25Semiconductor Energy Lab Co Ltd Active matrix display device and manufacturing method thereof
US6140166A (en)1996-12-272000-10-31Semicondutor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor and method for manufacturing semiconductor device
TW386238B (en)1997-01-202000-04-01Semiconductor Energy LabSemiconductor device and method of manufacturing the same
JP3856889B2 (en)1997-02-062006-12-13株式会社半導体エネルギー研究所 Reflective display device and electronic device
JP3976828B2 (en)1997-02-172007-09-19株式会社半導体エネルギー研究所 Method for producing crystalline silicon film
JP3844552B2 (en)1997-02-262006-11-15株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6423585B1 (en)1997-03-112002-07-23Semiconductor Energy Laboratory Co., Ltd.Heating treatment device, heating treatment method and fabrication method of semiconductor device
US6133075A (en)1997-04-252000-10-17Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating the same
US6307214B1 (en)1997-06-062001-10-23Semiconductor Energy Laboratory Co., Ltd.Semiconductor thin film and semiconductor device
US6452211B1 (en)1997-06-102002-09-17Semiconductor Energy Laboratory Co., Ltd.Semiconductor thin film and semiconductor device
JP4036923B2 (en)1997-07-172008-01-23株式会社半導体エネルギー研究所 Display device and drive circuit thereof
JP4318768B2 (en)*1997-07-232009-08-26株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH1145076A (en)1997-07-241999-02-16Semiconductor Energy Lab Co LtdActive matrix type display device
JP3844566B2 (en)1997-07-302006-11-15株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6667494B1 (en)1997-08-192003-12-23Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and semiconductor display device
US6717179B1 (en)1997-08-192004-04-06Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and semiconductor display device
JP4601731B2 (en)1997-08-262010-12-22株式会社半導体エネルギー研究所 Semiconductor device, electronic device having semiconductor device, and method for manufacturing semiconductor device
JP2000031488A (en)1997-08-262000-01-28Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
US6197624B1 (en)*1997-08-292001-03-06Semiconductor Energy Laboratory Co., Ltd.Method of adjusting the threshold voltage in an SOI CMOS
JP3980178B2 (en)1997-08-292007-09-26株式会社半導体エネルギー研究所 Nonvolatile memory and semiconductor device
JPH11143379A (en)1997-09-031999-05-28Semiconductor Energy Lab Co Ltd Semiconductor display device correction system and semiconductor display device correction method
JP3943245B2 (en)1997-09-202007-07-11株式会社半導体エネルギー研究所 Semiconductor device
US6121660A (en)*1997-09-232000-09-19Semiconductor Energy Laboratory Co., Ltd.Channel etch type bottom gate semiconductor device
US6680223B1 (en)1997-09-232004-01-20Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
US6013930A (en)1997-09-242000-01-11Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having laminated source and drain regions and method for producing the same
US6218219B1 (en)1997-09-292001-04-17Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and fabrication method thereof
JPH11167373A (en)1997-10-011999-06-22Semiconductor Energy Lab Co LtdSemiconductor display device and driving method thereof
JPH11112002A (en)1997-10-071999-04-23Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
TW408351B (en)1997-10-172000-10-11Semiconductor Energy LabSemiconductor device and method of manufacturing the same
US7166500B2 (en)1997-10-212007-01-23Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device
JP4068219B2 (en)1997-10-212008-03-26株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6199533B1 (en)1999-02-012001-03-13Cummins Engine Company, Inc.Pilot valve controlled three-way fuel injection control valve assembly
US6686623B2 (en)1997-11-182004-02-03Semiconductor Energy Laboratory Co., Ltd.Nonvolatile memory and electronic apparatus
US6369410B1 (en)1997-12-152002-04-09Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the semiconductor device
US6678023B1 (en)1997-12-172004-01-13Semiconductor Energy Laboratory Co., Ltd.Liquid crystal projector
JP3779052B2 (en)*1997-12-172006-05-24株式会社半導体エネルギー研究所 LCD projector
JP4376979B2 (en)1998-01-122009-12-02株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH11214700A (en)1998-01-231999-08-06Semiconductor Energy Lab Co LtdSemiconductor display device
US6617648B1 (en)1998-02-252003-09-09Semiconductor Energy Laboratory Co., Ltd.Projection TV
JPH11338439A (en)1998-03-271999-12-10Semiconductor Energy Lab Co Ltd Driving circuit for semiconductor display device and semiconductor display device
US6482684B1 (en)1998-03-272002-11-19Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a TFT with Ge seeded amorphous Si layer
US6268842B1 (en)1998-04-132001-07-31Semiconductor Energy Laboratory Co., Ltd.Thin film transistor circuit and semiconductor display device using the same
JP3844613B2 (en)1998-04-282006-11-15株式会社半導体エネルギー研究所 Thin film transistor circuit and display device using the same
US6396147B1 (en)1998-05-162002-05-28Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with metal-oxide conductors
JP4223094B2 (en)1998-06-122009-02-12株式会社半導体エネルギー研究所 Electro-optic display
JP2000002872A (en)1998-06-162000-01-07Semiconductor Energy Lab Co LtdLiquid crystal display device and its manufacture
US6246524B1 (en)1998-07-132001-06-12Semiconductor Energy Laboratory Co., Ltd.Beam homogenizer, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
JP4663047B2 (en)1998-07-132011-03-30株式会社半導体エネルギー研究所 Laser irradiation apparatus and method for manufacturing semiconductor device
US7294535B1 (en)1998-07-152007-11-13Semiconductor Energy Laboratory Co., Ltd.Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7153729B1 (en)1998-07-152006-12-26Semiconductor Energy Laboratory Co., Ltd.Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
JP3592535B2 (en)1998-07-162004-11-24株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4030193B2 (en)1998-07-162008-01-09株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7084016B1 (en)1998-07-172006-08-01Semiconductor Energy Laboratory Co., Ltd.Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7282398B2 (en)1998-07-172007-10-16Semiconductor Energy Laboratory Co., Ltd.Crystalline semiconductor thin film, method of fabricating the same, semiconductor device and method of fabricating the same
US6559036B1 (en)1998-08-072003-05-06Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
TW522354B (en)1998-08-312003-03-01Semiconductor Energy LabDisplay device and method of driving the same
JP4493741B2 (en)1998-09-042010-06-30株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7126161B2 (en)1998-10-132006-10-24Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having El layer and sealing material
EP2309482A3 (en)1998-10-302013-04-24Semiconductor Energy Laboratory Co, Ltd.Field sequantial liquid crystal display device and driving method thereof, and head mounted display
US6274887B1 (en)1998-11-022001-08-14Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method therefor
US6617644B1 (en)1998-11-092003-09-09Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
US7141821B1 (en)1998-11-102006-11-28Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having an impurity gradient in the impurity regions and method of manufacture
US7022556B1 (en)1998-11-112006-04-04Semiconductor Energy Laboratory Co., Ltd.Exposure device, exposure method and method of manufacturing semiconductor device
US6518594B1 (en)1998-11-162003-02-11Semiconductor Energy Laboratory Co., Ltd.Semiconductor devices
US6512271B1 (en)1998-11-162003-01-28Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US6420758B1 (en)1998-11-172002-07-16Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having an impurity region overlapping a gate electrode
US6489952B1 (en)1998-11-172002-12-03Semiconductor Energy Laboratory Co., Ltd.Active matrix type semiconductor display device
US6909114B1 (en)1998-11-172005-06-21Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having LDD regions
US6365917B1 (en)1998-11-252002-04-02Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US6501098B2 (en)1998-11-252002-12-31Semiconductor Energy Laboratory Co, Ltd.Semiconductor device
JP2000174282A (en)1998-12-032000-06-23Semiconductor Energy Lab Co Ltd Semiconductor device
US7235810B1 (en)1998-12-032007-06-26Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating the same
US6420988B1 (en)1998-12-032002-07-16Semiconductor Energy Laboratory Co., Ltd.Digital analog converter and electronic device using the same
US6545359B1 (en)1998-12-182003-04-08Semiconductor Energy Laboratory Co., Ltd.Wiring line and manufacture process thereof, and semiconductor device and manufacturing process thereof
US6469317B1 (en)1998-12-182002-10-22Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating the same
US6259138B1 (en)1998-12-182001-07-10Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having multilayered gate electrode and impurity regions overlapping therewith
US6524895B2 (en)1998-12-252003-02-25Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating the same
US8158980B2 (en)2001-04-192012-04-17Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor
JP4202502B2 (en)1998-12-282008-12-24株式会社半導体エネルギー研究所 Semiconductor device
US6380558B1 (en)1998-12-292002-04-30Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating the same
EP1020839A3 (en)1999-01-082002-11-27Sel Semiconductor Energy Laboratory Co., Ltd.Semiconductor display device and driving circuit therefor
US6639244B1 (en)1999-01-112003-10-28Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating the same
DE69942442D1 (en)1999-01-112010-07-15Semiconductor Energy Lab Semiconductor arrangement with driver TFT and pixel TFT on a substrate
US6891236B1 (en)1999-01-142005-05-10Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating the same
US6590229B1 (en)1999-01-212003-07-08Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and process for production thereof
TW468269B (en)1999-01-282001-12-11Semiconductor Energy LabSerial-to-parallel conversion circuit, and semiconductor display device employing the same
US6593592B1 (en)1999-01-292003-07-15Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having thin film transistors
US6576924B1 (en)1999-02-122003-06-10Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having at least a pixel unit and a driver circuit unit over a same substrate
US6506635B1 (en)1999-02-122003-01-14Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, and method of forming the same
US6777716B1 (en)1999-02-122004-08-17Semiconductor Energy Laboratory Co., Ltd.Semiconductor display device and method of manufacturing therefor
US6535535B1 (en)1999-02-122003-03-18Semiconductor Energy Laboratory Co., Ltd.Laser irradiation method, laser irradiation apparatus, and semiconductor device
US6576926B1 (en)1999-02-232003-06-10Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and fabrication method thereof
JP4637315B2 (en)1999-02-242011-02-23株式会社半導体エネルギー研究所 Display device
US7821065B2 (en)1999-03-022010-10-26Semiconductor Energy Laboratory Co., Ltd.Semiconductor device comprising a thin film transistor comprising a semiconductor thin film and method of manufacturing the same
US6674136B1 (en)1999-03-042004-01-06Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having driver circuit and pixel section provided over same substrate
US6306694B1 (en)1999-03-122001-10-23Semiconductor Energy Laboratory Co., Ltd.Process of fabricating a semiconductor device
US6614083B1 (en)1999-03-172003-09-02Semiconductor Energy Laboratory Co., Ltd.Wiring material and a semiconductor device having wiring using the material, and the manufacturing method
US7193594B1 (en)1999-03-182007-03-20Semiconductor Energy Laboratory Co., Ltd.Display device
US6531713B1 (en)1999-03-192003-03-11Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and manufacturing method thereof
US6858898B1 (en)1999-03-232005-02-22Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
US6281552B1 (en)1999-03-232001-08-28Semiconductor Energy Laboratory Co., Ltd.Thin film transistors having ldd regions
US7145536B1 (en)1999-03-262006-12-05Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
TW469484B (en)1999-03-262001-12-21Semiconductor Energy LabA method for manufacturing an electrooptical device
US6399988B1 (en)1999-03-262002-06-04Semiconductor Energy Laboratory Co., Ltd.Thin film transistor having lightly doped regions
US6337235B1 (en)1999-03-262002-01-08Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US6475836B1 (en)1999-03-292002-11-05Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US6952194B1 (en)1999-03-312005-10-04Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device
US6861670B1 (en)1999-04-012005-03-01Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having multi-layer wiring
US6346730B1 (en)1999-04-062002-02-12Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device having a pixel TFT formed in a display region and a drive circuit formed in the periphery of the display region on the same substrate
US7122835B1 (en)1999-04-072006-10-17Semiconductor Energy Laboratory Co., Ltd.Electrooptical device and a method of manufacturing the same
TW444257B (en)1999-04-122001-07-01Semiconductor Energy LabSemiconductor device and method for fabricating the same
TW518650B (en)1999-04-152003-01-21Semiconductor Energy LabElectro-optical device and electronic equipment
US6362507B1 (en)1999-04-202002-03-26Semiconductor Energy Laboratory Co., Ltd.Electro-optical devices in which pixel section and the driver circuit are disposed over the same substrate
US6512504B1 (en)1999-04-272003-01-28Semiconductor Energy Laborayory Co., Ltd.Electronic device and electronic apparatus
US6753854B1 (en)1999-04-282004-06-22Semiconductor Energy Laboratory Co., Ltd.Display device
US6461899B1 (en)1999-04-302002-10-08Semiconductor Energy Laboratory, Co., Ltd.Oxynitride laminate “blocking layer” for thin film semiconductor devices
EP1049167A3 (en)1999-04-302007-10-24Sel Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
US6590581B1 (en)1999-05-072003-07-08Semiconductor Energy Laboratory Co., Ltd.Display device
JP4298131B2 (en)1999-05-142009-07-15株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
EP1619534A3 (en)1999-05-142006-03-22Semiconductor Energy Laboratory Co., Ltd.Google type display device
US6545656B1 (en)1999-05-142003-04-08Semiconductor Energy Laboratory Co., Ltd.Liquid crystal display device in which a black display is performed by a reset signal during one sub-frame
US6680487B1 (en)1999-05-142004-01-20Semiconductor Energy Laboratory Co., Ltd.Semiconductor comprising a TFT provided on a substrate having an insulating surface and method of fabricating the same
TW517260B (en)*1999-05-152003-01-11Semiconductor Energy LabSemiconductor device and method for its fabrication
US6630977B1 (en)1999-05-202003-10-07Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with capacitor formed around contact hole
US6583471B1 (en)1999-06-022003-06-24Semiconductor Energy Laboratory Co., Ltd.Semiconductor device having first and second insulating films
US8853696B1 (en)1999-06-042014-10-07Semiconductor Energy Laboratory Co., Ltd.Electro-optical device and electronic device
TWI232595B (en)1999-06-042005-05-11Semiconductor Energy LabElectroluminescence display device and electronic device
US7288420B1 (en)1999-06-042007-10-30Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing an electro-optical device
JP4307635B2 (en)1999-06-222009-08-05株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7245018B1 (en)1999-06-222007-07-17Semiconductor Energy Laboratory Co., Ltd.Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
TW556357B (en)1999-06-282003-10-01Semiconductor Energy LabMethod of manufacturing an electro-optical device
TW512543B (en)1999-06-282002-12-01Semiconductor Energy LabMethod of manufacturing an electro-optical device
US6661096B1 (en)1999-06-292003-12-09Semiconductor Energy Laboratory Co., Ltd.Wiring material semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
JP4666723B2 (en)1999-07-062011-04-06株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6952020B1 (en)1999-07-062005-10-04Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method thereof
TW459275B (en)1999-07-062001-10-11Semiconductor Energy LabSemiconductor device and method of fabricating the same
US6426245B1 (en)1999-07-092002-07-30Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing a semiconductor device
TW523730B (en)1999-07-122003-03-11Semiconductor Energy LabDigital driver and display device
US6563482B1 (en)1999-07-212003-05-13Semiconductor Energy Laboratory Co., Ltd.Display device
JP2001035808A (en)1999-07-222001-02-09Semiconductor Energy Lab Co Ltd Wiring, method of manufacturing the same, semiconductor device provided with the wiring, and dry etching method
TW480554B (en)1999-07-222002-03-21Semiconductor Energy LabSemiconductor device and manufacturing method thereof
TW490713B (en)1999-07-222002-06-11Semiconductor Energy LabSemiconductor device and manufacturing method thereof
US7242449B1 (en)1999-07-232007-07-10Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and integral image recognition/display apparatus
US6909411B1 (en)1999-07-232005-06-21Semiconductor Energy Laboratory Co., Ltd.Display device and method for operating the same
DE60045653D1 (en)1999-08-132011-04-07Semiconductor Energy Lab Laser irradiation apparatus
US6567219B1 (en)1999-08-132003-05-20Semiconductor Energy Laboratory Co., Ltd.Laser irradiation apparatus
US7160765B2 (en)1999-08-132007-01-09Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing a semiconductor device
JP2001051661A (en)1999-08-162001-02-23Semiconductor Energy Lab Co LtdD-a conversion circuit and semiconductor device
US6486812B1 (en)1999-08-162002-11-26Semiconductor Energy Laboratory Co., Ltd.D/A conversion circuit having n switches, n capacitors and a coupling capacitor
US6599788B1 (en)1999-08-182003-07-29Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of fabricating the same
US6476790B1 (en)1999-08-182002-11-05Semiconductor Energy Laboratory Co., Ltd.Display device and a driver circuit thereof
US6515648B1 (en)1999-08-312003-02-04Semiconductor Energy Laboratory Co., Ltd.Shift register circuit, driving circuit of display device, and display device using the driving circuit
JP4472073B2 (en)1999-09-032010-06-02株式会社半導体エネルギー研究所 Display device and manufacturing method thereof
TW522453B (en)1999-09-172003-03-01Semiconductor Energy LabDisplay device
JP3538084B2 (en)1999-09-172004-06-14株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2001092413A (en)1999-09-242001-04-06Semiconductor Energy Lab Co Ltd EL display device and electronic device
JP4495805B2 (en)*1999-09-292010-07-07株式会社東芝 Crystalline semiconductor thin film and manufacturing method thereof, and thin film transistor and manufacturing method thereof
US6885366B1 (en)1999-09-302005-04-26Semiconductor Energy Laboratory Co., Ltd.Display device
US6967633B1 (en)1999-10-082005-11-22Semiconductor Energy Laboratory Co., Ltd.Display device
TW468283B (en)1999-10-122001-12-11Semiconductor Energy LabEL display device and a method of manufacturing the same
TW471011B (en)1999-10-132002-01-01Semiconductor Energy LabThin film forming apparatus
US6410368B1 (en)1999-10-262002-06-25Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device with TFT
US6384427B1 (en)1999-10-292002-05-07Semiconductor Energy Laboratory Co., Ltd.Electronic device
JP4562835B2 (en)1999-11-052010-10-13株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6618115B1 (en)1999-11-192003-09-09Semiconductor Energy Laboratory Co., Ltd.Defective pixel compensation system and display device using the system
US6646287B1 (en)1999-11-192003-11-11Semiconductor Energy Laboratory Co., Ltd.Semiconductor device with tapered gate and insulating film
US7348953B1 (en)1999-11-222008-03-25Semiconductor Energy Laboratory Co., Ltd.Method of driving liquid crystal display device
JP4514861B2 (en)1999-11-292010-07-28株式会社半導体エネルギー研究所 Laser irradiation apparatus, laser irradiation method, and manufacturing method of semiconductor device
US7002659B1 (en)1999-11-302006-02-21Semiconductor Energy Laboratory Co., Ltd.Liquid crystal panel and liquid crystal projector
US6653657B2 (en)1999-12-102003-11-25Semoconductor Energy Laboratory Co., Ltd.Semiconductor device and a method of manufacturing the same
JP2001175198A (en)1999-12-142001-06-29Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
TW511298B (en)1999-12-152002-11-21Semiconductor Energy LabEL display device
JP2001177101A (en)1999-12-202001-06-29Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
US6573162B2 (en)1999-12-242003-06-03Semiconductor Energy Laboratory Co., Ltd.Laser irradiation apparatus and method of fabricating a semiconductor device
US6590227B2 (en)1999-12-272003-07-08Semiconductor Energy Laboratory Co., Ltd.Active matrix display device
US6876339B2 (en)1999-12-272005-04-05Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and driving method thereof
US6750835B2 (en)1999-12-272004-06-15Semiconductor Energy Laboratory Co., Ltd.Image display device and driving method thereof
US7071041B2 (en)2000-01-202006-07-04Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device
US6639265B2 (en)2000-01-262003-10-28Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the semiconductor device
US6780687B2 (en)2000-01-282004-08-24Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device having a heat absorbing layer
US6702407B2 (en)2000-01-312004-03-09Semiconductor Energy Laboratory Co., Ltd.Color image display device, method of driving the same, and electronic equipment
JP4493779B2 (en)2000-01-312010-06-30株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
TW494447B (en)2000-02-012002-07-11Semiconductor Energy LabSemiconductor device and manufacturing method thereof
US6856307B2 (en)2000-02-012005-02-15Semiconductor Energy Laboratory Co., Ltd.Semiconductor display device and method of driving the same
US6856630B2 (en)2000-02-022005-02-15Semiconductor Energy Laboratory Co., Ltd.Beam homogenizer, laser irradiation apparatus, semiconductor device, and method of fabricating the semiconductor device
TW495808B (en)2000-02-042002-07-21Semiconductor Energy LabThin film formation apparatus and method of manufacturing self-light-emitting device using thin film formation apparatus
US7023021B2 (en)2000-02-222006-04-04Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
TW521303B (en)2000-02-282003-02-21Semiconductor Energy LabElectronic device
JP2001318627A (en)2000-02-292001-11-16Semiconductor Energy Lab Co Ltd Light emitting device
TW495854B (en)2000-03-062002-07-21Semiconductor Energy LabSemiconductor device and manufacturing method thereof
JP2001250956A (en)2000-03-082001-09-14Semiconductor Energy Lab Co Ltd Semiconductor device
US20020020840A1 (en)2000-03-102002-02-21Setsuo NakajimaSemiconductor device and manufacturing method thereof
US6872607B2 (en)2000-03-212005-03-29Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device
US7301276B2 (en)2000-03-272007-11-27Semiconductor Energy Laboratory Co., Ltd.Light emitting apparatus and method of manufacturing the same
TW513753B (en)2000-03-272002-12-11Semiconductor Energy LabSemiconductor display device and manufacturing method thereof
TWI301907B (en)2000-04-032008-10-11Semiconductor Energy LabSemiconductor device, liquid crystal display device and manfacturing method thereof
US6789910B2 (en)2000-04-122004-09-14Semiconductor Energy Laboratory, Co., Ltd.Illumination apparatus
US7525165B2 (en)2000-04-172009-04-28Semiconductor Energy Laboratory Co., Ltd.Light emitting device and manufacturing method thereof
TW493282B (en)2000-04-172002-07-01Semiconductor Energy LabSelf-luminous device and electric machine using the same
US6706544B2 (en)2000-04-192004-03-16Semiconductor Energy Laboratory Co., Ltd.Light emitting device and fabricating method thereof
US7579203B2 (en)2000-04-252009-08-25Semiconductor Energy Laboratory Co., Ltd.Light emitting device
TWI224806B (en)2000-05-122004-12-01Semiconductor Energy LabSemiconductor device and manufacturing method thereof
JP4588167B2 (en)2000-05-122010-11-24株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI263336B (en)*2000-06-122006-10-01Semiconductor Energy LabThin film transistors and semiconductor device
US6828587B2 (en)2000-06-192004-12-07Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US7078321B2 (en)2000-06-192006-07-18Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
JP2002083974A (en)2000-06-192002-03-22Semiconductor Energy Lab Co Ltd Semiconductor device
US7503975B2 (en)2000-06-272009-03-17Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and fabrication method therefor
TW504846B (en)2000-06-282002-10-01Semiconductor Energy LabSemiconductor device and manufacturing method thereof
US6875674B2 (en)2000-07-102005-04-05Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device with fluorine concentration
TW536827B (en)2000-07-142003-06-11Semiconductor Energy LabSemiconductor display apparatus and driving method of semiconductor display apparatus
US6613620B2 (en)2000-07-312003-09-02Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
US6703265B2 (en)2000-08-022004-03-09Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
US6542205B2 (en)2000-08-042003-04-01Semiconductor Energy Laboratory Co., Ltd.Display device
US6562671B2 (en)2000-09-222003-05-13Semiconductor Energy Laboratory Co., Ltd.Semiconductor display device and manufacturing method thereof
TW515104B (en)*2000-11-062002-12-21Semiconductor Energy LabElectro-optical device and method of manufacturing the same
US6831299B2 (en)2000-11-092004-12-14Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
TW531971B (en)2000-11-242003-05-11Semiconductor Energy LabD/A converter circuit and semiconductor device
JP4954366B2 (en)2000-11-282012-06-13株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6759313B2 (en)2000-12-052004-07-06Semiconductor Energy Laboratory Co., LtdMethod of fabricating a semiconductor device
TW525216B (en)2000-12-112003-03-21Semiconductor Energy LabSemiconductor device, and manufacturing method thereof
US7045444B2 (en)2000-12-192006-05-16Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing semiconductor device that includes selectively adding a noble gas element
SG111923A1 (en)2000-12-212005-06-29Semiconductor Energy LabLight emitting device and method of manufacturing the same
US7534977B2 (en)2000-12-282009-05-19Semiconductor Energy Laboratory Co., Ltd.Heat treatment apparatus and method of manufacturing a semiconductor device
US6858480B2 (en)2001-01-182005-02-22Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing semiconductor device
TWI221645B (en)2001-01-192004-10-01Semiconductor Energy LabMethod of manufacturing a semiconductor device
US7115453B2 (en)2001-01-292006-10-03Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method of the same
JP4939690B2 (en)2001-01-302012-05-30株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2002231627A (en)2001-01-302002-08-16Semiconductor Energy Lab Co Ltd Method for manufacturing photoelectric conversion device
JP2002236472A (en)2001-02-082002-08-23Semiconductor Energy Lab Co LtdLiquid crystal display device and its driving method
US7141822B2 (en)2001-02-092006-11-28Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method for manufacturing the same
JP4993810B2 (en)2001-02-162012-08-08株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5088993B2 (en)2001-02-162012-12-05株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
SG138468A1 (en)2001-02-282008-01-28Semiconductor Energy LabA method of manufacturing a semiconductor device
JP4718700B2 (en)2001-03-162011-07-06株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7052943B2 (en)2001-03-162006-05-30Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device
US6600436B2 (en)2001-03-262003-07-29Semiconductor Energy Laboratory Co., Ltd,D/A converter having capacitances, tone voltage lines, first switches, second switches and third switches
JP4926329B2 (en)2001-03-272012-05-09株式会社半導体エネルギー研究所 Semiconductor device, method for manufacturing the same, and electric appliance
US6740938B2 (en)2001-04-162004-05-25Semiconductor Energy Laboratory Co., Ltd.Transistor provided with first and second gate electrodes with channel region therebetween
JP4776801B2 (en)2001-04-242011-09-21株式会社半導体エネルギー研究所 Memory circuit
JP4854866B2 (en)*2001-04-272012-01-18株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TW540020B (en)2001-06-062003-07-01Semiconductor Energy LabImage display device and driving method thereof
TW558861B (en)2001-06-152003-10-21Semiconductor Energy LabLaser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
JP3961240B2 (en)2001-06-282007-08-22株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TW550648B (en)*2001-07-022003-09-01Semiconductor Energy LabSemiconductor device and method of manufacturing the same
JP4267266B2 (en)2001-07-102009-05-27株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6952023B2 (en)2001-07-172005-10-04Semiconductor Energy Laboratory Co., Ltd.Light emitting device
JP2003045874A (en)2001-07-272003-02-14Semiconductor Energy Lab Co Ltd Metal wiring and its manufacturing method, and metal wiring substrate and its manufacturing method
JP4618948B2 (en)2001-08-242011-01-26株式会社半導体エネルギー研究所 Semiconductor device evaluation method
US6700096B2 (en)2001-10-302004-03-02Semiconductor Energy Laboratory Co., Ltd.Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
JP3980466B2 (en)2001-11-092007-09-26株式会社半導体エネルギー研究所 Laser apparatus and laser irradiation method
US7050878B2 (en)2001-11-222006-05-23Semiconductor Energy Laboratory Co., Ltd.Semiconductror fabricating apparatus
US7105048B2 (en)2001-11-302006-09-12Semiconductor Energy Laboratory Co., Ltd.Laser irradiation apparatus
US7133737B2 (en)2001-11-302006-11-07Semiconductor Energy Laboratory Co., Ltd.Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
TWI267145B (en)2001-11-302006-11-21Semiconductor Energy LabManufacturing method for a semiconductor device
EP1329946A3 (en)2001-12-112005-04-06Sel Semiconductor Energy Laboratory Co., Ltd.Manufacturing method of semiconductor device including a laser crystallization step
US7214573B2 (en)2001-12-112007-05-08Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing a semiconductor device that includes patterning sub-islands
US7135389B2 (en)2001-12-202006-11-14Semiconductor Energy Laboratory Co., Ltd.Irradiation method of laser beam
JP4141138B2 (en)2001-12-212008-08-27株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP3992976B2 (en)*2001-12-212007-10-17株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4519400B2 (en)*2001-12-272010-08-04株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2003204067A (en)2001-12-282003-07-18Semiconductor Energy Lab Co Ltd Display device and electronic device using the same
EP1326273B1 (en)2001-12-282012-01-18Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
US6933527B2 (en)2001-12-282005-08-23Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and semiconductor device production system
JP4011344B2 (en)2001-12-282007-11-21株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4030758B2 (en)2001-12-282008-01-09株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR100473996B1 (en)*2002-01-092005-03-08장 진Cystallization method of amorphous silicon
JP2003273016A (en)*2002-01-112003-09-26Sharp Corp Semiconductor film and method for forming the same, and semiconductor device and display device using the semiconductor film.
US6841797B2 (en)2002-01-172005-01-11Semiconductor Energy Laboratory Co., Ltd.Semiconductor device formed over a surface with a drepession portion and a projection portion
US7749818B2 (en)2002-01-282010-07-06Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and method of manufacturing the same
TW200302511A (en)2002-01-282003-08-01Semiconductor Energy LabSemiconductor device and method of manufacturing the same
TWI261358B (en)2002-01-282006-09-01Semiconductor Energy LabSemiconductor device and method of manufacturing the same
JP3961310B2 (en)2002-02-212007-08-22株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6884668B2 (en)2002-02-222005-04-26Semiconductor Energy Laboratory Co., Ltd.Semiconductor device and manufacturing method therefor
US7330162B2 (en)2002-02-282008-02-12Semiconductor Energy Laboratory Co., Ltd.Method of driving a light emitting device and electronic equipment
CN100350617C (en)2002-03-052007-11-21株式会社半导体能源研究所 Semiconductor element and semiconductor device using semiconductor element
US6847050B2 (en)2002-03-152005-01-25Semiconductor Energy Laboratory Co., Ltd.Semiconductor element and semiconductor device comprising the same
US6875998B2 (en)2002-03-262005-04-05Semiconductor Energy Laboratory Co., Ltd.Semiconductor device, method of manufacturing the same, and method of designing the same
US6906343B2 (en)2002-03-262005-06-14Semiconductor Energy Laboratory Co., Ltd.Semiconductor display device
US6930326B2 (en)2002-03-262005-08-16Semiconductor Energy Laboratory Co., Ltd.Semiconductor circuit and method of fabricating the same
US6841434B2 (en)2002-03-262005-01-11Semiconductor Energy Laboratory Co., Ltd.Method of fabricating semiconductor device
US6984573B2 (en)2002-06-142006-01-10Semiconductor Energy Laboratory Co., Ltd.Laser irradiation method and apparatus
JP4326756B2 (en)2002-07-042009-09-09株式会社半導体エネルギー研究所 Doping method, doping apparatus control system, and doping apparatus
US7332431B2 (en)2002-10-172008-02-19Semiconductor Energy Laboratory Co., Ltd.Method of manufacturing semiconductor device
JP4744059B2 (en)*2002-11-222011-08-10シャープ株式会社 Semiconductor thin film, method for forming semiconductor thin film, semiconductor device, and display device.
US7374976B2 (en)2002-11-222008-05-20Semiconductor Energy Laboratory Co., Ltd.Method for fabricating thin film transistor
JP5046464B2 (en)2002-12-182012-10-10株式会社半導体エネルギー研究所 Method for manufacturing semiconductor memory element
US7652359B2 (en)2002-12-272010-01-26Semiconductor Energy Laboratory Co., Ltd.Article having display device
EP1437683B1 (en)2002-12-272017-03-08Semiconductor Energy Laboratory Co., Ltd.IC card and booking account system using the IC card
TWI351548B (en)2003-01-152011-11-01Semiconductor Energy LabManufacturing method of liquid crystal display dev
JP4869601B2 (en)2003-03-262012-02-08株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
US7161184B2 (en)2003-06-162007-01-09Semiconductor Energy Laboratory Co., Ltd.Display device and method for manufacturing the same
US7221095B2 (en)2003-06-162007-05-22Semiconductor Energy Laboratory Co., Ltd.Light emitting device and method for fabricating light emitting device
US7224118B2 (en)2003-06-172007-05-29Semiconductor Energy Laboratory Co., Ltd.Display device and electronic apparatus having a wiring connected to a counter electrode via an opening portion in an insulating layer that surrounds a pixel electrode
US7566001B2 (en)2003-08-292009-07-28Semiconductor Energy Laboratory Co., Ltd.IC card
US7768405B2 (en)2003-12-122010-08-03Semiconductor Energy Laboratory Co., LtdSemiconductor device and manufacturing method thereof
US7508305B2 (en)2003-12-262009-03-24Semiconductor Energy Laboratory Co., Ltd.Packing material, tag, certificate, paper money, and securities
WO2006043690A1 (en)2004-10-202006-04-27Semiconductor Energy Laboratory Co., Ltd.Laser irradiation method, laser irradiation apparatus and method for manufacturing semiconductor device
KR100712111B1 (en)2004-12-142007-04-27삼성에스디아이 주식회사 An organic light emitting display device having an auxiliary electrode line and a manufacturing method thereof
US7442631B2 (en)2005-02-102008-10-28Semiconductor Energy Laboratory Co., Ltd.Doping method and method of manufacturing field effect transistor
US7770535B2 (en)2005-06-102010-08-10Semiconductor Energy Laboratory Co., Ltd.Chemical solution application apparatus and chemical solution application method
US7863612B2 (en)2006-07-212011-01-04Semiconductor Energy Laboratory Co., Ltd.Display device and semiconductor device
KR100822216B1 (en)*2007-04-092008-04-16삼성에스디아이 주식회사 A thin film transistor substrate, an organic light emitting display including the same, and a method of manufacturing an organic light emitting display
US7960262B2 (en)2007-05-182011-06-14Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing semiconductor device by applying laser beam to single-crystal semiconductor layer and non-single-crystal semiconductor layer through cap film
US7745268B2 (en)2007-06-012010-06-29Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing a semiconductor device with irradiation of single crystal semiconductor layer in an inert atmosphere
KR20080111693A (en)2007-06-192008-12-24삼성모바일디스플레이주식회사 Method for manufacturing polycrystalline silicon layer, thin film transistor formed using same, method for manufacturing same, and organic light emitting display device comprising the same
US8236668B2 (en)2007-10-102012-08-07Semiconductor Energy Laboratory Co., Ltd.Method for manufacturing SOI substrate
JP5503876B2 (en)2008-01-242014-05-28株式会社半導体エネルギー研究所 Manufacturing method of semiconductor substrate
SG161151A1 (en)2008-10-222010-05-27Semiconductor Energy LabSoi substrate and method for manufacturing the same
JP5711565B2 (en)2010-02-262015-05-07株式会社半導体エネルギー研究所 Power storage device
JP5859746B2 (en)2010-05-282016-02-16株式会社半導体エネルギー研究所 Power storage device and manufacturing method thereof
KR101899374B1 (en)2010-11-262018-09-17가부시키가이샤 한도오따이 에네루기 켄큐쇼Semiconductor film, method for manufacturing the same, and power storage device

Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5147826A (en)1990-08-061992-09-15The Pennsylvania Research CorporationLow temperature crystallization and pattering of amorphous silicon films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5147826A (en)1990-08-061992-09-15The Pennsylvania Research CorporationLow temperature crystallization and pattering of amorphous silicon films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,55(7),p.660−662

Also Published As

Publication numberPublication date
JPH07130652A (en)1995-05-19

Similar Documents

PublicationPublication DateTitle
JP3431033B2 (en) Semiconductor fabrication method
JP3221473B2 (en) Method for manufacturing semiconductor device
JP3562590B2 (en) Semiconductor device manufacturing method
JP3431041B2 (en) Method for manufacturing semiconductor device
JP2860869B2 (en) Semiconductor device and manufacturing method thereof
JP2873669B2 (en) Semiconductor device and manufacturing method thereof
JP2791635B2 (en) Semiconductor device and manufacturing method thereof
JPH08339960A (en)Preparation of semiconductor device
JP3431034B2 (en) Method for manufacturing semiconductor device
JP4684246B2 (en) Method for manufacturing semiconductor device
JP3241667B2 (en) Method for manufacturing semiconductor device and electro-optical device
JP3442693B2 (en) Method for manufacturing insulating gate type field effect semiconductor device
JP3672850B2 (en) Integrated circuit fabrication method
JP3672849B2 (en) Integrated circuit fabrication method
JP3545289B2 (en) Semiconductor device manufacturing method
JP3442694B2 (en) Method for manufacturing semiconductor device
JP3626102B2 (en) Integrated circuit fabrication method
JP3618604B2 (en) Semiconductor device manufacturing method
JP3573969B2 (en) Semiconductor device manufacturing method
JP3529586B2 (en) Method for manufacturing semiconductor device
JP3600092B2 (en) Semiconductor device manufacturing method
JP3442752B2 (en) Method for manufacturing crystalline silicon film
JPH09148251A (en)Semiconductor and method for manufacturing semiconductor device
JP3529726B2 (en) Manufacturing method of semiconductor integrated circuit
JP3950307B2 (en) Method for manufacturing semiconductor device

Legal Events

DateCodeTitleDescription
R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

R250Receipt of annual fees

Free format text:JAPANESE INTERMEDIATE CODE: R250

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090523

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20090523

Year of fee payment:6

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100523

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100523

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20100523

Year of fee payment:7

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110523

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20110523

Year of fee payment:8

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120523

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20120523

Year of fee payment:9

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20130523

Year of fee payment:10

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20130523

Year of fee payment:10

FPAYRenewal fee payment (event date is renewal date of database)

Free format text:PAYMENT UNTIL: 20140523

Year of fee payment:11

EXPYCancellation because of completion of term

[8]ページ先頭

©2009-2025 Movatter.jp